Intended for Illinois Power Generating Company 134 Cip Lane Coffeen, Illinois 62017

Date April 1, 2025

Project No. 1940110241-001

CORRECTIVE ACTION PLAN ILLINOIS POWER GENERATING COMPANY, COFFEEN POWER PLANT, ASH POND NO. 2, IEPA ID NO. W1350150004-02

CORRECTIVE ACTION PLAN ILLINOIS POWER GENERATING COMPANY, COFFEEN POWER PLANT, ASH POND NO. 2, IEPA ID NO. W1350150004-02

Project name Project no. Recipient Document type Revision Date Prepared by Checked by Approved by Description Coffeen Power Plant Ash Pond No. 2 1940110241-001 Illinois Power Generating Company Corrective Action Plan DRAFT April 1, 2025 Katlyn Nohr, Sarah Slagle-Garrett J. Austin Bond, PE Brian G. Hennings, PG Corrective Action Plan for 35 I.A.C. § 845

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

J. Austin Bond, PE Qualified Professional Engineer Brian G. Hennings, PG Project Officer, Hydrogeology

CONTENTS

Introduction	3
Plant and Site Information	3
Organization of the Corrective Action Plan	3
Permit Status	3
Closure and Source Control Status	3
Selected Corrective Action Remedy	4
Narrative Description of Selected Corrective Action Remedy	4
Narrative Discussion of Remedy Design and Function	5
Narrative Description of Proposed Remedy Operations	5
Narrative Description of Proposed Groundwater Monitoring	6
Corrective Action Overview	8
Corrective Measures Assessment	8
Analysis of Corrective Action Alternatives	8
Corrective Action Alternatives Analysis Supporting Information	
Report	8
Corrective Action Alternatives Analysis	9
Corrective Action Plan	10
General Requirements	10
Remedy Selection	10
Schedule for Implementation	11
Other Relevant Factors	16
Necessity of Interim Measures	16
References	18
	IntroductionPlant and Site InformationOrganization of the Corrective Action PlanPermit StatusClosure and Source Control StatusSelected Corrective Action RemedyNarrative Description of Selected Corrective Action RemedyNarrative Discussion of Remedy Design and FunctionNarrative Description of Proposed Remedy OperationsNarrative Description of Proposed Groundwater MonitoringCorrective Action OverviewCorrective Measures AssessmentAnalysis of Corrective Action AlternativesCorrective Action Alternatives Analysis Supporting InformationReportCorrective Action PlanGeneral RequirementsRemedy SelectionSchedule for ImplementationOther Relevant FactorsNecessity of Interim MeasuresReferences

TABLES (WITHIN TEXT)

Table A Estimated Timeframes to Attain GWPS in Groundwater Monitoring Wells

TABLES

 Table 1
 Proposed Milestone Schedule for Implementing Corrective Action Remedy

APPENDICES

- Appendix A Corrective Action Alternatives Analysis (845.670(e)), including Corrective Measures Assessment (845.660)
- Appendix B Drawings and Material Specifications for Selected Remedy

ACRONYMS AND ABBREVIATIONS

%	percent
35 I.A.C.	Title 35 of the Illinois Administrative Code
40 C.F.R.	Title 40 of the Code of Federal Regulations
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2 ("the site")
CA GMP	Corrective Action Groundwater Monitoring Plan
CAAA	Corrective Action Alternatives Analysis
CAAA-SIR	Corrective Action Alternatives Analysis Supporting Information Report
CAP	Corrective Action Plan
CCR	coal combustion residuals
CIP	closure-in-place
CMA	Corrective Measures Assessment
cm/s	centimeters per second
COC	constituent of concern
COI	contaminant of interest
СР	Construction Permit
CPP	Coffeen Power Plant
DA	deep aquifer
DCU	deep confining unit
Gradient	Gradient Corporation
GWE	groundwater extraction
GWP	groundwater polishing
GWPS	groundwater protection standard(s)
HCR	Hydrogeologic Site Characterization Report
HDPE	high-density polyethylene
ID	identification
IEPA	Illinois Environmental Protection Agency
in/yr	inches per year
ILWATER	Illinois Water and Related Wells (ILWATER)
IPGC	Illinois Power Generating Company
ISGS	Illinois State Geological Survey
kV	kilovolt
LCU	lower confining unit
NAVD88	North American Vertical Datum of 1988
No.	number
NPDES	National Pollutant Discharge Elimination System
OMM	Operation, Maintenance, and Monitoring
OP	Operating Permit
PMP	potential migration pathway
Ramboll	Ramboll Americas Engineering Solutions, Inc.
UA	uppermost aquifer
UCU	upper confining unit
USEPA	United States Environmental Protection Agency
VAC	volt alternating current

1. INTRODUCTION

1.1 Plant and Site Information

Illinois Power Generating Company (IPGC) is the owner of the inactive coal-fired Coffeen Power Plant (CPP), also referred to as the Coffeen Power Station, in Coffeen, Montgomery County, Illinois. This Corrective Action Plan (CAP) has been prepared for Ash Pond number (No.) 2 (AP2) at the CPP (site). Groundwater corrective action for AP2 will be performed under the requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845, Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments [1] and the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257, herein referred to as the Federal coal combustion residuals (CCR) Rule [2]. AP2 is identified by Illinois Environmental Protection Agency (IEPA) identification (ID) No. W1350150004-02, CCR Unit ID No. 102, and National Inventory of Dams No. IL50723.

1.2 Organization of the Corrective Action Plan

This CAP is organized in the following manner:

- Section 1 includes an introduction to AP2, lists the status of other 35 I.A.C. § 845 permit applications submitted to IEPA, identifies the selected remedy, and provides a narrative of remedy construction;
- Section 2 includes an overview of the Corrective Action process, including the results of the Corrective Measures Assessment (CMA) and Corrective Action Alternatives Analysis (CAAA);
- Section 3 provides the CAP requirements, the selected remedy, an evaluation of effectiveness, and an implementation schedule, as required by 35 I.A.C. § 845.670; and
- Section 4 includes reference documents used in the development of this CAP.

This CAP was prepared as an attachment to a Corrective Action Construction Permit Application, as required by 35 I.A.C. § 845.220(a) and (c).

1.3 Permit Status

An Operating Permit (OP) application, as required by 35 I.A.C. § 845.230, was submitted on to IEPA by IPGC on October 25, 2021 [3]. As of the date of this CAP, IPGC's OP for AP2 is pending with IEPA.

1.4 Closure and Source Control Status

IPGC completed significant source control in 2020 as part of final closure of AP2 [4]. The final closure was performed in accordance with the Closure and Post-Closure Care Plan [5] that was developed in accordance with 40 C.F.R. § 257 and approved by IEPA on January 30, 2018 [6].

The AP2 closure construction included closure-in-place (CIP) of the entire AP2 and installation of an alternative geomembrane cover system. This was accomplished by constructing a final cover system that complies with 40 C.F.R. § 257.102 to minimize water infiltration into the closed AP2 and improve surface water drainage off the cover system, thus reducing generation of potentially impacted water and ultimately reducing the extent of CCR impacts to groundwater. The source control was predicted to lower water levels and decrease the potential transport of CCR constituents away from AP2 [7]. These completed source control activities will serve as the

primary groundwater corrective measure at AP2. The remedy presented within this CAP is intended to be supplementary to the primary remedy, which is the completed source control.

1.5 Selected Corrective Action Remedy

A horizontal groundwater extraction (GWE) well, combined with the source control completed in 2020 [4] as presented within the Final Closure Plan [5], has been identified as the most appropriate remedy for AP2, based on the CAAA provided in **Appendix A**. Potential remedies evaluated in the CAAA included source control with groundwater polishing (GWP), source control with upgradient barrier wall and GWE trench, and source control with horizontal GWE well.

The CAAA, which was prepared by Gradient Corporation (Gradient), was based on a CAAA Supporting Information Report (CAAA-SIR) that was prepared by Ramboll Americas Engineering Solutions, Inc. (Ramboll) and is attached to the CAAA. The CAAA-SIR includes the results of groundwater modeling and feasibility-level design information for each remedy.

A Groundwater Polishing Evaluation Report [8] is also attached to the CAAA. This report presents results from geochemical modeling of exceedance¹ parameters addressed at AP2 by the CAP. Geochemical modeling supports the assessment of GWP as a component of the proposed corrective action by evaluating the potential for chemical attenuation of constituents of concern (COCs) before and after source control as a means of contextualizing the times to meet groundwater protection standards (GWPS) estimated in the flow and transport model.

1.5.1 Narrative Description of Selected Corrective Action Remedy

Corrective action will consist of the completed source control (see **Section 1.4**) and the construction and operation of a horizontal GWE well beneath the eastern portion of AP2, which will serve to collect CCR-impacted groundwater. This will reduce, to the maximum extent feasible, further releases of constituents listed in 845.600 in accordance with 845.670(d)(3).

The horizontal GWE well will be continuously operated during the corrective action period, outside of routine shutdowns for maintenance and/or power outages. Groundwater corrective action performance will be monitored in accordance with the Corrective Action Groundwater Monitoring Plan (CA GMP). Estimated timelines for horizontal GWE well system operation and times to reach GWPS will be periodically reviewed and updated based on observed corrective action performance via an adaptive site management strategy. These periodic, updated estimates will be communicated to IEPA and the public within Annual Groundwater Monitoring Plan (CA GMP). The horizontal GWE well will be operated continuously until monitoring wells attain the GWPS and a determination has been made that COCs will not rebound above the GWPS after the system is removed from operation. Monitoring, groundwater monitoring plan describe how stability in groundwater data will be evaluated before assessing if compliance with the GWPS has been attained to allow any transient effects of treatment on the groundwater (*e.g.*, rebounding concentrations) to dissipate.

¹ Throughout this document, "exceedance" or "exceedances" is intended to refer only to potential exceedances of proposed applicable background statistics or GWPSs as described in the proposed groundwater monitoring program, which was submitted to the IEPA on October 25, 2021 as part of IPGC's operating permit application for COF AP2. That operating permit application, including the proposed groundwater monitoring program, remains under review by the IEPA and, therefore, IPGC has not identified any actual exceedances

Corrective action will be considered complete when a demonstration that GWPS compliance beyond the waste boundary has been achieved for at least three years after remedy operations have ceased and a Corrective Action Completion Report and certification have been submitted to IEPA in accordance with 35 I.A.C. § 845.680(e).

1.5.1.1 Narrative Discussion of Remedy Design and Function

The horizontal GWE design includes one horizontal well installed along an approximately 1,300foot alignment which will be initiated from the south end of the AP2 at the base of the existing berm and run north under AP2 (*i.e.*, intersecting or perpendicular to the existing groundwater flow direction) at an approximate depth which coincides with the expected base of the CCR/native soil interface. Permit-level engineering drawings depicting the proposed remedy are provided in **Appendix B** and a list of key design components includes the following:.

- The well will extend from the south end of AP2 at the base of the existing berm. The target elevation for the well is the bottom of CCR/top of the uppermost aquifer (UA) interface, which his expected to range from 600 to 606 feet² along the well alignment.
- The well casing will consist of slotted well screen over two targeted collection areas (expected to be around 400 feet total in length), with solid sections for areas where collection of liquids is not required.
- Following installation, the well will be developed to remove remaining drilling mud/solids. Water will be managed and discharged in accordance with applicable permits.
- The entry point will be sealed with grout to reduce surface water infiltration into the well, and a concrete pad will be constructed at the exit point of the well.

Electrical and piping infrastructure to support the horizontal GWE well system will be installed. The infrastructure is expected to include:

- A shed structure to be constructed at the extraction well vault pad. The structure will house: a well vault; an air compressor to power a submersible pneumatic pump; and a shut-off valve, sample port, and flow totalizer to measure the extracted water.
- Piping will be used to convey groundwater from the extraction well sump for treatment, as needed, prior to discharge in accordance with applicable permits. This will include the installation of miscellaneous electrical controls to support data collection and system operation.

1.5.2 Narrative Description of Proposed Remedy Operations

Operations, Monitoring, and Maintenance (OMM) will be conducted on the horizontal GWE well system on a routine basis. OMM will consist of tracking the totalized flow to evaluate the flow/extraction rates from the horizontal well, and routine maintenance on system components. Waste streams associated with the horizontal GWE well system and its management may include:

• Conveyance piping will be flushed periodically as solids accumulation is observed as part of routine OMM inspections.

² All elevations in this report are referenced to North American Vertical Datum of 1988 (NAVD88), unless otherwise noted.

• If needed, the horizontal well will be re-developed as part of OMM inspections, likely using flushing or another technique to remove solids.

Routine equipment maintenance will be conducted per recommendations provided by the horizontal well and associated infrastructure components' manufacturers. Equipment will be replaced as needed to keep the horizontal GWE well system operating within design specifications. Equipment maintenance and/or replacement may require temporary shutdown of the horizontal GWE well system.

1.5.3 Narrative Description of Proposed Groundwater Monitoring

Corrective action groundwater monitoring will be conducted in accordance with the CA GMP during remedy operation to evaluate the effectiveness of the corrective action remedy and whether groundwater concentrations are achieving the GWPS as predicted by the groundwater model. Groundwater data collected as part of the monitoring program will be analyzed to determine if the remedy is on track to meet GWPS and inform adaptive management decisions if performance metrics are not achieved. Information associated with each of these activities is described below.

- Regular groundwater monitoring will be conducted utilizing a corrective action groundwater monitoring network designed in accordance with 35 I.A.C. § 845.680(a)(1).
- Samples will be collected on a quarterly basis initially and potentially reduced to a semiannual basis once five years of monitoring have occurred, in accordance with 35 I.A.C. § 845.650(b)(4). Monitoring results will be submitted to IEPA for each monitoring event, in addition to an Annual Groundwater Monitoring and Corrective Action Report, in accordance with 35 I.A.C. § 845.610(e).
- Routine maintenance of the monitoring well network will include inspecting the wells, making repairs to the wells (as needed) and rehabilitating and/or replacing wells to improve performance (as needed).
- Adaptive site management strategies will be employed as an integral part of ongoing CA. The
 adaptive site management approach will allow timely incorporation of new site information to
 ensure the achievement of the GWPS. The effectiveness of the remedy at each phase is
 evaluated using performance metrics designed to assess the goals of that phase. Performance
 metrics answer questions designed to evaluate multiple aspects of remedy effectiveness with
 the ultimate goal of holistically guiding management decisions [7]. The goals and performance
 metrics of each phase of remedy evaluation are presented in Section 3 of the CA GMP included
 in the CP application.
- Documentation of remedy progress metrics will be provided in the Annual Groundwater Monitoring and CA Report beginning after the second year of data collection: a minimum of eight data points is required to complete meaningful statistical analysis required for evaluation of the remedy progress metrics, which will be available after two years of quarterly sampling. Per USEPA guidance [9], a thorough review of CA progress and remedy effectiveness will be conducted every five years. A Five-Year Annual Groundwater Monitoring and CA Report will evaluate the comprehensive data set and, if triggered by the results of the remedy progress evaluation metrics, evaluate whether adaptive management actions are needed. The five-year time frame allows adaptive management decisions to be based on a robust data sufficient to

complete meaningful statistical analysis while remaining responsive to changing site conditions [9].

- Corrective Action Confirmation Monitoring and Completion
 - Per 35 I.A.C. § 845.680(c), corrective action is considered complete when compliance with the GWPS has been demonstrated "at all points within the plume of contamination that lies beyond the waste boundary [...] for a period of three consecutive years." At that time, an attainment evaluation will be implemented. This will include monitoring each well for three additional years to confirm that GWPS have been achieved, in accordance 35 I.A.C. § 845.680(c).
 - After completion of the corrective action confirmation monitoring period, a Corrective Action Completion Report and Certification will be prepared and submitted to IEPA, in accordance with 35 I.A.C. § 845.680(e).

2. CORRECTIVE ACTION OVERVIEW

This CAP is based on the tiered assessment and analysis of alternative remedial technologies and remedies that were completed via the CMA and CAAA (**Appendix A**). The objective of these assessments was to determine the most appropriate alternative for AP2 that, when coupled with the source control previously completed as proposed in the Final Closure Plan [5], would remediate groundwater and provide compliance with the GWPS specified under 35 I.A.C. § 845.600.

2.1 Corrective Measures Assessment

The CMA [10] was performed for AP2 and submitted to the IEPA on June 12, 2024, after the exceedances of the GWPS were identified. The CMA considered four corrective measures for AP2, including:

- Source control with GWP;
- Source control with GWE;
- Source control with groundwater cutoff wall; and
- Source control with in-situ chemical treatment

Based on the CMA, three corrective measures, including source control with GWP, source control with GWE, and source control with groundwater cutoff wall were identified as potentially viable corrective measures for AP2. Of these measures, source control with GWP, source control with GWE, and source control with groundwater cutoff wall were included for further evaluation, design advancement, and comparative assessment within the CAAA. The source control with groundwater cutoff wall was expanded to also include GWE. Additionally, the source control with GWE remedy was further defined as the horizontal GWE well remedy as presented in this CAP. Additional information on these refinements are discussed in the CAAA provided in **Appendix A**.

2.2 Analysis of Corrective Action Alternatives

2.2.1 Corrective Action Alternatives Analysis Supporting Information Report

The CAAA for AP2 was prepared by Gradient based on the CAAA-SIR prepared by Ramboll. The CAAA-SIR, which is included as Attachment B of the CAAA provided in **Appendix A**, included additional evaluation, design advancement, and comparative assessment of the source control with GWP, source control with upgradient barrier wall and GWE trench, and source control with horizontal GWE well corrective measures identified as potentially viable for AP2 by the CMA. The evaluation included the completion of feasibility-level design activities for each alternative and incorporated the following tasks:

- Performing predictive groundwater modeling to evaluate the scope (*i.e.*, location and extents) of each alternative and the corresponding estimated time to achieve GWPS;
- Developing feasibility-level design drawings showing the extents in plan and elevation view of each engineered remedy;
- Estimating the time required to design, construct, and implement each remedy, in addition to ongoing operational and maintenance requirements;

- Developing conceptual plans for the storage, treatment, and discharge of extracted groundwater for applicable remedies;
- Identifying future tasks required to implement each alternative, including permitting, investigation, and design efforts; and
- Estimating relevant material quantities, labor hours, delivery miles, equipment miles, and daily commuting miles associated with constructing each remedy.

2.2.2 Corrective Action Alternatives Analysis

The CAAA (**Appendix A**) included a detailed analysis of each of the corrective action alternatives presented in the CAAA-SIR, including an evaluation of:

- Long- and short-term effectiveness and protectiveness;
- Ease or difficulty of implementation;
- Degree to which community concerns are addressed; and,
- Relative amount of contamination removed from the environment.

Based on the CAAA, source control with horizontal GWE well was identified as the most appropriate corrective action for AP2 and was selected for further design development as part of this CAP.

It should be noted that the permit-level engineering assessments, groundwater modeling, and other information contained within this CAP were developed to a higher level of design and detail than those assessments performed in the CAAA; therefore, information on items such as permitting, remedy scope, estimated time to reach GWPS, implementation schedule, etc. may differ between this CAP and the information included in the CAAA-SIR and CAAA. Information for the source control with horizontal GWE well contained within the CAP should be considered to supersede information contained within the CAAA and CAAA-SIR.

3. CORRECTIVE ACTION PLAN

The 35 I.A.C. § 845 requirements for the CAP and corresponding demonstrations that the proposed corrective measures meet these requirements are discussed individually in this section. Many of the CAP requirements are discussed within the CMA and CAAA documents that have been prepared to support the CAP. Therefore, the demonstrations will also refer to those documents.

3.1 General Requirements

<u>35 I.A.C. § 845.670(c)</u>: The corrective action plan must meet the following requirements:

(1) Be based on the results of the corrective measures assessment conducted under 35 I.A.C. § 845.660;

(2) Identify a selected remedy that at a minimum, meets the standards listed in subsection (d);

(3) Contain the corrective action alternatives analysis specified in subsection (e); and

(4) Contain proposed schedules for implementation, including an analysis of the factors in subsection (f).

This CAP is based on the results of the CMA and CAAA, which are included within **Appendix A**. The proposed schedule for implementing source control with horizontal GWE well is provided in **Table 1**.

3.2 Remedy Selection

<u>35 I.A.C. § 845.670(d)</u>: The selected remedy in the corrective action plan must:

(1) Be protective of human health and the environment;

Current conditions at AP2 pose no risk to human health or the environment [11]. Concentrations of CCR-derived constituents are anticipated to decline once the horizontal GWE well active remedy is in place as presented in the CAAA (**Appendix A**). The horizontal well would drain water from beneath AP2 reducing hydraulic head beneath AP2, which would accelerate achieving GWPS.

(2) Attain the groundwater protection standards specified in 35 I.A.C. § 845.600;

Groundwater modeling indicates a horizontal GWE well (Appendix B of the CAAA-SIR, which is attached in **Appendix A**), which is selected as the remedy of this CAP, will result in attainment of the GWPS in the current monitoring system within 14 years.

(3) Control the sources of releases to reduce or eliminate, to the maximum extent feasible, further releases of constituents listed in 35 I.A.C. § 845.600 into the environment;

AP2 was closed using a closure-in-place approach, which is currently acting as the main control mechanism to prevent further releases of CCR-derived constituents. The horizontal GWE well will, to the maximum extent feasible, prevent further releases of CCR-derived constituents in groundwater until the GWPS are achieved.

The main source of CCR-derived constituent release occurred as a result of surface water infiltration and precipitation coming into contact with AP2 CCR prior to completion of the final closure. Surface water infiltration has been controlled, minimized, or eliminated as much as feasible with the final closure completed in 2020 [4]. The horizontal GWE well is designed to provide continuous hydraulic control and capture of groundwater to reduce the time to attain the GWPS. If the remedy is found to be unsuccessful in meeting remediation goals, adaptive site management actions will be taken as described within the CA GMP (Appendix B).

(4) Remove from the environment as much of the contaminated material that was released from the CCR surface impoundment as is feasible, taking into account factors such as avoiding inappropriate disturbance of sensitive ecosystems; and

No known releases of CCR due to a structural integrity issue have occurred at AP2.

(5) Comply with standards for management of wastes as specified in 35 I.A.C. § 845.680(d).

The CCR managed as part of the corrective action (source control with horizontal GWE well) will be done in accordance with all 35 I.A.C. § 845 requirements and the submitted closure plan [5].

3.3 Schedule for Implementation

GWE via horizontal well is effective as an engineering control as it provides hydraulic control at the eastern boundary. GWE has been demonstrated as a reliable and applicable ex-situ remedial technology by the United States Environmental Protection Agency (USEPA) [12]. GWE via horizontal wells (or "directional wells") for remediation is accepted by the USEPA as an effective technology for extraction beneath landfills, interception of vertical features, and/or providing hydraulic control along the leading edge of a plume [12]. The horizontal GWE will continue to operate as the CA following source control until (1) GWPS have been met and (2) it has been determined that potential rebound above GWPS is not expected after operation of the GWE is ceased. Monitoring and adaptive site management practices presented in the corrective action groundwater monitoring plan will be used to determine when operations of the GWE will cease after the GWPS has been met. The corrective action groundwater monitoring plan describes how stability in groundwater data will be evaluated before assessing if compliance with the GWPS has been attained to allow any transient effects of treatment on the groundwater (*e.g.*, rebounding concentrations) to dissipate.

The horizontal GWE well remedy will successfully attain GWPS in a reasonable time as discussed in the following subsections. Timeframes to attain GWPS in the groundwater monitoring wells summarized in Table A indicate that 40% of progress is expected to occur within the first 5 years after remedy construction.

Description	5 years**	10 years**	14 years**
Percentage of Wells predicted to attain GWPS*	40%	60%	100%

Table A. Estimated Timeframes to Attai	n GWPS Groundwater Monitoring Wells
---	-------------------------------------

*: 5 wells were used in the 2025 Groundwater Modeling Technical Memorandum.

** Years counted starting from completion of corrective action.

<u>35 I.A.C. § 845.670(f)</u>: The owner or operator must specify, as part of the corrective action plan, a schedule for implementing, of and completing, remedial activities. The schedule must require the completion of remedial activities within a reasonable time, taking into consideration the factors in this subsection (f). The owner or operator of the CCR surface impoundment must consider the following factors in determining the schedule of remedial activities:

The schedule for implementing and completing the source control with horizontal GWE well remedy at AP2 is included in **Table 1**. The schedule was developed considering the factors required by 35 I.A.C. §§ 845.670(f)(1) through (5), as summarized below.

<u>35 I.A.C. § 845.670(f)(1):</u> Extent and nature of contamination, as determined by the characterization required under 35 I.A.C. § 845.650(d);

The Nature and Extent Report [13], which was submitted to the IEPA on June 12, 2024 and is included as an attachment to the CAAA (**Appendix A**), details exceedances of GWPS. Groundwater modeling and geochemical analysis were performed by Ramboll as part of the CAAA-SIR to design the remedy, and the modeling considered the nature and extent of contamination.

<u>35 I.A.C. § 845.670(f)(2)</u>: Reasonable probabilities of remedial technologies achieving compliance with the GWPS established by 35 I.A.C. § 845.600 and other objectives of the remedy;

Several remedies were evaluated in the CAAA (**Appendix A**), and it was determined that the selected remedy (source control with horizontal GWE well) is expected to achieve compliance with 35 I.A.C. § 845.600 in a reasonable timeframe. The potential for remedial technologies to achieve compliance with the GWPS were evaluated using groundwater modeling [14]. The results of the modeling indicates that the groundwater in the UA groundwater unit will attain the GWPS for all constituents within approximately 14 years after remedy construction.

As discussed in the CMA, source control and GWE are proven methods for addressing groundwater contamination [10]. The previously completed closure-in-place approach (*e.g.*, source control) is consistent with the requirements of 40 C.F.R. § 257.

<u>35 I.A.C. § 845.670(f)(3)</u>: Availability of treatment or disposal capacity for CCR managed during implementation of the remedy;

The selected remedy includes CIP and GWE. The horizontal GWE well system is expected to result in the generation and management of a small volume of drill cuttings, which would contain CCR. CCR waste generated during implementation of the remedy would be placed into off-road dump trucks and hauled to the on-site landfill for disposal. The on-site landfill is expected to have sufficient capacity to dispose of the small volume of waste.

<u>35 I.A.C. § 845.670(f)(4)</u>: Potential risks to human health and the environment from exposure to contamination before completion of the remedy;

A Human Health and Ecological Risk Assessment was completed and included as an attachment to the CAAA (**Appendix A**). The overall conclusion is that groundwater from the AP2 impoundment and potential groundwater contributions to surface water pose no unacceptable risks to human health or the environment. This conclusion is based on modeled and detected

maximum concentrations of all COCs in surface water at the NPDES permitted discharge that were below conservative risk-based screening benchmarks. This conclusion was reached using methodology consistent with applicable USEPA risk assessment principles. The assessment relied on conservative assumptions meant to overestimate possible exposures and risks and provide an additional level of certainty in the conclusions.

<u>35 I.A.C. § 845.670(f)(5):</u> Resource value of the aquifer, including:

The resource value of the aquifer is discussed in the Hydrogeologic Site Characterization Report (HCR), which is included as Appendix A in the Final Closure Plan [15]. The UA includes the sands, silty sands, and clays at the base of the Hagarstown Member and, in some locations, the uppermost weathered sandy clay portion of the Vandalia Member. This unit is absent in some locations at the CPP due to weathering and in others due to excavation during construction of the CCR units. The underlying lower confining unit (LCU) has been identified as a potential migration pathway (PMP) because downward vertical gradients indicate that there is the potential for impacts to migrate within this unit. Groundwater flows southeasterly below AP2 toward a historic process flume and an unnamed tributary leading to Coffeen Lake.

As set forth in 35 I.A.C. § 620.210, groundwater within the UA at AP2 meets the definition of Class I – Potable Resource Groundwater, as geologic material with a hydraulic conductivity of 1×10^{-4} centimeters per second (cm/s) or greater and located 10 feet or more below the land surface. This information was also considered in the CAAA as part of the Human Health and Ecological Risk Assessment, which concluded that groundwater from the AP2 impoundment and potential groundwater contributions to surface water pose no unacceptable risks to human health or the environment.

The source control with horizontal GWE well remedy will result in decline of concentrations of CCR-derived constituents in the UA and PMPs. No off-site migration of CCR-derived constituents is expected to occur. Groundwater polishing and adaptive site management following source control will function until the GWPS is achieved in accordance with the CA GMP. Paragraphs (A) through (F) from 35 I.A.C. § 845.670(f)(5) are further addressed, as summarized below.

<u>35 I.A.C. § 845.670(f)(5)(A)</u>: Current and future uses, including potential residential, agricultural, commercial industrial and ecological uses; and

Current uses and users of the groundwater are discussed in HCR Section 2.5 [15] and attachments and were considered in the CAAA as part of the Human Health and Ecological Risk Assessment which concluded that groundwater from the AP2 impoundment and potential groundwater contributions to surface water pose no unacceptable risks to human health or the environment. No changes in future residential, commercial, or ecological use are expected. In the absence of changes to current and future uses there is no applicable scheduling consideration.

<u>35 I.A.C. § 845.670(f)(5)(B)</u>: Proximity and withdrawal rate of users;

A water well inventory was completed in 2017 for AP2 and in 2021 for Ash Pond No. 1 (AP1), which is located 350 feet south of AP2 [16]. In 2024, Gradient updated the 2017 well survey as part of the HHERA [11].

A search of the Illinois State Geological Survey (ISGS) Illinois Water and Related Wells (ILWATER) Map identified 19 wells located within 1,000 meters of AP2. The wells that were

identified included 13 monitoring wells and six farm/domestic wells. There is one farm/domestic well (121352283200) located north of and side-gradient to AP2, and on the west side of the unnamed tributary to Coffeen Lake. The well, which was installed in 1981, is located near the former location of several prior residences. The well was removed during the construction of the Gypsum Management Facility Recycle Pond (GMF RP) in 2010. Additionally, the property in this area has been purchased by IPGC and no residents are currently living or using groundwater in the area. While there is no information available on the current use of the remaining five farm/domestic wells, they are located on the east/southeast side of Coffeen Lake's eastern branch and the unnamed tributary, *i.e.*, the opposite side of the lake from AP2. These surface water bodies are hydraulic boundaries that prevent shallow groundwater from flowing past or underneath them.

The assessment concluded there are no existing off-site water wells, potable or non-potable, that could potentially be impacted by groundwater from AP2. This information was also considered in the CAAA as part of the Human Health and Ecological Risk Assessment, which concluded that groundwater from the AP2 impoundment and potential groundwater contributions to surface water pose no unacceptable risks to human health or the environment. In the absence of changes in current and future uses, there is no applicable scheduling consideration for proximity and withdrawal rates of users.

<u>35 I.A.C. § 845.670(f)(5)(C)</u>: Groundwater quantity and quality;

Per 35 I.A.C. § 620.210, groundwater within the UA at AP2 meets the definition of Class I – Potable Resource Groundwater [15]. The Human Health and Ecological Risk Assessment (Appendix A in CAAA Report) concluded that groundwater from the AP2 impoundment and potential groundwater contributions to surface water pose no unacceptable risks to human health or the environment.

<u>35 I.A.C. § 845.670(f)(5)(D)</u>: The potential impact to the subsurface ecosystem, wildlife, other natural resources, crops, vegetation, and physical structures caused by exposure to CCR constituents;

A comprehensive search of the IDNR Natural Heritage Database and Historic Preservation Division database was performed to identify nature preserves, endangered/threatened species and historic sites in the vicinity of AP2 was completed to address comments received from the IEPA on the Operating Permit [17]. The results of the survey indicated that no nature preserves, protected areas, or historic sites are present within 1,000 meters of the site.

A search of Section 3.5 of the Human Health and Ecological Risk Assessment included as Appendix A of the CAAA and CMA/CAAA Report discusses the ecological risk evaluation.

- Ecological receptors exposed to surface water include aquatic and marsh plants, amphibians, reptiles, and fish. The risk evaluation showed that none of the contaminants of interest (COIs) in surface water exceeded protective screening benchmarks.
- Ecological receptors exposed to sediment include benthic invertebrates. The modeled sediment COIs did not exceed the conservative screening benchmarks, therefore, none of the COIs evaluated in sediment are expected to pose an unacceptable risk to ecological receptors.
- Ecological receptors were also evaluated for exposure to bioaccumulative COIs. This evaluation considered higher trophic-level wildlife with direct exposure to surface water and

sediment and secondary exposure through the consumption of dietary items (*e.g.*, plants, invertebrates, small mammals, fish). Based on US EPA Region 4 Ecological Risk Assessment Supplemental Guidance (March 2018 Update) [18], mercury and selenium were identified as bioaccumulative COIs. However, the maximum detected concentration for mercury and the maximum detection limit for selenium (which was undetected) in surface water were below benchmarks protective of bioaccumulative effects. In addition, modeled sediment concentrations were also below benchmarks protective of bioaccumulative sposures.

Overall, this evaluation demonstrated that none of the COIs evaluated are expected to pose an unacceptable risk to ecological receptors.

<u>35 I.A.C. § 845.670(f)(5)(E)</u>: The hydrogeologic characteristic of the facility and surrounding land; and

In addition to the CCR present at AP2, there are five principal layers of unlithified material present above the bedrock, which are categorized into the hydrostratigraphic units described below (from surface downward) based on stratigraphic relationships and common hydrogeologic characteristics:

- **Upper Confining Unit (UCU):** Composed of the Roxana and Peoria Silts (Loess Unit) and the upper clayey portion of the Hagarstown member which are classified as silts to clayey silts and gravelly clay below the surficial soil. Loess Unit thickness ranges from 0 feet (absent) to 16 feet and the clayey portion of the Hagarstown member is up to 6 feet thick. The UCU has been eroded east of AP2, near the unnamed tributary.
- **Uppermost Aquifer (UA)**: The UA is the Hagarstown Member which is classified as primarily sandy to gravelly silts and clays with thin beds of sands. Where present, the sandy portion of the Hagarstown is generally 2 to 4 feet thick. Similar to the Loess Unit, the Hagarstown is absent in some locations near the unnamed tributary. Hydraulic conductivity in the UA is moderate.
- Lower Confining Unit (LCU): Comprised of the Vandalia Member, Mulberry Grove Member, and Smithboro Member. These units include a sandy to silty till with thin, discontinuous sand lenses, a discontinuous and limited extent sandy silt which has infilled prior erosional features, and silty to clayey diamicton, respectively. The unit was encountered in all borings on the CPP. This LCU has been identified as a PMP because downward vertical gradients indicate that there is the potential for impacts to migrate within this unit despite very low permeability.
- **Deep Aquifer (DA):** Sand and sandy silt/clay units of the Yarmouth Soil, which include accretionary deposits of fine sediment and organic materials, typically less than 5 feet thick and discontinuous across the CPP. Where present, the DA has been identified as a potential PMP due to presence of downward gradients in the overlying LCU and the relatively greater hydraulic conductivities measured in the DA. Hydraulic conductivity in the DA is moderate.
- **Deep Confining Unit (DCU):** Comprised of the Banner Formation, and generally consists of clays, silts, and sands. The Lierle Clay Member is the upper layer of the Banner Formation which was encountered at the Site. No boring locations penetrated the full thickness of the Lierle Clay.

The effects of these hydrostratigraphic units on schedule were considered by incorporating the geometry, hydraulic, and geochemical properties of these units into the groundwater modeling report and Groundwater Polishing Evaluation Report, attached to the CAAA-SIR and CAAA,

respectively, included in **Appendix A**, which estimate the time to reach the GWPS for remedial alternatives.

The horizontal GWE well remedy will drain water from beneath AP2, reducing hydraulic head beneath AP2, which will accelerate achieving GWPS. The horizontal GWE well will be operated continuously until monitoring wells attain the GWPS and a determination has been made that COCs will not rebound above the GWPS after the system is removed from operation.

<u>35 I.A.C. § 845.670(f)(5)(F):</u> The availability of alternative water supplies.

As discussed in subsection 670(f)(5)(B), there are 19 water wells within 1,000 meters of AP2 [16]. There is currently no need for an alternative water supply well as there are no current unacceptable risks to human or ecological receptors at the site. There are no applicable schedule concerns regarding the availability of alternative water supplies.

3.3.1 Other Relevant Factors

<u>35 I.A.C. § 845.670(f)(6):</u> Other relevant factors.

No additional factors were identified for consideration.

3.4 Necessity of Interim Measures

Source control using the closure-in-place approach was completed in 2020 [4]. Completion of the horizontal GWE well remedy is projected to be complete within four to six years after approval of the CAP. 35 I.A.C § 845.680(a)(3) states the owner or operator must take any interim measures necessary to reduce the contaminants leaching from the CCR surface impoundment, and/or potential exposures to human or ecological receptors. Because source control has already been completed and current conditions at AP2 pose no risk to human health or the environment, no interim measures are required. Further, all subsections of this requirement are discussed as follows.

<u>35 I.A.C. § 845.680(a)(3)(A)</u>: Time required to develop and implement a final remedy.

Completion of the horizontal GWE well remedy is projected to be complete within four to six years after approval of the CAP.

<u>35 I.A.C. § 845.680(a)(3)(B)</u>: Actual or potential exposure of nearby populations or environmental receptors to any of the constituents listed in 35 I.A.C. § 845.600.

There are no current unacceptable risks to human or ecological receptors at the site (**Appendix A**). It was concluded that shallow groundwater and surface water are not a source of drinking water [11].

<u>35 I.A.C. § 845.680(a)(3)(C)</u>: Actual or potential contamination of sensitive ecosystems or current or potential drinking water supplies.

The nature and extent of exceedances have been evaluated in the Nature and Extent Report [13]. Although there are exceedances of GWPS, there are no impacts to current or potential drinking water supplies. As stated above, there are no current unacceptable risks to human or ecological receptors at the site. Additionally, an ecological risk assessment was completed, and

no unacceptable risks were identified for ecological receptors exposed to surface water and sediment [11]. No potential groundwater receptors are in the vicinity of AP2 [11].

<u>35 I.A.C. § 845.680(a)(3)(D)</u>: Further degradation of the groundwater that may occur if remedial action is not initiated expeditiously.

Source control, which consisted of the closure-in-place approach, was completed [4] and no unacceptable risks to human health or the environment have been identified. No interim measure is expected to prevent further degradation of the groundwater more expeditiously than implementation of the selected remedy.

<u>35 I.A.C. § 845.680(a)(3)(E)</u>: Weather conditions that may cause any of the constituents listed in 35 I.A.C. § 845.600 to migrate or be released.

As stated above, source control which consisted of the closure-in-place approach was completed in 2020 [4], which isolate CCR contained within AP2 from weather-related impacts that could cause CCR-related constituents to migrate or be released. There are no unacceptable risks presented by AP2 under current conditions from weather-related phenomena.

<u>35 I.A.C. § 845.680(a)(3)(F)</u>: Potential for exposure to any of the constituents listed in 35 I.A.C. § 845.600 as a result of accident or failure of a container or handling system.

There are no container or handling systems that pose a risk to receptors in the interim.

<u>35 I.A.C. § 845.680(a)(3)(G)</u>: Other situations that may pose threats to human health and the environment.

No other situations have been identified where AP2 CCR leachate poses threats to human health and the environment.

4. **REFERENCES**

- "Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, Part 845: Standards for The Disposal Of Coal Combustion Residuals In Surface Impoundments," effective April 21, 2021.
- [2] Code of Federal Regulations, "Title 40, Chapter I, Subchapter I, Part 257, Subpart D, Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," April 17, 2015.
- [3] Burns & McDonnell Engineering Company, Inc., "Initial Operating Permit," Coffeen, IL, October 25, 2021.
- [4] Luminant, "Coffeen Power Station; Ash Pond No. 2, Notification of Completion of Closure," 2020.
- [5] AECOM, "Closure and Post-Closure Care Plan for the Coffeen Ash Pond No. 2 at Illinois Power Generating Company Coffeen Power Station," 2017.
- [6] Illinois Environmental Protection Agency, "Re: Coffeen Power Station W1350150004 Montgomery County, Illinois," Coffeen, IL, January 30, 2018.
- [7] Natural Resource Technology, "Groundwater Modeling Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois," 2017.
- [8] Geosyntec Consultants, Inc., "Groundwater Polishing Evaluation Report Coffeen Power Station - Ash Pond No. 2 (EPA ID No. 102)," Coffeen, IL, 2025.
- [9] United States Environmental Protection Agency, "Groundwater Remedy Completion Strategy: Moving Forward with the End in Mind," Office of Solid Waste and Emergency Response, 2014.
- [10] Ramboll Americas Engineering Solutions, "35 I.A.C § 845 Corrective Measures Assessment, Coffeen Power Plant, Ash Pond No. 2, IEPA ID No. W135015004-02," Coffeen, IL, June 12, 2024.
- [11] Gradient Corp, Human Health and Ecological Risk Assessment, Ash Pond No. 2, Coffeen Power Plant, Coffeen, IL, June 14, 2024.
- [12] USEPA, "Federal Remediation Technologies Roundtable, Technology Screening Matrix -Directional Wells," [Online]. Available: https://www.frtr.gov/matrix/Directional-Wells/. [Accessed 9 January 2025].
- [13] Ramboll Americas Engineering Solutions, Inc., "Nature and Extent Report, Coffeen Power Plant, Ash Pond No. 2, IEPA ID No. W1350150004-02," Coffeen, IL, June 12, 2024.
- [14] Ramboll Americas Engineering Solutions, Inc., Groundwater Modeling Technical Memorandum, Coffeen Power Plant, Ash Pond No. 2, Coffeen, IL, 2025.
- [15] Natural Resource Technology, "Hydrogeologic Site Characterization Report, Ash Pond 2, Coffeen Power Station," Coffeen, IL, January 24, 2017.
- [16] Ramboll Americas Engineering Solutions, "Hydrogeologic Site Characterization Report, Coffeen Power Plant, Ash Pond No. 1," Coffeen, IL, October 25, 2021.
- [17] Illinois Power Generating Company, Initial Review Letter Part 845 Construction/ Operating Permit Application(s)- Second Submittal, 2025.
- [18] USEPA, "Region 4 Ecological Risk Assessment Supplemental Guidance," 2018.

TABLES

Table 1. Proposed Milestone Schedule for Implementing Corrective Action Remedy
(Source Control with Horizontal GWE Well)

Implementation Phase	Implementation Task	Timeframe (Preliminary Estimates)
1: Pre-	Agency Coordination, Approvals, and Permitting	12 to 18 months
Construction	Final Design and Bid Process	24 to 36 months
Activities	Timeframe to Complete Corrective Pre-Construction Activities	36 to 54 months after CAP Approval
2: Corrective	Corrective Action Construction	6 to 12 months
Action Construction	Timeframe to Complete Corrective Action Construction	6 to 12 months
3: Corrective Action O&M and Closeout	Corrective Action O&M	168 months (14 years)
	Corrective Action Confirmation Monitoring	36 months
	Corrective Action Completion	6 months
	Timeframe to Complete Corrective Action O&M and Closeout	210 months (18 years)
Total Time	252 to 276 months (21 to 23 years)	

APPENDIX A CORRECTIVE ACTION ALTERNATIVES ANALYSIS (845.670(E)), INCLUDING CORRECTIVE MEASURES ASSESSMENT (845.660)

Corrective Action Alternatives Analysis for Ash Pond No. 2 at the Coffeen Power Plant, Coffeen, Illinois

March 28, 2025

One Beacon Street, 17th Floor Boston, MA 02108 617-395-5000

Table of Contents

Summa	ary of F	indings	
1	Introdu 1.1 1.2	uction . Site D 1.1.1 1.1.2 1.1.3 1.1.4 1.1.5 Part 8	1 escription and History
2	Correc 2.1	tive Ac Correc 2.1.1 2.1.2 2.1.3	tion Alternatives Analysis
	2.2	Long- Altern 2.2.1 2.2.2 2.2.3 2.2.4 2.2.5	and Short-Term Effectiveness and Protectiveness of Corrective Action ative (IAC Section 845.670(e)(1))
		2.2.6	Time Until Groundwater Protection Standards Are Achieved/Attain the Groundwater Protection Standards Specified in Section 845.600 (IAC Section 845.670(e)(1)(E)/IAC Section 845.680(d)(2))

	2.2.7	Potential for Exposure of Humans and Environmental Receptors to Remaining Wastes, Considering the Potential Threat to Human Health and the Environment Associated with Excavation,	
		Transportation, Re-disposal, Containment, or Changes in	
		Groundwater Flow (IAC Section 845.670(e)(1)(F))2	5
	2.2.8	Long-Term Reliability of the Engineering and Institutional Controls	-
	2 2 0	(IAC Section 845.670(e)(1)(G))	5
	2.2.9	Potential Need for Replacement of the Remedy (IAC Section	c
2.2		$845.070(e)(1)(\Pi)$	כ ד
2.5	111E Ec	Degree of Difficulty Associated with Constructing the Remedy (IAC	/
	2.5.1	Section 845 670(a)(2)(A))	7
	222	Expected Operational Reliability of the Remedy (IAC Section	'
	2.3.2	845 670(e)(3)(B)) 2	8
	2.3.3	Need to Coordinate with and Obtain Necessary Approvals and	5
		Permits from Other Agencies (IAC Section 845.670(e)(3)(C))	8
	2.3.4	Availability of Necessary Equipment and Specialists (IAC Sections	-
		845.670(e)(3)(D) and 845.660(c)(1), "Ease of Implementation")	9
	2.3.5	Available Capacity and Location of Needed Treatment, Storage, and	
		Disposal Services (IAC Section 845.670(e)(3)(D))/Comply with	
		Standards for Management of Wastes as Specified in Section	
		845.680(d) (IAC Section 845.670(e)(3)(D)/IAC Section 845.670(d)(5))3	0
2.4	The D	egree to Which Community Concerns Are Addressed by the Remedy	
	(IAC S	ection 845.670(e)(4))3	1
2.5	Remo	ve from the Environment as Much of the Contaminated Material that	
	Was R	eleased from the CCR Surface Impoundment as Is Feasible, Taking into	
	Accou	nt Factors such as Avoiding Inappropriate Disturbance of Sensitive	
	Ecosys	stems (IAC Section 845.670(d)(4))3	1
2.6	Summ	ary3	3
keterences	•••••		4

Appendix A	Human Health and Ecological Risk Assessment
Appendix B	Corrective Action Alternative Analysis – Supporting Information Report
Appendix C	Corrective Measures Assessment
Appendix D	Nature and Extent Report
Appendix E	Groundwater Polishing Evaluation Report

List of Tables

Table S.1	Comparison of Proposed Corrective Action Alternatives with Respect to Factors Specified in IAC Section 845.670(d) and IAC Section 845.670(e)
Table 2.1	Key Parameters for the Source Control-Upgradient Barrier Wall and GWE Trench Corrective Action Alternative
Table 2.2	Key Parameters for the Source Control-Horizontal GWE Well Corrective Action Alternative
Table 2.3	Expected Number of On-Site Worker Accidents Under Each Corrective Action Alternative
Table 2.4	Expected Number of Off-Site Worker Accidents Related to Off-Site Car and Truck Use Under Each Corrective Action Alternative
Table 2.5	Expected Number of Community Accidents Under Each Corrective Action Alternative
Table 2.6	Estimated Timeline and Implementation Schedule Under Each Corrective Action Alternative

List of Figures

Figure 1.1 Site Location Map

Abbreviations

amsl	Above Mean Sea Level
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
bgs	Below Ground Surface
BMP	Best Management Practice
CAAA	Corrective Action Alternatives Analysis
CCR	Coal Combustion Residual
CIP	Closure-in-Place
СМА	Corrective Measures Assessment
СРР	Coffeen Power Plant
GHG	Greenhouse Gas
GMP	Groundwater Monitoring Plan
GWE	Groundwater Extraction
GWP	Groundwater Polishing
GWPS	Groundwater Protection Standard
HUC	Hydrologic Unit Code
IAC	Illinois Administrative Code
ID	Identification
IDNR	Illinois Department of Natural Resources
IEPA	Illinois Environmental Protection Agency
IPGC	Illinois Power Generating Company
ISGS	Illinois State Geological Survey
LCU	Lower Confining Unit
LLDPE	Linear Low-Density Polyethylene
NID	National Inventory of Dams
NPDES	National Pollutant Discharge Elimination System
0&M	Operations and Maintenance
SFWA	State Fish and Wildlife Area
Source Control-GWP	Source Control with Groundwater Polishing
Source Control-Horizontal	Source Control with a Horizontal Groundwater Extraction Well
GWE Well	
Source Control-Upgradient	Source Control with Upgradient Barrier Wall and Groundwater Extraction
Barrier Wall and GWE Trench	Trench
TDS	Total Dissolved Solids
TMDL	Total Maximum Daily Load
UA	Uppermost Aquifer
UCU	Upper Confining Unit
US DOT	United States Department of Transportation
US EPA	United States Environmental Protection Agency

Title 35, Part 845 of the Illinois Administrative Code (IAC) (IEPA, 2021) requires that a Corrective Action Alternatives Analysis (CAAA) be performed as part of the remedy selection, prior to undertaking any corrective actions at certain coal combustion residual (CCR)-containing impoundments, where exceedances of groundwater protection standards (GWPSs) have been identified. This report presents a CAAA for Ash Pond No. 2 (AP2) at the Coffeen Power Plant (CPP) pursuant to the requirements under IAC Section 845.670. The goal of performing a CAAA is to holistically evaluate the potentially viable corrective actions identified in the Corrective Measures Assessment (CMA; Appendix C; Ramboll, 2024a) in order to remediate groundwater and achieve compliance with the GWPSs specified under IAC Section 845.600 (IEPA, 2021). These analyses assess potentially viable corrective action alternatives based on a wide range of factors, including the efficiency, reliability, and ease of implementation of a corrective action, its potential positive and negative short- and long-term impacts on human health and the environment, and its ability to address concerns raised by the community (IEPA, 2021).

It is important to note that many CCR sites are complex groundwater environments where remedial actions will inherently take many years to complete. While no formal definition of a complex groundwater environment exists, most would agree that there are a number of common characteristics at complex groundwater sites, including the following (National Research Council, 2013):

- Highly heterogeneous subsurface environments;
- Large source zones;
- Multiple, recalcitrant constituents; and
- Long timeframes over which releases occurred.

Each of these characteristics are common at CCR sites. Surface impoundments are often tens to hundreds of acres in size and many have operated for decades, leading to large source zones and prolonged releases. Furthermore, CCR impoundments are often located in alluvial geologic settings where sands are interbedded with silts and clays. This results in a heterogeneous environment where constituent mass may persist for many years in low-permeability deposits. Finally, the constituents that are most common at CCR sites include metals and inorganics that do not naturally biodegrade. The combination of these factors results in a complex groundwater environment where remediation, even under the best of circumstances, may take many years to achieve GWPSs. It is for these reasons that the United States Environmental Protection Agency (US EPA) refused to specify what is a reasonable *versus* an unreasonable timeframe for groundwater corrective actions at CCR sites, stating that it "was truly unable to establish an outer limit on the necessary timeframes—including even a presumptive outer bound" (US EPA, 2015a).

In this CAAA, all corrective actions that have been evaluated consist of source control and residual plume management. Source control is generally considered to be one of the more effective remedial action approaches. Source control involves removing the hydraulic head from an impoundment (*i.e.*, unwatering and dewatering) and preventing further downward migration of constituents. US EPA has found that "releases from surface impoundments [to groundwater] drop dramatically after closure" (US EPA, 2014). US EPA has also stated that source control is the most effective means of ensuring the timely attainment of remediation objectives (US EPA, 2015b). As a result, the implementation of source control often has a substantial and immediate effect on groundwater quality improvements.

The specific source control method that is the central component of all the corrective active alternatives evaluated in this CAAA is closure-in-place (CIP), which was approved of by Illinois Environmental Protection Agency (IEPA) in 2018 (Buscher, 2018) and completed in 2020 (Appendix B; Ramboll, 2025a). Specifically, this approach includes the removal of impounded water, the installation of a low-permeability final geomembrane cover system designed to limit the infiltration of precipitation into the impounded CCR, and the establishment of the stormwater management system. These activities were designed to control, minimize, or eliminate, post closure infiltration of liquids into the impounded CCR. As demonstrated by the groundwater modeling in support of the Closure and Post-Closure Care Plan (AECOM, 2017; NRT, 2017a), this source control approach would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, demonstrating that source control controls, minimizes, or eliminates post-closure releases of leachate.

Three potential corrective actions are evaluated in this CAAA: Source Control with Groundwater Polishing (Source Control-GWP), Source Control with Upgradient Barrier Wall and Groundwater Extraction Trench (Source Control-Upgradient Barrier Wall and GWE Trench) and Source Control with a Horizontal Groundwater Extraction Well (Source Control-Horizontal GWE Well). Each corrective action was identified as a viable approach in the CMA (Appendix C; Ramboll, 2024a). The residual plume management portions of these corrective action alternatives include groundwater polishing, an upgradient barrier wall in combination with groundwater extraction trenches, and a horizontal groundwater extraction well. It should be noted that Source Control-GWP, Source Control-Cutoff Wall) were originally identified in the CMA as viable remedial approaches (Appendix C; Ramboll, 2024a). However, during subsequent evaluations, the remedial approaches were modified. Remedy modifications include the following:

- The Source Control-Cutoff Wall alternative was determined to be infeasible for attaining GWPS in a reasonable amount of time without a supplementary hydraulic control method. The cutoff wall was expanded into the upgradient barrier wall with GWE trench remedy (*i.e.*, Source Control-Upgradient Barrier Wall and GWE Trench alternative).
- The Source Control-GWE alternative was further refined into the Source Control-Horizontal GWE Well remedy, which includes an alternate method of GWE well installation *via* horizontal directional drilling to reduce disturbance of the completed final cover system while allowing for targeted installation near the CCR/native soil interface beneath AP2.

Under the Source Control-GWP alternative, constituent concentrations in groundwater would attenuate naturally over time due to physical and geochemical mechanisms. Site-specific evaluations demonstrated that GWP is appropriate at AP2 because Site conditions are favorable for natural attenuation of inorganic contaminants via adsorption (Appendix E; Geosyntec Consultants, Inc., 2025). Under the Source Control-Upgradient Barrier Wall and GWE Trench alternative, a barrier wall would be constructed located adjacent to the northern and western sides of AP2, with an extraction trench running parallel and hydraulically downgradient of the barrier wall, in order to prevent groundwater flowing towards AP2 and to collect impacted groundwater beneath AP2, respectively. Both structures would be constructed from the ground surface to a depth of 8 feet (ft) below ground surface (bgs) and would penetrate the Uppermost Aquifer (UA). The barrier wall and the GWE trench would approximately 2 to 3 ft wide, with 1 to 2 ft of separation between them. Horizontal collection pipes would be installed in the trench, which would be backfilled with clean granular fill and capped with compacted clay to reduce surface water infiltration. The collection pipes would drain to sumps spaced throughout the trenches to extract groundwater. Extracted groundwater would be collected and sent to a new on-Site lined pond and discharged from either a new or existing outfall managed under the National Pollutant Discharge Elimination System (NPDES) permit for the Site. The barrier wall would be constructed using *in-situ* soils with a low-permeability mixture down to the target elevation. The barrier wall would be located upgradient of the extraction trench to limit groundwater from

flowing towards AP2 and to reduce the amount of groundwater that needs to be extracted from the trench. Under the Source Control-Horizontal GWE Well alternative, a 1,325 ft long horizontal groundwater extraction well would be constructed within the eastern portion of AP2 at elevations between 600 ft-above mean sea level (amsl) at the southern bank to 606 ft-amsl near the northern bank of AP2, to collect impacted groundwater beneath AP2 (Appendix B; Ramboll, 2025a). The horizontal well would direct extracted water to a freely draining culvert or pump it to a settling pond before discharge.

Table S.1 evaluates the three potentially viable corrective actions evaluated in this CAAA (Source Control-GWP, Source Control-Upgradient Barrier Wall and GWE Trench, and Source Control-Horizontal GWE Well) with regard to each of the factors specified under IAC Section 845.670(d) and IAC Section 845.670(e) (IEPA, 2021). Based on this evaluation and the details provided in Section 2 of this report, the most appropriate corrective action for this Site is the Source Control-Horizontal GWE Well alternative. The timeframe for achieving GWPSs under the Source Control-Horizontal GWE Well alternative (approximately 17.5 to 19.5 years after approval of the Construction Permit Application) is shorter than under Source Control-GWP alternative (over 100 years after approval of Corrective Action Plan) and Source Control-Upgradient Barrier Wall and GWE Trench (approximately 63 to 65 years after approval of the Construction Permit Application). Additionally, risks to worker safety and the community under the Source Control-Horizontal GWE Well alternative are lower compared to the Source Control-Upgradient Barrier Wall and GWE Trench alternative. Thus, Source Control-Horizontal GWE Well is the most appropriate corrective action alternative. Thus, Source Control-Horizontal GWE Well is the most appropriate corrective action alternative for AP2.

Table S.1	Comparison of Proposed Corrective Acti	on Alternatives with R	Respect to Factors S	Specified in IAC Sect	ion 845.670(d) and IAC	Section
845.670(e)					

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
Magnitude of Reduction of Existing Risks/Be Protective of Human Health and the Environment (Section 2.2.1; IAC Section 845.670(e)(1)(A)/ IAC Section 845.670(d)(1))	Because current conditions do not present a risk to human health or the environment at AP2, there will be no unacceptable risk to human health or the environment for future conditions since the unit was closed and source control was implemented. Concentrations of CCR-related constituents will decline over time, and consequently potential exposures to CCR-related constituents in the environment will also decline. The magnitude of the reduction of existing risks is the same for the three potential corrective action alternatives, and all corrective action alternatives are equally protective of human health and the environment.	Because current conditions do not present a risk to human health or the environment at AP2, there will be no unacceptable risk to human health or the environment for future conditions since the unit was closed and source control was implemented. Concentrations of CCR-related constituents will decline over time, and consequently potential exposures to CCR-related constituents in the environment will also decline. The magnitude of the reduction of existing risks is the same for the three potential corrective action alternatives, and all corrective action alternatives are equally protective of human health and the environment.	Because current conditions do not present a risk to human health or the environment at AP2, there will be no unacceptable risk to human health or the environment for future conditions since the unit was closed and source control was implemented. Concentrations of CCR-related constituents will decline over time, and consequently potential exposures to CCR-related constituents in the environment will also decline. The magnitude of the reduction of existing risks is the same for the three potential corrective action alternatives, and all corrective action alternatives are equally protective of human health and the environment.
Effectiveness of the Remedy in Controlling the Source (Section 2.2.2; IAC Section 845.670(e)(2))			
Extent to Which Containment Practices Will Reduce Further Releases/Control the Sources of Releases to Reduce or Eliminate, to the Maximum Extent Feasible (IAC Section 845.670(e)(2)(A)/ IAC Section 845.670(d)(3))	All three alternatives include source control using CIP (which is the primary remedial measure) and residual plume management. Modeling results (NRT, 2017a) indicate that the source control approach implemented in 2020 would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume. Source control is thus effective at	All three alternatives include source control using CIP (which is the primary remedial measure) and residual plume management. Modeling results (NRT, 2017a) indicate that the source control approach implemented in 2020 would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume. Source control is thus effective at	All three alternatives include source control using CIP (which is the primary remedial measure) and residual plume management. Modeling results (NRT, 2017a) indicate that the source control approach implemented in 2020 would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume. Source control is thus effective at

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	controlling the source.	controlling the source.	controlling the source.
	Under the residual plume management for this alternative, physical and geochemical attenuation mechanisms would mitigate impacts to downgradient groundwater. However, it should be noted that some boron re- mobilization may occur as groundwater returns to background conditions, which may affect the time required to achieve GWPS (Appendix E; Geosyntec Consultants, Inc., 2025). If necessary, remedy optimizations would be implemented under the adaptive site management program.	Under the residual plume management for this alternative, a barrier wall would be constructed to prevent groundwater flowing towards AP2 and by installation of an extraction trench running parallel and hydraulically downgradient of the barrier wall to collect impacted groundwater beneath AP2. If necessary, remedy optimizations would be implemented under the adaptive site management program.	Under the residual plume management for this alternative, a horizontal groundwater extraction well would be installed to collect and drain CCR-impacted groundwater beneath AP2. If necessary, remedy optimizations would be implemented under the adaptive site management program.
Extent to Which Treatment Technologies May Be Used (IAC Section 845.670(e)(2)(B))	Source Control-GWP would rely on physical and geochemical attenuation processes. If necessary, remedy optimizations would be implemented under the adaptive site management program.	For the Source Control-Upgradient Barrier Wall and GWE Trench alternative, it would require construction of a new on-Site settling pond to remove solids from extracted groundwater, prior to discharge <i>via</i> an NPDES permitted outfall. If necessary, remedy optimizations would be implemented under the adaptive site management program.	For the Source Control-Horizontal GWE Well alternative, it would require construction of a new on-Site settling pond to settle solids from extracted groundwater from the GWE wells, prior to discharge <i>via</i> an NPDES permitted outfall. Other treatment and management technologies may be evaluated at later phases of the design. If necessary, remedy optimizations would be implemented under the adaptive site management program.
Likelihood of Future Releases of	All three corrective action alternatives	All three corrective action alternatives	All three corrective action alternatives
CCR (Section 2.2.2)	include source control using CIP; the	include source control using CIP; the	include source control using CIP; the
IAC Section 845 670(e)(1)(B))	2020. A geosynthetic cover system was	2020. A geosynthetic cover system was	2020. A geosynthetic cover system was
	installed in 2020, which included a 40-	installed in 2020, which included a 40-	installed in 2020, which included a 40-
	mil linear low-density polyethylene	mil LLDPE geomembrane liner, 18 in of	mil LLDPE geomembrane liner, 18 in of
	(LLDPE) geomembrane liner, 18 inches	soil cover and 6 in of erosion soil layer	soil cover and 6 in of erosion soil layer

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	 (in) of soil cover and 6 in of erosion soil layer for vegetative growth, as well as new stormwater control structures. This cover system provides increased protection against berm and surface erosion, precipitation infiltration, and other adverse effects that could potentially trigger a release of CCR. There would be minimal risk of accidental CCR releases occurring post- closure under any of the alternatives. 	for vegetative growth, as well as new stormwater control structures. This cover system provides increased protection against berm and surface erosion, precipitation infiltration, and other adverse effects that could potentially trigger a release of CCR. There would be minimal risk of accidental CCR releases occurring post- closure under any of the alternatives.	for vegetative growth, as well as new stormwater control structures. This cover system provides increased protection against berm and surface erosion, precipitation infiltration, and other adverse effects that could potentially trigger a release of CCR. There would be minimal risk of accidental CCR releases occurring post- closure under any of the alternatives.
		Any CCR-contact stormwater generated during the construction phase would be managed through a contact stormwater management system. There would be minimal risk of accidental CCR releases occurring post-closure under any of the alternatives.	Any CCR-contact stormwater generated during the construction phase would be managed through a contact stormwater management system. There would be minimal risk of accidental CCR releases occurring post-closure under any of the alternatives.
Type and Degree of Long-Term Management, Including Monitoring, Operation, and Maintenance (Section 2.2.4; IAC Section 845.670(e)(1)(C))	Minimal long-term O&M efforts would be required under Source Control-GWP alternative because it would not require the installation, operation, or maintenance of any engineered systems or structures other than maintenance of the monitoring well network.	Long-term O&M efforts required under Source Control-Upgradient Barrier Wall and GWE Trench alternative would include the maintenance of the groundwater collection trench system and discharge of extracted groundwater. Non-routine maintenance may include tasks such as repair or replacement of the extraction	Long-term O&M efforts required under Source Control-Horizontal GWE Well would include inspection and maintenance of the horizontal well ensure the continued operation. These activities would include routine inspections of the horizontal well extraction system along with non- routine maintenance such as flushing or
	Post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c). Corrective action groundwater monitoring would continue for 3 years after GWPSs have been achieved. Based on the adaptive site management approach, remedy	and/or transfer pumps, repair or replacement of the system air compressor, and flushing or jetting of water conveyance lines in the event organic or inorganic solids accumulate on the interior walls. Extracted groundwater would be managed and treated by a newly-constructed on-Site	jetting of water conveyance lines. Extracted groundwater would be managed to ensure compliance with the Site's NPDES permit for treatment and discharge. Post-closure care groundwater monitoring would continue for a

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	optimizations may be implemented to ensure achievement of the GWPSs.	settling pond before discharge <i>via</i> an NPDES permitted Outfall. Post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c). Additionally, corrective action groundwater monitoring would continue for 3 years after GWPS have been achieved. Based on the adaptive site management approach, remedy optimizations may be implemented to ensure achievement of the GWPSs.	minimum of 30 years as required by IAC Section 845.780(c). Additionally, corrective action groundwater sampling would continue for 3 years after GWPSs have been achieved. Based on the adaptive site management approach, remedy optimizations may be implemented to ensure achievement of the GWPSs.
Short-Term Risks to the Community or the Environment During Implementation of Remedy (Section 2.2.5; IAC Section 845.670(e)(1)(D))			
Safety Impacts	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there is no further risk of accidents and injuries occurring during the implementation of the source control remedy.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there is no further risk of accidents and injuries occurring during the implementation of the source control remedy.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there is no further risk of accidents and injuries occurring during the implementation of the source control remedy.
	Overall, no worker accidents or injuries would be expected under the Source Control-GWP alternative because no installation, operation, and maintenance of engineered systems or structures would be required.	Overall, considering worker accidents occurring during residual plume management both on- and off-Site, 0.28 worker injuries and 3.8×10 ⁻³ worker fatalities would be expected to occur under the Source Control- Upgradient Barrier Wall and GWE Trench alternative, which is the highest	Overall, considering worker accidents occurring during residual plume management both on- and off-Site, 0.21 worker injuries and 2.8×10 ⁻³ worker fatalities would be expected to occur under the Source Control- Horizontal GWE Well alternative.
	residents would be expected under the	among the three alternatives.	In total, an estimated 0.038 injuries and

S-11

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	Source Control-GWP alternative.	In total, an estimated 0.051 injuries and 6.9×10 ⁻⁴ fatalities would be expected to occur among community members due to off-Site activities under this alternative, which is also the highest among the three alternatives.	5.2×10 ⁻⁴ fatalities would be expected to occur among community members due to off-Site activities under this alternative.
Cross-Media Impacts to Air	Source control (<i>i.e.</i> , CIP) was implemented in 2020. No further air impacts associated with the implementation of the source control remedy are expected.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. No further air impacts associated with the implementation of the source control remedy are expected.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. No further air impacts associated with the implementation of the source control remedy are expected.
	Cross-media impacts to air can include air pollutants and GHG emissions, which are proportional to the potential impact of each alternative on other emissions from construction vehicles and equipment. Residual plume management for the Source Control- GWP alternative would be expected to have minimal air impacts because it would not require the construction of any engineered systems or structures.	Cross-media impacts to air can include air pollutants and GHG emissions, which are proportional to the potential impact of each alternative on other emissions from construction vehicles and equipment. Residual plume management for the Source Control- Upgradient Barrier Wall and GWE Trench alternative would have the highest air impacts, due to the greatest amount of vehicle travel miles required for construction, operation, and maintenance under this alternative.	Cross-media impacts to air can include air pollutants and GHG emissions, which are proportional to the potential impact of each alternative on other emissions from construction vehicles and equipment. Residual plume management for the Source Control- Horizontal GWE Well alternative would have greater air impacts than the Source Control-GWP, due to the horizontal GWE well installation activities and operation of the extraction system.
Cross-Media Impacts to Surface Water and Sediments	Source control was implemented in 2020 for all three corrective action alternatives, and constituent mass flux from groundwater into surface water will decline over time (AECOM, 2017). The source control approach minimizes the amount of water retained within the impoundment, which reduces the hydraulic flux through the CCR. Due to the reduction in the hydraulic flux out	Source control was implemented in 2020 for all three corrective action alternatives, and constituent mass flux from groundwater into surface water will decline over time (AECOM, 2017). The source control approach minimizes the amount of water retained within the impoundment, which reduces the hydraulic flux through the CCR. Due to the reduction in the hydraulic flux out	Source control was implemented in 2020 for all three corrective action alternatives, and constituent mass flux from groundwater into surface water will decline over time (AECOM, 2017). The source control approach minimizes the amount of water retained within the impoundment, which reduces the hydraulic flux through the CCR. Due to the reduction in the hydraulic flux out
Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
--	---	---	---
	of AP2, the mass flux out of AP2 will also be controlled or minimized. As demonstrated by the groundwater modeling in support of the Closure Plan, source control would result in a significant reduction in groundwater concentrations and, overtime, reduce the extent of groundwater impacts to within the footprint of the impoundment (NRT, 2017a).	of AP2, the mass flux out of AP2 will also be controlled or minimized. As demonstrated by the groundwater modeling in support of the Closure Plan, source control would result in a significant reduction in groundwater concentrations and, overtime, reduce the extent of groundwater impacts to within the footprint of the impoundment (NRT, 2017a).	of AP2, the mass flux out of AP2 will also be controlled or minimized. As demonstrated by the groundwater modeling in support of the Closure Plan, source control would result in a significant reduction in groundwater concentrations and, overtime, reduce the extent of groundwater impacts to within the footprint of the impoundment (NRT, 2017a).
	Under residual plume management for the Source Control-GWP alternative, minimal surface water and sediment impacts would be expected, because it would not require the construction of any engineered systems or structures.	Under residual plume management for the Source Control-Upgradient Barrier Wall and GWE Trench alternative, surface water and sediment impacts would be higher than the Source Control-GWP alternative due to the construction of the extraction trench system and barrier wall. Construction can have short-term negative impacts on surface water and sediment quality immediately adjacent to a site due to potential erosion and sediment runoff.	Under residual plume management for the Source Control-Horizontal GWE Well alternative, surface water and sediment impacts would be higher than the Source Control-GWP alternative due to the construction of horizontal GWE well. Construction can have short-term negative impacts on surface water and sediment quality immediately adjacent to a site due to potential erosion and sediment runoff.
Control of Exposure to Any Residual Contamination During Implementation of the Remedy	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there are no further risks of CCR exposure associated with source control implementation.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there are no further risks of CCR exposure associated with source control implementation.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there are no further risks of CCR exposure associated with source control implementation.
	Risks to workers arising from potential contact with residual contamination during construction activities associated with residual plume management would be minimal under the Source Control-GWP alternative,	Risks to workers arising from potential contact with residual contamination during construction, operation, and maintenance activities associated with residual plume management would be higher for the Source Control-	Risks to workers arising from potential contact with residual contamination during construction, operation, and maintenance activities associated with residual plume management would be higher for the Source Control-

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	which would not involve exposure to soil or groundwater waste streams.	Upgradient Barrier Wall and GWE Trench alternative than for the Source Control-GWP alternative, because Source Control-Upgradient Barrier Wall and GWE Trench would involve the production, management, and treatment of extracted groundwater, as well as on-Site disposal of excavated spoils generated during extraction trench and barrier wall construction.	Horizontal GWE Well alternative than for the Source Control-GWP alternative, because Source Control- Horizontal GWE Well would involve on- Site disposal of the excavated spoils generated during the horizontal GWE well installation and the production, management, and treatment of extracted groundwater.
Other Identified Impacts	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there are no further impacts associated with the implementation of source control.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there are no further impacts associated with the implementation of source control.	Source control (<i>i.e.</i> , CIP) was implemented in 2020. Thus, there are no further impacts associated with the implementation of source control.
	The energy demands of construction equipment and vehicles associated with residual plume management would be the lowest under the Source Control- GWP alternative because this alternative would not require any significant construction activity. Similarly, traffic and noise impacts associated with residual plume management would be lowest under the Source Control-GWP alternative because this alternative would not	The energy demands of construction equipment and vehicles associated with residual plume management would be greater under the Source Control- Upgradient Barrier Wall and GWE Trench than the Source Control-GWP alternative, due to the activities that would be required to construct the GWE Trench and barrier wall, as well as additional energy required to operate the extraction system.	The energy demands of construction equipment and vehicles associated with residual plume management would be greater under the Source Control- Horizontal GWE Well than the Source Control-GWP alternative, due to the construction activities related to installation of the horizontal well. Additional energy would be required to operate the extraction system. Similarly, traffic and noise impacts
	require any significant construction activity. There would be no impacts to natural resources and habitats under the Source Control-GWP alternative because no additional construction activities would be required.	Similarly, traffic and noise impacts associated with residual plume management would be greater under the Source Control-Upgradient Barrier Wall and GWE Trench than the Source Control-GWP alternative, due to the activities that would be required to construct the GWE Trench system and	associated with residual plume management would also be greater under the Source Control-Horizontal GWE Well alternative than the Source Control-GWP alternative, due to the construction activities required to install the horizontal GWE wells and construct the settling pond.

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		barrier wall system.	Under the Source Control-Horizontal GWE Well alternative, there would be
		Under the Source Control-Upgradient Barrier Wall and GWE Trench alternative, there would be some negative impacts to natural resources and habitats, including disturbances of some existing habitats atop portions of the construction areas, and potential impacts to aquatic and wetland species in Coffeen Lake and other wetlands due	some negative impacts to natural resources and habitats, including disturbances of some existing habitats atop portions of the construction areas, and potential impacts to aquatic and wetland species in Coffeen Lake and other wetlands due to sediment runoff during construction.
Time Until Groundwater Protection Standards Are Achieved (Section 2.2.6; IAC Section 845.670(e)(1)(E))	Groundwater modeling was performed in support of the Closure Plan (AECOM, 2017). The modeling predicted that source control would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, which was predicted to begin after the completion of the source control (NRT, 2017a).	to sediment runoff during construction. Groundwater modeling was performed in support of the Closure Plan (AECOM, 2017). The modeling predicted that source control would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, which was predicted to begin after the completion of the source control (NRT, 2017a).	Groundwater modeling was performed in support of the Closure Plan (AECOM, 2017). The modeling predicted that source control would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, which was predicted to begin after the completion of the source control (NRT, 2017a).
	Additional modeling was conducted for each of the corrective action alternatives to evaluate future groundwater quality in the vicinity of AP2 as a result of residual plume management (Appendix B; Ramboll, 2025b). The results of the modeling indicate that groundwater would meet the GWPSs for all constituents identified as having potential groundwater exceedances in the monitoring network within	Additional modeling was conducted for each of the corrective action alternatives to evaluate future groundwater quality in the vicinity of AP2 as a result of residual plume management (Appendix B; Ramboll, 2025b). The results of the modeling indicate that groundwater would attain the GWPSs for all constituents identified as having potential exceedances within approximately 63 to 65 years (4 to 6 years of pre-	Additional modeling was conducted for each of the corrective action alternatives to evaluate future groundwater quality in the vicinity of AP2 as a result of residual plume management (Appendix B; Ramboll, 2025b). The results of the modeling indicate that groundwater would attain the GWPSs for all constituents identified as having potential exceedances within approximately 17.5 to 19.5 years (3.5 to 5.5 years of pre-

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	approximately 135 years (Appendix B; Ramboll, 2025a).	construction and construction activities followed by approximately 59 years of post-construction O&M) under the Source Control-Upgradient Barrier Wall and GWE Trench alternative (Appendix B; Ramboll, 2025a).	construction and construction activities followed by approximately 14 years of system operation until the GWPSs are achieved). Current modeling indicates that an additional 25 years of system operation may be required to prevent concentrations from rebounding above the GWPSs (Appendix B; Ramboll, 2025a); however, additional modeling would be performed and additional data would be collected as part of the Corrective Action Groundwater Monitoring Plan to determine the exact required duration of additional system operation.
Potential for Exposure of Humans and Environmental Receptors to Remaining Wastes, Considering the Potential Threat to Human Health and the Environment Associated with Excavation, Transportation, Re-disposal,	Source control (CIP) was implemented in 2020. As a result of the source control, there would be no risk of CCR releases post-closure, and all three corrective action alternatives are equally and fully protective with regard to exposure to residual CCR.	Source control (CIP) was implemented in 2020. As a result of the source control, there would be no risk of CCR releases post-closure and all three corrective action alternatives are equally and fully protective with regard to exposure to residual CCR.	Source control (CIP) was implemented in 2020. As a result of the source control, there would be no risk of CCR releases post-closure and all three corrective action alternatives are equally and fully protective with regard to exposure to residual CCR.
Containment, or Changes in Groundwater Flow (Section 2.2.7; IAC Section 845.670(e)(1)(F))		Potential risks to workers that come in contact with residual contamination of CCR-related constituents during groundwater extraction and treatment would be managed through the use of rigorous safety protocols and personal protective equipment.	Potential risks to workers that come in contact with residual contamination of CCR-related constituents during groundwater extraction and treatment from the GWE wells would be managed through the use of rigorous safety protocols and personal protective equipment.
		Some changes in groundwater flow (<i>i.e.</i> , controlled discharge into Coffeen Lake and blocking of natural groundwater flow) may occur under	Under the residual plume management for Source Control-Horizontal GWE Well alternative, a horizontal GWE well

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		the Source Control-Upgradient Barrier Wall and GWE Trench alternative, due to the operation of the GWE trench system and installation of subsurface groundwater barrier wall. However, changes to groundwater flow would not be expected to have an effect on the potential for the exposure of humans and environmental receptors to remaining wastes.	would be installed. This remedy would reduce the hydraulic head beneath AP2 and alter the hydraulic gradient and corresponding groundwater patterns. However, changes to groundwater flow would not be expected to have an effect on the potential for the exposure of humans and environmental receptors to remaining wastes.
Long-Term Reliability of the Engineering and Institutional Controls (Section 2.2.8;	Source control (CIP) was implemented in 2020. Thus, long-term reliability of source control would be same for all three corrective action alternatives.	Source control (CIP) was implemented in 2020. Thus, long-term reliability of source control would be same for all three corrective action alternatives.	Source control (CIP) was implemented in 2020. Thus, long-term reliability of source control would be same for all three corrective action alternatives.
	Residual plume management under the Source Control-GWP alternative would be reliable because it would rely on physical and geochemical attenuation processes and active monitoring. If necessary, remedy optimizations would be implemented under the adaptive site management program.	GWE Trench and subsurface barrier wall technologies are proven remedies that have been implemented at many sites. Thus, residual plume management under the Source Control- Upgradient Barrier Wall and GWE Trench alternative would be reliable, provided that the barrier wall and extraction trench are constructed in accordance with standard design and specifications. Routine and non- routine maintenance of the GWE trench is required to ensure reliable operation of the extraction trench and pumps, as well as other mechanical components. The barrier wall component provides an inert, continuous, low-permeability barrier to groundwater flow and is not expected to need maintenance. If necessary,	Horizontal GWE well is a proven remedy that has been implemented at many sites. Thus, residual plume management under the Source Control- Horizontal GWE Well alternative would be reliable, provided the horizontal well is constructed in accordance with standard design and specifications. The horizontal well system is a passive drain system; however, conveyance of extracted groundwater would require operation and maintenance of a mechanical system. If necessary, remedy optimizations would be implemented under the adaptive site management program.

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		remedy optimizations would be implemented under the adaptive site management program.	
Potential Need for Replacement of the Remedy (Section 2.2.9; IAC Section 845.670(e)(1)(H))	Replacement of the residual plume management remedy under the Source Control-GWP alternative would likely be unnecessary, because it would not require the installation, operation, and maintenance of engineered systems or structures. Adaptive site management strategies would be used to implement remedy optimizations, if necessary, to ensure that remedial goals are achieved.	Replacement of the residual plume management remedy under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would likely be unnecessary, as long as the extraction trench system and barrier wall are constructed, maintained, and serviced appropriately. The GWE Trench system would need ongoing maintenance and potential replacement of system components to ensure its effectiveness. Adaptive site management strategies would be used to implement remedy optimizations, if necessary, to ensure that remedial goals are achieved.	Replacement of the residual plume management remedy under the Source Control-Horizontal GWE Well alternative would likely be unnecessary, as long the horizontal well is constructed, maintained, and serviced appropriately. The conveyance of extracted groundwater to the settling pond would constitute a mechanical system which may require routine maintenance to reliably operate. Adaptive site management strategies would be used to implement remedy optimizations, if necessary, to ensure that remedial goals are achieved.
Degree of Difficulty Associated with Constructing the Remedy (Section 2.3.1; IAC Section 845.670 (e)(3)(A))	Source control (CIP) was implemented in 2020. Thus, there would be no further construction difficulties associated with the implementation of source control.	Source control (CIP) was implemented in 2020. Thus, there would be no further construction difficulties associated with the implementation of source control.	Source control (CIP) was implemented in 2020. Thus, there would be no further construction difficulties associated with the implementation of source control.
	Residual plume management under the Source Control-GWP alternative would rely on physical and geochemical attenuation processes and therefore would not be difficult.	Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would involve the construction of a barrier wall, an extraction trench, settling pond, and conveyance system to extract and treat impacted groundwater to address downgradient groundwater quality impacts. The construction of the shallow	Residual plume management under the Source Control-Horizontal GWE Well alternative would involve the installation of a horizontal well to drain water from AP2 to address downgradient groundwater quality impacts. This alternative would require the use of specialty equipment such as horizontal directional drill rigs and other supporting equipment such as

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		groundwater trench and barrier wall required by this alternative are commonly constructed at similar depths and can be performed using specialized (<i>i.e.</i> , one-pass trenching) and conventional construction equipment. Therefore, while some construction is necessary, the degree of difficulty for this remedy is expected to be low.	excavating and grading equipment that would need to be mobilized to the site. Horizontal wells are routinely constructed in similar environments, however there may be difficulty due to heterogeneity encountered in the subsurface at the bottom of the CCR and top of the UA interface, and would require specialized techniques/ equipment to address the issue. Therefore, the degree of difficulty is expected to be moderate for the horizontal well component.
Expected Operational Reliability of the Remedy (Section 2.3.2; IAC Section 845.670 (e)(3)(B))	Source control (CIP) was implemented in 2020. The operational reliability of the source control would be the same for all three corrective action alternatives.	Source control (CIP) was implemented in 2020. The operational reliability of the source control would be the same for all three corrective action alternatives.	Source control (CIP) was implemented in 2020. The operational reliability of the source control would be the same for all three corrective action alternatives.
	Residual plume management under the Source Control-GWP alternative would have high operational reliability because this alternative would rely on natural processes and active monitoring. However, it should be noted that some boron re-mobilization may occur as groundwater returns to background conditions at AP2, which may affect the time to achieve GWPS (Appendix E; Geosyntec Consultants, Inc., 2025). Adaptive site management strategies would be used to implement remedy optimizations, if necessary.	Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would have high operational reliability because it is an established and commonly used technology, as long as the barrier wall and the extraction trench system are constructed in accordance with standard design and specifications. The barrier wall is an inert, continuous, low-permeability subsurface structure and is not expected to require maintenance after construction. The GWE trench system operates as a mechanical system and would require routine and non-routine	Residual plume management under the Source Control-Horizontal GWE Well alternative would have high operational reliability if the horizontal GWE well and conveyance system are constructed in accordance with standard design and specifications. The horizontal well system is a passive drain system; however, conveyance of extracted groundwater would require operation and maintenance of a mechanical system. Adaptive site management strategies would be used to implement remedy optimizations, if necessary.

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		maintenance to ensure reliable operation. Adaptive site management strategies would be used to implement remedy optimizations, if necessary.	
Need to Coordinate with and Obtain Necessary Approvals and Permits from Other Agencies (Section 2.3.3; IAC Section 845.670 (e)(3)(C))	Specific permits and approvals associated with source control were the same for all corrective action alternatives and were discussed in the Closure Plan (AECOM, 2017).	Specific permits and approvals associated with source control were the same for all corrective action alternatives and were discussed in the Closure Plan (AECOM, 2017).	Specific permits and approvals associated with source control were the same for all corrective action alternatives and were discussed in the Closure Plan (AECOM, 2017).
	Residual plume management under the Source Control-GWP alternative would not need additional permits from other agencies, other than the approval of the eventual Corrective Action Plan.	Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would require regulatory approval and permits. Groundwater extracted from the extraction trench would require a modified NPDES permit, which would likely require renewals depending on the timeline of corrective action implementation. Permits from IEPA for construction stormwater controls, BMPs, and operating would be required. An IDNR Dam Safety modification permit would be obtained for modifications of the embankment.	The Source Control-Horizontal GWE Well alternative would require regulatory approval and permits. Modifications would be necessary to the Site's NPDES permit to allow for discharge of groundwater from the horizontal well. Permits from IEPA for construction stormwater controls and BMPs would be required.
Availability of Necessary Equipment and Specialists (Section 2.3.4; IAC Section 845.670 (e)(3)(D))	Source control (CIP) was implemented in 2020. Thus, there are no further equipment and specialist needs associated with the implementation of the source control remedy.	Source control (CIP) was implemented in 2020. Thus, there are no further equipment and specialist needs associated with the implementation of the source control remedy.	Source control (CIP) was implemented in 2020. Thus, there are no further equipment and specialist needs associated with the implementation of the source control remedy.
	Residual plume management under the Source Control-GWP alternative would require standard environmental monitoring equipment and	Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would require specialists to construct the	Residual plume management under the Source Control-Horizontal GWE Well alternative would require specialists for horizontal well installation and O&M:

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
	groundwater professionals. Specialists such as geologists, hydrogeologists, statisticians (<i>i.e.</i> , statistical analysis), and geochemists would be available to collect and evaluate the data.	 barrier wall and the GWE trench system and to manage the GWE Trench system throughout its operational period: Construction of the groundwater extraction system and the barrier wall on the Site is expected to require a specialized contractor, who would most likely need specialized and often custom-built equipment including one-pass construction equipment. The availability of contractors with such equipment may be limited. Specialists including design engineers, geotechnical experts, construction managers and contractor staff experienced in trench construction and similar geologic environments would be required. 	 Construction of the horizontal well would require design engineers, geologists, construction managers, and contractor staff experienced with horizontal well construction and specialized equipment operation. Contractors would be required during the operation of the system including replacement of components and periodic well re- development (<i>i.e.</i>, flushing or jetting of conveyance lines). Specialists and equipment needed for O&M are generally available within close proximity to the Site with the exception of more complex system components, such as transfer pumps and transfer pump controller.
		 Geotechnical specialists would be required to design the working platform and oversee the AP2 embankment, monitoring for any signs of distress during the one-pass trench installation. In addition, specialists and equipment may have backlogs due to high demand in similar specialty ground improvement projects in the area, which could delay the project schedule. 	 As with the other two alternatives, this alternative would necessitate the use of equipment and the expertise of specialists for tasks such as field data collection, groundwater sampling, analysis, and periodic corrective action groundwater monitoring and reporting. These activities are already being conducted as part of routine groundwater monitoring.
		 After the construction phase, 	

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		specialists and equipment would be required during the operation of the GWE system for routine and non-routine maintenance.	
		 Specialists and replacement equipment needed to operate the system would generally be available, although some of the more complex equipment (<i>i.e.</i>, transfer pumps and transfer pump controller) may have extended lead times for servicing. 	
		 This alternative would also necessitate the use of equipment and the expertise of specialists for tasks such as field data collection, groundwater sampling, analysis, and periodic corrective action groundwater monitoring and reporting. Similar to those in the GWP alternative, these activities are already being conducted as part of routine groundwater monitoring. 	
Available Capacity and Location of Needed Treatment, Storage, and Disposal Services/Comply with Standards for Management of Wastes as Specified in Section 845.680(d) (Section 2.3.5; IAC Section 845.670 (e)(3)(D)/ IAC section 845.670(d)(5))	No treatment, storage, or disposal services would be required with the residual plume management under the Source Control-GWP alternative, as GWP would not generate any significant volume of waste or wastewater.	Residual plume management for the Source Control-Upgradient Barrier Wall and GWE Trench alternative would require the construction of the barrier wall, extraction trench, and a new settling pond. Spoils would be generated and would be disposed of in the on-Site landfill. Extracted groundwater would be sent to an on- Site settling pond, which collects solids	Residual plume management for the Source Control-Horizontal GWE Well would send extracted groundwater to a newly constructed on-Site settling pond to settle solids extracted during groundwater recovery. The settling pond would need to be sited, designed, constructed, and maintained properly. The siting of the settling pond would need to consider limiting impacts to

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		removed during groundwater recovery <i>via</i> the pneumatic extraction pumps and transfer piping. Discharge from the settling pond would be conveyed to an NPDES permitted outfall.	existing and future Site infrastructure and other surface impoundments at the Coffeen Power Plant (CPP). Flows from the horizontal GWE wells would be discharged through an NPDES permitted outfall.
The Degree to Which Community Concerns Are Addressed by the Remedy (Section 2.4; IAC Section 845.670(e)(4))	Some communities have expressed concerns over groundwater quality at CCR surface impoundments. The combination of source control (<i>i.e.</i> , CIP) and residual plume management would cause groundwater concentrations to decline over time under all of the corrective action alternatives, as suggested by the groundwater modeling (Appendix B; Ramboll, 2025b).	Some communities have expressed concerns over groundwater quality at CCR surface impoundments. The combination of source control (<i>i.e.</i> , CIP) and residual plume management would cause groundwater concentrations to decline over time under all of the corrective action alternatives, as suggested by the groundwater modeling (Appendix B; Ramboll, 2025b).	Some communities have expressed concerns over groundwater quality at CCR surface impoundments. The combination of source control (<i>i.e.</i> , CIP) and residual plume management would cause groundwater concentrations to decline over time under all of the corrective action alternatives, as suggested by the groundwater modeling (Appendix B; Ramboll, 2025b).
	A public meeting will be held on May 1, 2025, pursuant to requirements under IAC Section 845.710(e). Questions raised by attendees will be answered at the meeting; subsequently, a written summary of all questions and responses will be made available to interested parties.	A public meeting will be held on May 1, 2025, pursuant to requirements under IAC Section 845.710(e). Questions raised by attendees will be answered at the meeting; subsequently, a written summary of all questions and responses will be made available to interested parties.	A public meeting will be held on May 1, 2025, pursuant to requirements under IAC Section 845.710(e). Questions raised by attendees will be answered at the meeting; subsequently, a written summary of all questions and responses will be made available to interested parties.
Remove from the Environment as Much of the Contaminated Material That Was Released from the CCR Surface Impoundment as Is Feasible, Taking into Account Factors Such as Avoiding Inappropriate Disturbance of Sensitive Ecosystems	There have been no known releases of CCR at the AP2. All three potential corrective action alternatives include source control and residual plume management efforts. The source control included removal of impounded water and the installation of a low- permeability final geomembrane cover system designed to limit the infiltration	There have been no known releases of CCR at the AP2. All three potential corrective action alternatives include source control and residual plume management efforts. The source control included removal of impounded water and the installation of a low- permeability final geomembrane cover system designed to limit the infiltration	There have been no known releases of CCR at the AP2. All three potential corrective action alternatives include source control and residual plume management efforts. The source control included removal of impounded water and the installation of a low- permeability final geomembrane cover system designed to limit the infiltration

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
(Section 2.5; IAC Section 845.670(d)(4))	of precipitation into the impounded CCR. Groundwater modeling performed in support of the Closure Plan predicted that source control would result in a reduction of CCR leachate production, a decrease in CCR leachate constituent concentrations, and a contraction of the groundwater contaminant plume (NRT, 2017a).	of precipitation into the impounded CCR. Groundwater modeling performed in support of the Closure Plan predicted that source control would result in a reduction of CCR leachate production, a decrease in CCR leachate constituent concentrations, and a contraction of the groundwater contaminant plume (NRT, 2017a).	of precipitation into the impounded CCR. Groundwater modeling performed in support of the Closure Plan predicted that source control would result in a reduction of CCR leachate production, a decrease in CCR leachate constituent concentrations, and a contraction of the groundwater contaminant plume (NRT, 2017a).
	Additionally, residual plume management under the Source Control- GWP alternative would address impacted groundwater by relying on physical and geochemical attenuation processes to reduce the residual concentrations of CCR-related constituents in groundwater. Attenuation <i>via</i> sorption onto mineral surfaces should remain stable under post-closure conditions, and remobilization is unlikely to impact the	Additionally, residual plume management under the Source Control- Upgradient Barrier Wall and GWE Trench alternative would rely on the barrier wall to limit groundwater from flowing towards AP2 and to reduce the amount of groundwater that needs to be extracted from the trench. The GWE trench would collect impacted groundwater and reduce the hydraulic head beneath AP2 which would reduce of prevent migration of impacted	Additionally, residual plume management under the Source Control- Horizontal GWE Well alternative would rely on installation of a horizontal extraction well to drain water from beneath AP2, thus reducing the hydraulic head beneath AP2 and accelerating the time to achieve GWPS. The horizontal well would drain water from AP2 which would reduce or prevent migration of impacted groundwater.
	time to achieve GWPS for suifate. It should be noted that remobilization of boron may occur at some locations and affect the time to achieve GWPS compared to sulfate (Appendix E; Geosyntec Consultants, Inc., 2025). No ecosystems would be disturbed because no construction activities are expected under the Source Control- GWP alternative.	groundwater. The construction activities would likely result in some negative impacts to the ecosystem, including disturbances of some existing habitats atop portions of the construction areas, and habitats in the immediate vicinity of these locations by causing alarm and escape behavior in nearby wildlife (<i>e.g.</i> , due to noise disturbances). Short-term impacts could also occur to sensitive acustic and wotland species in Coffeen	The construction activities would likely result in some negative impacts to the ecosystem, including disturbances of some existing habitats atop portions of the construction areas, and habitats in the immediate vicinity of these locations by causing alarm and escape behavior in nearby wildlife (<i>e.g.</i> , due to noise disturbances). Short-term impacts could also occur to sensitive aquatic and wetland species in Coffeen Lake and other wotlands or surface

Evaluation Factor (Report Section; Part 845 Section)	Source Control-GWP	Source Control-Upgradient Barrier Wall and GWE Trench	Source Control-Horizontal GWE Well
		Lake and other wetlands or surface water bodies located within the SFWA near AP2 (see Section 1.1.3) due to potential sediment runoff during construction at the Site.	water bodies located within the SFWA near AP2 (see Section 1.1.3) due to potential sediment runoff during construction at the Site.

Notes:

AP2 = Ash Pond No. 2; BMP = Best Management Practice; CCR = Coal Combustion Residual; CIP = Closure-in-Place; GHG = Greenhouse Gas; GWE = Groundwater Extraction; GWE Trench = Groundwater Extraction Trench; GWP = Groundwater Polishing; GWPS = Groundwater Protection Standard; IAC = Illinois Administrative Code; IDNR = Illinois Department of Natural Resources; IEPA = Illinois Environmental Protection Agency; LLDPE = Linear Low-Density Polyethylene; NPDES = National Pollutant Discharge Elimination System; O&M = Operations and Maintenance; SFWA = State Fish and Wildlife Area; Source Control-GWP = Source Control with Groundwater Polishing; Source Control-Horizontal GWE Well = Source Control with a Horizontal Groundwater Extraction Well; Source Control-Upgradient Barrier Wall and GWE Trench = Source Control with Upgradient Barrier Wall and Groundwater Extraction Trench.

1.1 Site Description and History

1.1.1 Site Location and History

Coffeen Power Plant (CPP) is an electric power generating facility with coal-fired units and is operated by Illinois Power Generating Company (IPGC). The Site is located about 2 miles south of the City of Coffeen, Illinois, and situated approximately between two lobes of Coffeen Lake. Historically, three room and pillar coal mines operated within the boundaries of the Site. From south to north, they are the Hillsboro Mine, which operated from 1964 to 1983; the Clover Leaf No. 1 Mine, which operated from 1889 to 1901; and the Clover Leaf No. 4 Mine, which operated from 1906 to 1924 (Ramboll, 2021a; ISGS and University of Illinois at Urbana-Champaign, 2011). The Coffeen Power Plant operated from 1964 to November 2019 when it was retired (Ramboll, 2021a).

1.1.2 CCR Impoundment

The Coffeen Power Plant produced and stored coal combustion residuals (CCRs) as a part of its historical operations. Ash Pond No. 2 (AP2; Vistra identification [ID] No. CCR Unit 102, Illinois Environmental Protection Agency [IEPA] ID No. W1350150004-02, and National Inventory of Dams [NID] ID No. IL50723) is the subject of this report.

AP2 (Figure 1.1) is an inactive and unlined 60-acre bermed CCR Unit that started operation in the early 1970s. AP2 was removed from service and capped in the mid-1980s with a 2-ft clay and soil layer (AECOM, 2017). Four additional CCR units exist on the Site, including Ash Pond No. 1 (AP1) (operated from 1964 to 2019), the Gypsum Management Facility Gypsum Stack Pond (operated from 2010 to 2021), the Gypsum Management Facility Recycling Pond (operated from 2010 to 2021), and the lined Landfill that managed fly ash beginning in 2010 (Ramboll, 2021a).

Source control by removal of impounded water and installation of a geomembrane cover system for AP2 was completed in 2020 in accordance with the closure plan (Ramboll, 2021a); the closure was supported by groundwater modeling approved by IEPA in 2018 (Buscher, 2018), which is discussed in detail in Section 2.1.

Figure 1.1 Site Location Map. GMF = Gypsum Management Facility. Adapted from NRT (2017b).

1.1.3 Surface Water Hydrology

The CPP is bordered by Coffeen Lake to the west, south, and east. Additionally, to the east, the CPP is also bordered by the Unnamed Tributary. East of the Site, the Unnamed Tributary flows south into the eastern lobe of Coffeen Lake. The facility is permitted to discharge to Coffeen Lake under National Pollutant Discharge Elimination System (NPDES) Permit No. IL 0000108 (IEPA, 2023; Ramboll, 2021a). The northeast corner of AP2 is located approximately several hundred ft west of Coffeen Lake within the Shoal Creek Watershed (Hydrologic Unit Code [HUC] 07140203; Ramboll, 2021a). The Unnamed Tributary flows south into Coffeen Lake approximately 200 ft northeast of AP2, and the East Fork of Shoal Creek is located approximately 4,300 ft east of AP2. Within 1,000 meters (m) of AP2, there are several unnamed freshwater ponds and two freshwater emergent wetlands (Ramboll, 2021a). The ponds range in size from 0.2 acres to 4.8 acres. Emergent wetlands are 0.4 acre in size, located south of AP2, and 1.6 acres, located east and northeast of AP2 where the Unnamed Tributary enters Coffeen Lake.

The 1,100-acre Coffeen Lake was constructed by damming the McDavid Branch of the East Fork of Shoal Creek to aid with cooling for the facility (Ramboll, 2021a). The IEPA classifies Coffeen Lake as a General Use Water (IEPA, 2007): it is designated for aquatic life and use in primary contact recreation; however, it is not designated for use in food processing or as a public water supply. Coffeen Lake (Assessment Unit ID IL_ROG) is listed on the 2018 Illinois Section 303(d) List as being impaired for fish consumption due to mercury (IEPA, 2019; US EPA, 2022). In addition, US EPA approved in 2007 a Total Maximum Daily

Load (TMDL) for phosphorus to address aesthetic quality impairments in Coffeen Lake due to excess algae and total suspended solids (IEPA, 2007).

1.1.4 Hydrogeology

The geology underlying the Site in the vicinity of AP2 consists of several distinct hydrostratigraphic units (Appendix C; Ramboll, 2024a; NRT, 2017b; Ramboll, 2020):

- Upper Confining Unit (UCU): The UCU underlies AP2. It consists of the Roxana and Peoria Silts (Loess Unit) and the upper portion of the Hagarstown Member, which has low permeability clays and silts. The Loess Unit in the area of AP2 is relatively thin, with less than 1 ft of thickness and was likely removed during AP2 construction. The upper clayey till portion of the Hagarstown Member has varying thicknesses from 1.9 ft to over 12 ft to the south and west of AP2.
- Uppermost Aquifer (UA): The UA comprises moderately permeable sands, silty sand, and clayey gravel of the Hagarstown Member and, in some portions of the Site, the Vandalia Member. The UA unit is thin (generally less than 3 ft), discontinuous, and variable throughout AP2 due deposition and weathering.
- Lower Confining Unit (LCU): The LCU underlies the UA. It consists of three low hydraulic conductivity soil layers: the sandy clay till of the Vandalia Member, the silt of the Mulberry Grove Formation, and the compacted clay till of the Smithboro Member. The thickness of LCU ranges approximately 7 to 18 ft thick near AP2. The LCU has been identified as a potential migration pathway (PMP) because downward vertical gradients indicate that there is the potential for impacts to migrate through this unit.
- **Deep Aquifer (DA):** The DA consists of sand and sandy silt/clay units of the Yarmouth Soil, which is discontinuous and, where present, generally less than 5 ft thick. This unit is also identified as a PMP.
- **Deep Confining Unit (DCU):** The DCU is comprised of the Banner Formation, with a mixture of clays, silts, and sands. The Lierle Clay Member is the upper portion of the Banner Formation.

There is a groundwater flow divide within the UA in the center of the CPP property between the two lobes of Coffeen Lake. Groundwater in the UA flows from the center of the CPP property west toward Coffeen Lake and east toward the Unnamed Tributary. Groundwater near AP2 flows east and south toward a former surface water discharge flume and the Unnamed Tributary (NRT, 2017b). There is limited groundwater flow from AP2 toward the west due to a thinning or lower hydraulic conductivity of the Hagarstown Beds (NRT, 2017b). Both the discharge flume and the Unnamed Tributary intersect and cut off the Hagarstown Member in the UA, which blocks any further migration of potentially impacted groundwater (NRT, 2017a). Groundwater flow within the UA is predominantly horizontal due to the underlying low-permeability LCU (NRT, 2017b). Groundwater flow directions in the vicinity of AP2 are typically stable and do not have significant seasonal change. Groundwater elevations are controlled by the water level along the shoreline of Coffeen Lake (NRT, 2017a).

During groundwater interaction with surface water, CCR-related constituents may partition between sediments and the surface water column. It should be noted that many CCR-related constituents occur naturally in sediments and surface water (and can also arise from other industrial sources). As a result, their presence in the sediments and/or surface water of the Coffeen Lake and the Unnamed Tributary does not necessarily signify contributions from AP2.

GRADIENT

1.1.5 Site Vicinity

The CPP property is bordered by Coffeen Lake to the west and south, by the Unnamed Tributary and Coffeen Lake to the east, and by agricultural land to the north (Ramboll, 2021a, Figure 1.1). Coal mining operations occurred in the vicinity of AP2 from 1906 until 1983. The former Hillsboro Mine (Illinois State Geological Survey [ISGS] Mine No. 871), which operated from 1964 until 1983, is located to the south of AP2. The Clover Leaf No. 4 Mine (ISGS Mine No. 442) was located north to northwest of AP2 and operated from 1906 until 1924 (Ramboll, 2021a).

Although the area surrounding the CPP is predominantly agricultural, Coffeen Lake and the surrounding land are used for recreational activities. Since 1986, Coffeen Lake State Fish and Wildlife Area (SFWA) has been open to the public under a lease and management agreement between the Illinois Department of Natural Resources (IDNR) and Ameren Energy Generating Company (IDNR, 2014). To the north of the Coffeen Power Plant, there are walking and hiking trails and bank fishing. Coffeen Lake also entertains fishing and picnicking on the western shore. Based on a review of the IDNR Historic Preservation Division database and the Illinois State Archaeological Survey database, there are no historic sites located within 1,000 m of AP2 (Ramboll, 2021a).

1.2 Part 845 Regulatory Review and Requirements

Title 35, Part 845 of the Illinois Administrative Code (IAC) (IEPA, 2021) requires that a Corrective Action Alternatives Analysis (CAAA) be performed as part of the remedy selection, prior to undertaking any corrective actions at certain CCR-containing impoundments where exceedances of GWPSs have been identified. Because exceedances¹ of GWPSs in groundwater associated with AP2 have been identified for boron, cobalt, pH, sulfate, and total dissolved solids (TDS) (Appendix D; Ramboll, 2024b), this report presents a CAAA for AP2 pursuant to the requirements under IAC Section 845.670. The goal of a CAAA is to holistically evaluate a range of factors for the various corrective actions being considered at an impoundment, including the efficiency, reliability, and ease of implementation of the corrective action; its potential positive and negative short- and long-term impacts on human health and the environment; and its ability to address concerns raised by the community (IEPA, 2021). A CAAA is a decision-making tool that is designed to aid in the selection of a corrective action alternative.

¹ Throughout this document, "exceedance" or "exceedances" is intended to refer only to potential exceedances of proposed applicable background statistics or Groundwater Protection Standards (GWPS) as described in the proposed groundwater monitoring program (Burns & McDonnell, 2021). That operating permit application, including the proposed groundwater monitoring program, remains under review by IEPA and therefore IPRG has not identified any actual exceedances.

GRADIENT

2 Corrective Action Alternatives Analysis

This section presents the CAAA pursuant to requirements under IAC Section 845.670 (IEPA, 2021). The goal of a CAAA is to fully evaluate proposed viable corrective measures that were identified in the CMA (Appendix C; Ramboll, 2024a). The CAAA evaluates potential corrective actions with respect to a wide range of factors, including the performance, reliability, and ease of implementation of the corrective action; its potential impacts on human health and the environment; and its ability to address concerns raised by the community (IEPA, 2021).

Per IAC Section 845.670(d) (IEPA, 2021), any corrective actions selected under a Corrective Action Plan must:

- 1. Be protective of human health and the environment;
- 2. Attain the groundwater protection standards specified in Section 845.600;
- 3. Control the sources of releases to reduce or eliminate, to the maximum extent feasible, further releases of constituents listed in Section 845.600 into the environment;
- 4. Remove from the environment as much of the contaminated material that was released from the CCR surface impoundment as is feasible, considering factors such as avoiding inappropriate disturbance of sensitive ecosystems; and
- 5. Comply with standards for management of wastes as specified in Section 845.680(d).

At AP2, a CAAA is required because groundwater monitoring associated with AP2 identified exceedances of the GWPSs. Groundwater monitoring was conducted in accordance with the proposed groundwater monitoring plan (GMP) between 2015 and 2023 (Appendix D; Ramboll, 2024b) samples collected from groundwater compliance monitoring wells were used to monitor groundwater quality and evaluate compliance with the groundwater quality standards listed in IAC Section 845.600(a). As of the date of this report, boron, cobalt, pH, sulfate, and TDS were identified as a constituent detected in groundwater at a concentration in excess of its GWPS (Appendix D; Ramboll, 2024b).

Three potentially viable corrective actions for AP2 were selected in the CMA for further consideration in this CAAA. Each of these corrective action alternatives includes source control by closure-in-place (CIP). The corrective actions that are considered in this CAAA are Source Control with Groundwater Polishing (Source Control-GWP), Source Control with an Upgradient Barrier Wall and Groundwater Extraction Trench (Source Control-Upgradient Barrier Wall and GWE Trench) and Source Control with a Horizontal Groundwater Extraction Well (Source Control-Horizontal GWE Well). The corrective actions are described below in Section 2.1.

It should be noted that Source Control-GWP, Source Control with GWE (Source Control-GWE), and Source Control with Groundwater Cutoff Wall (Source Control-Cutoff Wall) were initially identified in the CMA as viable remedial approaches (Appendix C; Ramboll, 2024a). However, during subsequent evaluations, the remedial approaches were modified. Remedy modifications include the following:

• The Source Control-Cutoff Wall alternative was determined to be infeasible for attaining GWPS in a reasonable amount of time without a supplementary hydraulic control method. The cutoff wall

was expanded into the upgradient barrier wall with GWE trench (*i.e.*, Source Control-Upgradient Barrier Wall and GWE Trench alternative).

• The Source Control-GWE alternative was further refined into the Source Control-Horizontal GWE well remedy, which includes an alternate method of GWE well installation *via* horizontal directional drilling to reduce disturbance of the completed final cover system while allowing for targeted installation near the CCR/native soil interface beneath AP2.

2.1 Corrective Action Alternatives Descriptions

For all three corrective actions evaluated in this CAAA, source control is the primary remedy. US EPA has stated that source control is the most effective means of ensuring the timely attainment of remediation objectives (US EPA, 2015b). The source control for AP2 consisted of closure-in-place (CIP). Specific elements of this approach completed in 2020 included (AECOM, 2017):

- Removal of impounded water prior to the grading of CCR and fill materials;
- Removing and abandoning existing dewatering wells and piezometers within the previous cover system;
- Installation of a geomembrane cover system consisting of a 40-mil linear low-density polyethylene (LLDPE) geomembrane layer, a geocomposite drainage layer, 18 inches (in) of protective soil cover and at least 6 in of earthen material suitable for supporting vegetative growth; and
- Construction of a stormwater management system to convey stormwater runoff to perimeter drainage channels and to letdown structures.

These source control activities included the removal of impounded water and the installation of a lowpermeability final geomembrane over system designed to limit the infiltration of precipitation into the impounded CCR, and the establishment of the stormwater management system. These activities were designed to control, minimize, or eliminate, post closure infiltration of liquids into the impounded CCR. As demonstrated by the groundwater modeling in support in support of the Closure and Post-Closure Care Plan (AECOM, 2017; NRT, 2017a), this source control approach would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, which was predicted to begin after the completion of the source control, demonstrating that source control controls, minimizes, or eliminates post-closure releases of leachate.

In addition to source control, the corrective actions evaluated in this CAAA include residual plume management. Three potential corrective actions, identified as viable in the CMA, are evaluated in this CAAA for AP2:

- Alternative 1: Source Control with Groundwater Polishing (Source Control-GWP)
- Alternative 2: Source Control with Upgradient Barrier Wall and Groundwater Extraction Trench (Source Control-Upgradient Barrier Wall and GWE Trench)
- Alternative 3: Source Control with a Horizontal Groundwater Extraction Well (Source Control-Horizontal GWE Well)

For all three potential corrective action alternatives, adaptive site management strategies would be integrated into residual plume management. This approach ensures the timely incorporation of new Site information throughout the corrective action process in order to optimize the remediation and expedite achievement of the GWPSs. As part of the adaptive site management approach, system performance and residual plume conditions would be monitored throughout the implementation of the selected corrective action. If groundwater concentrations do not respond as expected to the corrective action, the adaptive site management approach would enable prompt adjustments, optimizations, or replacement of the remedy to ensure overall effectiveness.

2.1.1 Alternative 1: Source Control-GWP

The first corrective action alternative is Source Control-GWP. This remedy includes source control (*i.e.*, CIP) combined with residual plume management based on natural physical and geochemical processes that would reduce groundwater concentrations downgradient of AP2. GWP mechanisms were evaluated using geochemical speciation and reaction models. The primary objective of the geochemical model was to support the evaluation of GWP as a potential remedy for the Site. The model focused on evaluating the dominant geochemical reactions that may occur at time scales relevant to groundwater flow, including adsorption and mineral dissolution/precipitation reactions (*i.e.*, iron and aluminum hydroxides, carbonates, and some sulfates) (Appendix E; Geosyntec Consultants, Inc., 2025). Model inputs included geochemically reactive solid mineral phases, downgradient groundwater composition, and background groundwater composition derived from Site-specific data. Speciation models analyzed the distribution of chemical constituents between solid and aqueous phases, while reaction models assessed how these distributions may shift in response to changing Site conditions (US EPA, 2015b).

Components of residual plume management for this Source Control-GWP alternative include:

- Groundwater concentrations would be reduced in the downgradient plume as a result of physical and geochemical attenuation processes. Site-specific evaluations have shown that GWP would reduce the groundwater concentrations and mobility of inorganic contaminants under post-closure conditions. Specifically, chemical attenuation of contaminants is feasible *via* sorption to aquifer solids, particularly iron and aluminum oxides under current conditions. Attenuation *via* sorption onto mineral surfaces should remain stable under future conditions, and remobilization is unlikely to impact the time to achieve GWPS as groundwater returns to background conditions for sulfate. Remobilization of boron may occur at some locations and affect the time to achieve GWPS compared to sulfate (Appendix E; Geosyntec Consultants, Inc., 2025).
- Corrective action groundwater monitoring using a groundwater monitoring system designed in accordance with IAC Section 845.680(c), which would be installed within the plume that lies beyond the facility boundary;
- Adaptive site management strategies for this alternative would include geochemical modeling. Groundwater monitoring results would be evaluated and compared to the model-predicted concentrations. In situations in which observed groundwater concentrations deviate significantly from modeled conditions, alternative methods or techniques would be evaluated, and if viable, incorporated as per IAC Section 845.680(b);
- Corrective action confirmation groundwater sampling would be performed for 3 years after GWPSs have been achieved; and
- Following the completion of the corrective action confirmation monitoring period, a report and certification for Corrective Action Completion would be prepared and submitted to IEPA as per IAC Section 845.680(e).

The overall corrective action implementation duration for this alternative is over 100 years after approval of the corrective action plan (Appendix B; Ramboll, 2025a), including:

- Approximately 135 years (1,620 months) of corrective action monitoring (*i.e.*, time to meet GWPSs);
- At least 3 years (36 months) of corrective action confirmation monitoring;² and
- Approximately 6 months associated with post-closure reporting.

Although source control (*i.e.*, closure-in-place [CIP]) is a primary component of the corrective action, source control was completed in the 2020 and is not evaluated in this report. Moreover, there is no labor and mileage incurred with the residual plume management under the Source Control-GWP alternative, because no construction would be required under this alternative. Mileage and labor associated with corrective action monitoring was not included in this analysis (Appendix B; Ramboll, 2025a).

2.1.2 Alternative 2: Source Control-Upgradient Barrier Wall and GWE Trench

The second corrective action alternative is Source Control-Upgradient Barrier Wall and GWE Trench. This remedy includes source control (i.e., CIP) with a barrier wall and groundwater extraction trench as the residual plume management approach. The residual plume management would include the construction of a barrier wall located adjacent to the northern and western sides of AP2, with an extraction trench running parallel and hydraulically downgradient of the barrier wall. The combined extraction trench and barrier wall would prevent groundwater flowing towards AP2 from the northwest, to collect impacted groundwater and reduce the hydraulic head beneath AP2. Both structures would be constructed from the ground surface to a depth of 8 ft bgs penetrating the UA. The barrier wall and the GWE trench would be approximately 2 to 3 ft wide, with 1 to 2 ft of separation between them. Horizontal collection pipes would be installed in the trench which would be backfilled with clean granular fill and capped with compacted clay to reduce surface water infiltration. The collection pipes would drain to sumps spaced throughout the trenches to extract groundwater. Extracted groundwater would be collected and sent to a new on-Site lined pond and discharged from either a new or existing outfall managed under the National Pollutant Discharge Elimination System (NPDES) permit for the Site (IEPA, 2023). The barrier wall would be approximately 3,300 ft long and constructed using in-situ soils with a low-permeability mixture down to the target elevation. The barrier wall would be located on the outer side (hydraulically upgradient) of the extraction trench to limit groundwater from flowing towards AP2 and to reduce the amount of groundwater that needs to be extracted from the trench (Appendix B; Ramboll, 2025a).

Implementation of the Source Control-Upgradient Barrier Wall and GWE Trench is expected to include various tasks across three major phases: pre-construction activities (Phase 1), corrective action construction (Phase 2), and corrective action operations, maintenance, and closeout (Phase 3). The activities associated with each of these phases are summarized below:

- **Phase 1:** Pre-construction activities including obtaining permits from agencies, and completing Site investigations and engineering designs;
- **Phase 2:** Construction of the extraction trench, settling pond, and minor Site restoration of disturbed areas;

 $^{^{2}}$ It should be noted that post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c).

- Mobilization of equipment and materials to the Site, and preparation for Site construction including stormwater best management practices (BMPs), modification for Site utilities, and specialty geotechnical techniques for trenching activities;
- The GWE trench would be constructed using one-pass trenching methods by excavating subgrade soils, placing collection piping and pumps, and backfilling/capping the trench to reduce surface water infiltration; other installation methods may be evaluated at a later phase of design;
- The barrier wall would be constructed using one-pass technology, although other installation approaches may be evaluated during a later phase of design; a temporary on-Site batch plant or material handling system would be established to generate the low permeability backfill for the wall;
- Excavated soils from the GWE trench and barrier wall would be hauled and disposed of at an on-Site landfill;
- The 1-acre, geomembrane-lined settling pond would be constructed to manage extracted groundwater using conventional construction equipment; although other groundwater treatment and management technologies may be evaluated during a later phase of design. Piping and installation of electrical, mechanical, and pneumatic infrastructure would be used to convey water from the settling pond to an appropriate NPDES outfall;
- Site restoration would be completed following the construction of the GWE trench and settling pond.
- **Phase 3:** Operations, Maintenance (O&M), and Closeout of the barrier wall and GWE trench system. Details pertaining to each of these activities are outlined below.
 - Continuous operation of the GWE trench and barrier wall system;
 - Corrective Action O&M would involve routine and non-routine maintenance of extraction pumps, transfer pumps, air compressor, totalizer data collection, filter system, and other system components, as well as flushing or jetting of water conveyance lines to remove accumulated organic or inorganic solids from the interior walls;
 - Monitoring of extracted groundwater under the NPDES permit;
 - Adaptive site management strategies would be employed to track remediation progress and incorporate new Site information to assure the achievement of the GWPSs;
 - Corrective action monitoring would be performed using a new corrective action groundwater monitoring network designed in accordance with IAC Section 845.680(c), which would be installed within the plume that lies beyond the facility boundary;
 - Following the completion of the corrective action confirmation monitoring period, a report and certification for Corrective Action Completion would be prepared and submitted to IEPA as per IAC Section 845.680(e).

The overall corrective action implementation duration is approximately 67 to 69 years after approval of the Construction Permit Application (Appendix B; Ramboll, 2025a), including:

- Approximately 3.5 to 5 years (42 to 60 months) of pre-construction activities (Phase 1),
- Approximately 6 to 12 months of corrective action construction (Phase 2), and

- Approximately 63 years (750 months) of O&M and closeout (Phase 3):
 - It is estimated to include 59 years (708 months) of corrective action monitoring (*i.e.*, time to meet GWPSs), at least 3 years (36 months) of corrective action confirmation monitoring,³ and 6 months associated with post-closure reporting.

Key parameters for the Source Control-Upgradient Barrier Wall and GWE Trench corrective action alternative are shown in Table 2.1, below.

Parameter ^b	Value ^c					
Labor Hours						
Total On-Site Labor	16,900 hours					
Total Off-Site Labor	0 hours					
40% Contingency	6,760 hours					
Total Labor Hours:	23,600 hours					
Vehicle and Equipment Travel Miles						
Vehicles On-Site	23,300 miles					
On-Site Haul Trucks (Unloaded + Loaded)	4,200 miles					
Labor Mobilization	152,000 miles					
Equipment Mobilization (Unloaded + Loaded)	26,300 miles					
Off-Site Haul Trucks (Unloaded + Loaded)	17,400 miles					
Material Deliveries (Unloaded + Loaded)	9,000 miles					
Total On-Site Vehicle and Equipment Travel Miles:	27,500 miles					
Total Off-Site Vehicle and Equipment Travel Miles:	205,000 miles					
Total Vehicle and Equipment Travel Miles:	233,000 miles					

 Table 2.1 Key Parameters for the Source Control-Upgradient Barrier

 Wall and GWF Trench Corrective Action Alternative^a

Notes:

GWE Trench = Groundwater Extraction Trench.

(a) Although source control (*i.e.*, closure-in-place [CIP]) is a primary component of the corrective action, the source control was completed in 2020 and the associated labor time, equipment usage, and mileage are not discussed in this analysis.

(b) Site activities are expected to occur during the corrective action construction and operation and maintenance phases for this alternative.

(c) Values reported in this table were rounded to reflect 3 significant figures. Source: Appendix B.

2.1.3 Alternative 3: Source Control-Horizontal GWE Well

The third corrective action alternative is Source Control-Horizontal GWE Well. This remedy includes source control (*i.e.*, CIP) with a horizontal extraction well as the residual plume management approach. This residual plume management would include constructing a horizontal extraction well running in the north south direction within the eastern portion of AP2 at the CCR/native soil interface. The GWE well would extract and drain water from beneath the AP2, reduce the hydraulic head, and accelerate the time to achieve the GWPSs (Appendix B; Ramboll, 2025a). The horizontal well would begin at the southern bank of AP2 at an elevation of 600 ft-amsl and extend 1,325 ft to the north at an elevation of 606 ft-amsl. Extracted water would be directed through a culvert or be pumped to a settling pond before discharge to an NPDES permitted outfall.

³ It should be noted that post-closure care groundwater monitoring would continue for a minimum of 30 years or until such time as GWPSs are achieved, whichever is longer, as required by IAC Section 845.780(c).

Implementation of the Source Control-Horizontal GWE Well is expected to include various tasks across three major phases: pre-construction activities (Phase 1); corrective action construction (Phase 2); and corrective action operations, maintenance, and closeout (Phase 3). The activities associated with each of these phases are summarized below:

- **Phase 1:** Pre-construction activities, including obtaining permits from agencies, and completing Site investigations and engineering designs;
- **Phase 2:** Construction activities related to installation of the horizontal well, and minor Site restoration of disturbed areas;
 - Mobilization of equipment and materials to the Site and preparation for Site construction, which would include implementing stormwater BMPs around the construction area, modification of Site utilities, and the construction of a work platform;
 - The horizontal well would be installed in a south-north direction at the targeted elevation of the bottom of CCR/top of the UA between 600 and 606 ft-amsl with a length of about 1,300 ft; the well casing would contain a slotted well screen for collection of groundwater;
 - After well installation, the well would be developed by flushing or jetting the system as needed and the entry point would be grout sealed to reduce surface infiltration and any drill cuttings and spoils would be hauled to an on-Site landfill for disposal;
 - The geomembrane-lined settling pond would be constructed to manage extracted groundwater using conventional construction equipment; the settling pond would be approximately 1 acre in size and 2-ft deep; and
 - Site restoration would be completed following the construction of the horizontal well and settling pond.
- **Phase 3:** Operations, maintenance, and closeout. Details pertaining to each of these activities are outlined below.
 - Corrective Action O&M would involve routine inspection of the horizontal well extraction system such as transfer pumps and other system components; non-routine maintenance such as flushing or jetting of water conveyance lines may also occur;
 - Adaptive site management strategies would be employed to track remediation progress and incorporate new Site information to assure the achievement of the GWPSs;
 - Corrective action monitoring would be performed using a new corrective action groundwater monitoring network designed in accordance with IAC Section 845.680(c), which would be installed within the plume that lies beyond the facility boundary;
 - GWPSs are expected to be achieved in approximately 14 years after corrective action operation starts. Current modeling indicates that operation of the horizontal well system may be required for an additional 25 years to prevent concentrations from rebounding above the GWPSs; however, additional modeling would be performed and additional data would be collected as part of the Corrective Action Groundwater Monitoring Plan to evaluate and assess the exact required duration of additional system operation. Therefore, the total operational time period for the horizontal GWE system may be about 39 years. Corrective action monitoring would continue during this time and would include an additional 3 years of corrective action confirmation sampling after the correction action operation has ceased; and

• Following the completion of the corrective action confirmation monitoring period, a report and certification for Corrective Action Completion would be prepared and submitted to IEPA as per IAC Section 845.680(e).

The overall corrective action implementation duration is approximately 46 to 48 years (552 to 576 months) after approval of the Construction Permit Application (Appendix B; Ramboll, 2025a), including:

- Approximately 3 to 4.5 years (36 to 54 months) of pre-construction activities (Phase 1);
- Approximately 6 to12 months of corrective action construction (Phase 2); and
- Approximately 46 years (546 months) of corrective action O&M, and closeout (Phase 3).
 - It is estimated to include 14 years (168 months) of corrective action monitoring (*i.e.*, time to meet GWPSs), 25 years (300 months) of additional operation to prevent concentrations from rebounding above the GWPSs,⁴ at least 3 years (36 months) of corrective action confirmation monitoring,⁵ and 6 months associated with post-closure reporting.

⁴ Current modeling indicates that an additional 25 years of system operation may be required to prevent concentrations from rebounding above the GWPSs; however, additional modeling would be performed and additional data would be collected as part of the Corrective Action Groundwater Monitoring Plan to evaluate and assess the exact required duration of additional system operation.

⁵ It should be noted that post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c).

GRADIENT

Key parameters for the Source Control-Horizontal GWE Well corrective action alternative are shown in Table 2.2, below.

Parameter ^b	Value ^c
Labor Hours	
Total On-Site Labor	12,600 hours
Total Off-Site Labor	0 hours
40% Contingency	5,020 hours
Total Labor Hours:	17,600 hours
Vehicle and Equipment Travel Miles	
Vehicles On-Site	16,800 miles
On-Site Haul Trucks (Unloaded + Loaded)	98 miles
Labor Mobilization	116,000 miles
Equipment Mobilization (Unloaded + Loaded)	18,900 miles
Off-Site Haul Trucks (Unloaded + Loaded)	9,950 miles
Material Deliveries (Unloaded + Loaded)	7,570 miles
Total On-Site Vehicle and Equipment Travel Miles:	16,900 miles
Total Off-Site Vehicle and Equipment Travel Miles:	153,000 miles
Total Vehicle and Equipment Travel Miles:	170,000 miles

 Table 2.2 Key Parameters for the Source Control-Horizontal GWE Well

 Corrective Action Alternative^a

Notes:

Source Control-Horizontal GWE Well = Source Control with a Horizontal Groundwater Extraction Well.

(a) Although source control (*i.e.*, closure-in-place [CIP]) is a primary component of the corrective action, the source control was completed in 2020 and the associated labor time, equipment usage, and mileage are not discussed in this analysis.

(b) Site activities are expected to occur during the corrective action construction and O&M phases for this alternative.

(c) Values reported in this table were rounded to reflect 3 significant figures. Source: Appendix B; Ramboll, 2025a.

2.2 Long- and Short-Term Effectiveness and Protectiveness of Corrective Action Alternative (IAC Section 845.670(e)(1))

2.2.1 Magnitude of Reduction of Existing Risks (IAC Section 845.670(e)(1)(A))

There are no current unacceptable risks to human or ecological receptors at this Site associated with AP2 (Appendix A; Gradient, 2025). Because current conditions do not present a risk to human health or the environment at AP2, there will be no unacceptable risk to human health or the environment for future conditions since the unit was already closed and source control was implemented. Concentrations of CCR-related constituents will decline over time and, consequently, potential exposures to CCR-related constituents in the environment will also decline. As a result of this, the magnitude of the reduction of existing risks is the same for the three potential corrective action alternatives (IAC Section 845.670(e)(1)(A)), and each corrective action alternative are equally protective of human health and the environment (IAC Section 84.670(d)(1)).

2.2.2 Effectiveness of the Remedy in Controlling the Source (IAC Section 845.670(e)(2)/IAC Section 845.670(d)(3))

Extent to Which Containment Practices Will Reduce Further Releases/Control the Sources of Releases to Reduce or Eliminate, to the Maximum Extent Feasible (IAC Section 845.670(e)(2)(A)/IAC Section 845.670(d)(3))

Source control was implemented for all three corrective action alternatives. Source control (*i.e.*, CIP) included removal of impounded water, and the installation of a low-permeability final geomembrane cover system to limit the infiltration into the impounded CCR, and the establishment of the stormwater management system. As demonstrated by the groundwater modeling in support of the Closure and Post-Closure Care Plan (NRT, 2017a), this source control approach would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, which was predicted to begin after the completion of the source control. Because source control was already completed at the Site, all three corrective action alternatives would be equally and fully protective with regard to source control. The effectiveness of residual plume management for each of the corrective action alternatives with respect to residual source control is summarized below.

- Under the Source Control-GWP alternative, the attenuation of dissolved constituent concentrations remaining after source control would be achieved through natural physical and geochemical processes. Site-specific evaluations have shown that GWP would reduce the groundwater concentrations and mobility of inorganic contaminants under post-closure conditions. Specifically, chemical attenuation of contaminants is feasible *via* sorption to aquifer solids, particularly iron and aluminum oxides under current conditions. Attenuation *via* sorption onto mineral surfaces should remain stable as groundwater returns to background conditions, and remobilization is unlikely to impact the time to achieve GWPS for sulfate. Remobilization of boron may occur at some locations and affect the time to achieve GWPS compared to sulfate (Appendix E; Geosyntec Consultants, Inc., 2025). In cases in which observed groundwater concentrations deviate significantly from modeled conditions, alternative methods or techniques would be evaluated under the adaptive site management, and if viable, incorporated as per IAC Section 845.680(b).
- Under the Source Control-Upgradient Barrier Wall and GWE Trench alternative, residual contamination control would be achieved by the construction of a barrier wall to prevent groundwater flowing towards AP2 and by installation of an extraction trench running parallel and hydraulically downgradient of the barrier wall to reduce the hydraulic head and collect impacted groundwater beneath AP2. GWE trench and a subsurface barrier wall are widely used corrective measures that have been effectively implemented at many sites to contain and capture and dissolved-phase groundwater plumes, and their combined implementation increases their efficacy to control the residual contamination. In cases in which observed groundwater concentrations deviate significantly from modeled conditions, alternative methods or techniques would be evaluated under the adaptive site management plan, and if viable, incorporated as per IAC Section 845.680(b).
- Under the Source Control-Horizontal GWE Well alternative, residual contamination control would be achieved by installing a horizontal GWE well to collect and drain CCR-impacted groundwater beneath AP2. Horizontal GWE wells are commonly used corrective measures that have been effectively implemented at many sites to control the residual contamination. In cases in which observed groundwater concentrations deviate significantly from modeled conditions, alternative methods or techniques would be evaluated under the adaptive site management plan, and if viable, incorporated as per IAC Section 845.680(b).

All three corrective action alternatives include source control and residual plume management. Thus, all three potential corrective action alternatives would be effective at reducing releases from both primary and residual sources (IAC Section 845.670(e)(2)(A)/IAC Section 845.670(d)(3)).

Extent to Which Treatment Technologies May Be Used (IAC Section 845.670(e)(2)(B))

Because Source Control-GWP would rely on physical and geochemical processes, no additional treatment technologies would be required. The Source Control-Upgradient Barrier Wall and GWE Trench alternative would require construction of a new on-Site settling pond to remove solids from extracted groundwater, prior to discharge *via* an NPDES permitted outfall. For the Source Control-Horizontal GWE Well alternative, extracted water would be managed and treated by a newly constructed on-Site settling pond, although other treatment and management technologies may be evaluated at later phases of the design (Appendix B; Ramboll, 2025a). For all corrective action alternatives, remedy optimizations would be implemented, if necessary, under the adaptive site management program.

2.2.3 Likelihood of Future Releases of CCR (IAC Section 845.670(e)(1)(B))

All three corrective action alternatives include source control (CIP), which was implemented in 2020. A geosynthetic cover system was previously installed over AP2, which included a 40-mil LLDPE geomembrane liner, 18 in of soil cover and 6 in of erosion soil layer for vegetative growth. A new stormwater control system was also installed. This cover system provides increased protection against berm and surface erosion, precipitation infiltration, and other adverse effects that could potentially trigger a release of CCR. None of the alternatives would disturb the previously installed cover system. Thus, there would be minimal risk of accidental CCR releases occurring post-closure under any of the corrective action alternatives.

2.2.4 Type and Degree of Long-Term Management, Including Monitoring, Operation, and Maintenance (IAC Section 845.670(e)(1)(C))

The type and degree of long-term residual groundwater plume management associated for all corrective action alternatives are summarized as follows:

- The Source Control-GWP alternative would not require the installation, operation, or maintenance of any engineered systems or structures, other than maintenance of the monitoring well network. The only long-term management activity required under this alternative would be regular corrective action groundwater monitoring and routine maintenance of the monitoring wells, which would continue at least 3 years after GWPSs have been achieved for all wells, in accordance with IAC Section 845.680(c)(2). Post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c). Based on the adaptive site management approach, remedy optimization (additional methods or techniques) may be implemented to ensure the achievement of the GWPSs.
- The Source Control-Upgradient Barrier Wall and GWE Trench would require the construction of an extraction trench and barrier wall. Multiple tasks would be completed over three phases: preconstruction activities (Phase 1), corrective action construction (Phase 2), and corrective action O&M, and closeout (Phase 3). Once pre-construction activities are completed, construction of the extraction trench and barrier wall would occur. Corrective action O&M would require regular inspection and maintenance of the extraction trench system, such as extraction pumps, filter system, and other system components. Non-routine maintenance may include tasks such as repair or replacement of the extraction and/or transfer pumps, repair or replacement of the system air

compressor, and flushing or jetting of water conveyance lines in the event organic or inorganic solids accumulate on the interior walls. Extracted groundwater would be managed and treated by a newly-constructed on-Site settling pond before discharge *via* an NPDES Outfall. Additionally, corrective action groundwater sampling and routine maintenance of the monitoring well network would continue for at least 3 years after GWPSs have been achieved at all wells, in accordance with IAC Section 845.680(c)(2). Post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c). Based on the adaptive site management approach, remedy optimization (additional methods or techniques) may be implemented to ensure the achievement of the GWPSs.

The Source Control-Horizontal GWE Well would require the construction of a horizontal groundwater well. Multiple tasks would be completed over three phases: pre-construction activities (Phase 1), corrective action construction (Phase 2), corrective action O&M, and closeout (Phase 3). Once pre-construction activities are completed, installation of the horizontal GWE well and construction of the settling pond would occur. Corrective action O&M would require inspection and maintenance of the horizontal well to ensure continued operation. These activities would include routine inspection of the horizontal well extraction system along with non-routine maintenance such as flushing or jetting of water conveyance lines. Extracted groundwater would be managed to ensure compliance with the Site's NPDES permit for treatment and discharge. As with the other alternatives, corrective action sampling and routine maintenance of the monitoring well network would continue during the system operation. Once the GWPSs have been reached (approximately 14 years), corrective action monitoring may continue for additional 25 years to prevent groundwater concentrations from rebounding above the GWPSs.⁶ Corrective action confirmation monitoring would continue after GWPSs have been achieved for all compliance wells for a period of 3 years after extraction from the horizontal well has been ceased, in accordance with IAC Section 845.680(c)(2). Post-closure care groundwater monitoring would continue for a minimum of 30 years as required by IAC Section 845.780(c). Based on the adaptive site management approach, remedy optimization (additional methods or techniques) may be implemented to ensure the achievement of the GWPSs.

2.2.5 Short-Term Risks to the Community or the Environment During Implementation of Remedy (IAC Section 845.670(e)(1)(D))

2.2.5.1 Safety Impacts

Best practices would be employed during construction in order to ensure worker safety and comply with all relevant regulations, permit requirements, and safety plans. However, it is impossible to completely eliminate risks to workers during construction and/or other corrective action activities. For example, injuries and fatalities can occur due to truck accidents or equipment malfunctions. Truck accidents that occur off-Site can also result in injuries or fatalities to community members. Because the source control was implemented in 2020, there is no further risk of accidents and injuries occurring during the implementation of the source control remedy. The safety impacts associated with residual plume management (*i.e.*, construction and O&M) for each corrective action alternative are described below.

• The Source Control-GWP alternative would not require the construction and maintenance of any engineered systems or structures, and therefore no safety impacts are expected.

⁶ The exact duration of additional system operation would be determined as part of Corrective Action Groundwater Monitoring based on additional modeling and data collection.

- The Source Control-Upgradient Barrier Wall and GWE Trench alternative would include the construction of a barrier wall in order to prevent groundwater flowing towards AP2; a groundwater extraction trench system and settling pond to collect, extract, and treat CCR-impacted groundwater. Potential safety concerns would be related to the construction and O&M of the barrier wall, the extraction trench and settling pond.
- The Source Control-Horizontal GWE Well alternative would include construction of a horizontal well to collect CCR-impacted groundwater beneath AP2. Potential safety concerns would be related to the construction activities associated with installation of the horizontal well, as well as activities related to subsequent O&M.

Worker Risks

On-Site accidents include injuries and deaths arising from the use of heavy equipment and/or earthmoving operations during Site activities. Off-Site accidents include injuries and deaths due to vehicle accidents during labor and equipment mobilization/demobilization, as well as materials/supplies hauling and deliveries.

As discussed in section 2.1.1, there are no construction activities or operational requirements associated with residual plume management for the Source Control-GWP alternative. As shown in Tables 2.1-2.2, Ramboll estimates that residual plume management for the Source Control-Upgradient Barrier Wall and GWE Trench corrective action alternative would require 16,900 hours on-Site labor hours and residual plume management for the Source Control-Horizontal GWE Well corrective action alternative would require 12,600 hours on-Site labor hours (Appendix B; Ramboll, 2025). The US Bureau of Labor Statistics (US DOL, 2020a,b) provides an estimate of the hourly fatality and injury rates for construction workers. Based on the accident rates reported by the US Bureau of Labor Statistics and the on-Site labor hours reported in Appendix B, we estimate that approximately 0.17 worker injuries and 1.5×10^{-3} worker fatalities would occur on-Site under the Source Control-Bource Control-Upgradient Barrier Wall and GWE Trench corrective action alternative; and approximately 0.13 worker injuries and 1.1×10^{-3} worker fatalities would occur on-Site under the Source Control-Horizontal GWE Well corrective action alternative (Table 2.3). No worker accidents would be expected under the Source Control-GWP alternative. The number of on-Site worker accidents is therefore expected to be highest under the Source Control-Source Control-Burgadient Barrier Wall and GWE Trench alternative.

Table 2.3	Expected Number	of On-Site	Worker	Accidents	Under	Each	Corrective
Action Alte	ernative ^{a,b}						

Corrective Action Alternative	Injuries	Fatalities
Source Control-GWP	0	0
Source Control-Upgradient Barrier Wall and GWE Trench	0.17	1.5×10⁻³
Source Control-Horizontal GWE Well	0.13	1.1×10 ⁻³

Notes:

Source Control-GWP = Source Control with Groundwater Polishing; Source Control-Horizontal GWE Well = Source Control with a Horizontal Extraction Well; Source Control-Upgradient Barrier Wall and GWE Trench = Source Control with an Upgradient Barrier Wall and Groundwater Extraction Trench.

(a) Although source control (*i.e.*, closure-in-place [CIP]) is a primary component of the corrective action, it was complete in 2020, and the worker accidents associated with source control are not included in this analysis.

(b) Worker accidents associated with groundwater sampling and monitoring are not included in this analysis for any of the alternatives.

Off-Site, a greater number of haul truck miles, labor and equipment mobilization/demobilization miles, and material delivery miles would be required under the Source Control-Upgradient Barrier Wall and GWE Trench compared to the Source Control-Horizontal GWE Well alternative (Tables 2.1-2.2). For residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench and Source Control-Horizontal GWE Well corrective action alternatives, 205,000 and 153,000 total off-Site vehicle and equipment travel miles would be required, respectively. No off-Site travel miles would be expected under the Source Control-GWP alternative (Appendix B; Ramboll, 2025a). The United States Department of Transportation (US DOT) provides estimates of the expected number of fatalities and injuries "per vehicle mile driven" for drivers and passengers of large trucks and passenger vehicles (US DOT, 2023). Table 2.4 shows the expected number of off-Site accidents under each corrective action alternative due to all categories of off-Site vehicle usage. For these calculations, it was assumed that labor mobilization/ demobilization would rely upon passenger vehicles (cars or light trucks, including pickups, vans, and sport utility vehicles) and that hauling, equipment mobilization/demobilization, and material deliveries would rely upon large trucks. Based on US DOT's accident statistics and the mileage estimates in Appendix B, an estimated 0.10 worker injuries and 2.3×10⁻³ worker fatalities would be expected to occur due to off-Site activities under the Source Control-Upgradient Barrier Wall and GWE Trench alternative; and an estimated 0.077 worker injuries and 1.7×10-3 worker fatalities would be expected to occur due to off-Site activities under the Source Control-Horizontal GWE Well alternative. No worker accidents would be expected under the Source Control-GWP alternative.

Table 2.4	Expected Number of Off-Site	Worker Accidents	Related to	Off-Site Car	and Truck	Use Under
Each Corre	ective Action Alternative ^a					

Off-Site Vehicle Use Category	Source Co	ontrol-GWP	Source Control- Upgradient Barrier Wall and GWE Trench			e Control- al GWE Well
	Injuries	Fatalities	Injuries	Fatalities	Injuries	Fatalities
Hauling	0	0	3.7×10 ⁻³	2.7×10 ⁻⁴	2.1×10 ⁻³	1.6×10 ⁻⁴
Labor Mobilization/Demobilization	0	0	0.09	1.4×10 ⁻³	0.069	1.1×10 ⁻³
Equipment Mobilization/Demobilization	0	0	5.5×10 ⁻³	4.1×10 ⁻⁴	4.0×10 ⁻³	3.0×10 ⁻⁴
Material Deliveries	0	0	1.9×10 ⁻³	1.4×10 ⁻⁴	9.6×10 ⁻⁴	1.2×10 ⁻⁴
Total:	0	0	0.10	2.3×10 ⁻³	0.077	1.7×10 ⁻³

Notes:

GWE = Groundwater Extraction; GWE Trench = Groundwater Extraction Trench; Source Control-GWP = Source Control with Groundwater Polishing; Source Control-Horizontal GWE Well = Source Control with a Horizontal Groundwater Extraction Well; Source Control-Upgradient Barrier Wall and GWE Trench = Source Control with Upgradient Barrier Wall and Groundwater Extraction Trench.

(a) Although source control (*i.e.*, closure-in-place [CIP]) is a primary component of the corrective action, it was complete in 2020, and the worker accidents associated with source control are not included in this analysis.

Overall, considering accidents occurring both on- and off-Site, 0.28 worker injuries and 3.8×10^{-3} worker fatalities would be expected to occur for residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative; and 0.21 worker injuries and 2.8×10^{-3} worker fatalities would be expected to occur for residual plume management under the Source Control-Horizontal GWE Well alternative. Thus, overall risks to workers would be highest under the Source Control-Upgradient Barrier Wall and GWE Trench alternative.

Community Risks

Vehicle accidents that occur off-Site can result in injuries or fatalities among community members as well as workers. Based on the accident statistics reported by US DOT (2023) and the off-Site travel mileages reported in Appendix B (and summarized in Tables 2.1-2.2), off-Site vehicle accidents could result in an

estimated 0.051 injuries and 6.9×10^{-4} fatalities among community members (*e.g.*, people involved in haul truck accidents that are neither haul truck drivers nor passengers, including pedestrians, drivers of other vehicles) for residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative (Table 2.5). For residual plume management under the Source Control-Horizontal GWE Well alternative, off-Site vehicle accidents could result in an estimated 0.038 community injuries and 5.2×10^{-4} community fatalities. No community risks are expected under the Source Control-GWP alternative. Therefore, off-Site impacts on nearby residents, including injuries or fatalities, would be the highest under the Source Control-Upgradient Barrier Wall and GWE Trench alternative.

Off-Site Vehicle Use Category	Source Co	ontrol-GWP	Source Control- Upgradient Barrier Wall and GWE Trench		Source Control- Horizontal GWE Well	
	Injuries	Fatalities	Injuries	Fatalities	Injuries	Fatalities
Hauling	0	0	4.6×10 ⁻³	3.4×10 ⁻⁵	2.6×10 ⁻³	1.9×10 ⁻⁵
Labor Mobilization/Demobilization	0	0	3.7×10 ⁻²	5.9×10 ⁻⁴	2.8×10 ⁻²	4.5×10 ⁻⁴
Equipment Mobilization/Demobilization	0	0	6.9×10 ⁻³	5.1×10⁻⁵	5.0×10 ⁻³	3.7×10⁻⁵
Material Deliveries	0	0	2.4×10 ⁻³	1.7×10 ⁻⁵	2.0×10 ⁻³	1.5×10 ⁻⁵
Total:	0	0	0.051	6.9x10 ⁻⁴	0.038	5.2×10 ⁻⁴

Table 2.5	Expected Number	of Community	Accidents Under	r Each Corrective	Action Alternative

Notes:

GWE = Groundwater Extraction; GWE Trench = Groundwater Extraction Trench; Source Control-GWP = Source Control with Groundwater Polishing; Source Control-Horizontal GWE Well = Source Control with a Horizontal Groundwater Extraction Well; Source Control-Upgradient Barrier Wall and GWE Trench = Source Control with Upgradient Barrier Wall and Groundwater Extraction Trench.

(a) Although source control (*i.e.*, closure-in-place [CIP]) is a primary component of the corrective action, the worker accidents associated with source control were previously performed and are not repeated in this analysis.

2.2.5.2 Cross-Media Impacts to Air

Air pollution can occur both on-Site (*e.g.*, construction activities) and off-Site (*e.g.*, along transportation routes), potentially impacting workers as well as community members. Diesel emissions are a major source of air pollutants and greenhouse has (GHG) emissions at construction sites. Diesel exhaust contains air pollutants, including nitrogen oxides (NO_x), particulate matter (PM), carbon monoxide (CO), and volatile organic compounds (VOCs) (Hesterberg *et al.*, 2009; Mauderly and Garshick, 2009). Construction equipment also emits GHGs, including carbon dioxide (CO₂) and possibly nitrous oxide (N₂O). The potential impact of each corrective action alternative on GHG emissions is proportional to the potential impact of each alternative on other emissions from construction vehicles and equipment.

Source control (CIP) was implemented for all three potential corrective action alternatives and there are no further air impacts associated with source control. On-Site emissions would be highest for residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative due to the greatest amount of on-Site vehicle travel miles required under this corrective action alternative (27,500 total on-Site travel miles under the Source Control-Upgradient Barrier Wall and GWE Trench alternative *versus* 16,900 total on-Site travel miles under the Source Control-GWP alternative; Section 2.1.1; Tables 2.1-2.2). Off-Site emissions would be highest for residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative due to the greatest amount of off-Site vehicle and equipment travel miles required under this alternative (205,000 total off-Site travel miles under the Source Control-Upgradient Barrier Wall and GWE Trench alternative (205,000 total off-Site travel miles under the Source Control-Upgradient Barrier Wall and GWE Trench alternative (205,000 total off-Site travel miles under the Source Control-Upgradient Barrier Wall and GWE Trench alternative and no off-Site travel miles under the Source Control-Upgradient Barrier Wall and GWE Trench alternative (205,000 total off-Site travel miles under the Source Control-Upgradient Barrier Wall and GWE Trench alternative wersus 153,000 total off-Site travel miles under the Source Control-GWP alternative). In summary, air impacts would be highest for the Source Control-Upgradient Barrier Wall and

GWE Trench alternative due to greatest vehicle travel miles, and lowest for the Source Control-GWP alternative, because no construction activities would be expected under this alternative.

2.2.5.3 Cross-Media Impacts to Surface Water and Sediments

Under all three corrective action alternatives, source control was implemented in 2020 (CIP), and, consequently, constituent mass flux from groundwater into surface water is declining over time. The source control approach removes the amount of water retained within the impoundment, which further reduces the hydraulic flux through the CCR. Due to the reduction in the hydraulic flux out of AP2, the mass flux out of AP2 would also be controlled or minimized. As demonstrated by the groundwater modeling in support in support of the Closure and Post-Closure Care Plan (NRT, 2017a), this source control approach would result in a reduction of CCR leachate parameters and thereby contraction of CCR constituents into the groundwater plume.

Under residual plume management for the Source Control-GWP alternative, minimal surface water and sediment impacts would be expected associated with residual plume management because it would not require the construction of any engineered systems or structures (other than utilizing groundwater monitoring wells).

Under residual plume management for the Source Control-Upgradient Barrier Wall and GWE Trench alternative, surface water and sediment impacts would be higher than the Source Control-GWP alternative due to the construction of the extraction trench system and the barrier wall. Construction can have short-term negative impacts on surface water and sediment quality immediately adjacent to a site due to erosion and sediment runoff. Extracted groundwater would be discharged *via* an NPDES permitted outfall. Any associated impacts would be addressed through BMPs in accordance with Site land disturbance permits.

Similarly, under residual plume management for the Source Control-Horizontal GWE Well alternative, surface water and sediment impacts would be higher than the Source Control-GWP alternative due to the construction of a horizontal GWE well (Appendix B; Ramboll, 2025a). Construction can have short-term negative impacts on surface water and sediment quality immediately adjacent to a site due to potential erosion and sediment runoff. Extracted groundwater would be discharged *via* an NPDES permitted outfall. Any associated impacts would be addressed through BMPs in accordance with Site land disturbance permitts.

2.2.5.4 Control of Exposure to Any Residual Contamination During Implementation of the Remedy

Source control (CIP) was implemented for all three potential corrective action alternatives. Thus, there are no further risks of CCR exposure associated with source control implementation. However, impacted soils and groundwater can be a source of CCR-related constituent exposure for workers. Risks to workers arising from potential contact with residual contamination during construction, operation, and maintenance activities associated with residual plume management would be higher for the Source Control-Upgradient Barrier Wall and GWE Trench and Source Control-Horizontal GWE Well than for the Source Control-GWP alternative. The Source Control-Upgradient Barrier Wall and GWE Trench alternative would involve the production, management, and treatment of extracted groundwater, as well as on-Site disposal of excavated spoils generated during extraction trench and barrier wall construction. The Source Control-Horizontal GWE Well alternative would involve the production, management, and treatment of extracted groundwater, as well as on-Site disposal of excavated spoils generated during GWE well installation. The Source Control-GWP alternative would not involve exposure to either of these soil or groundwater waste streams. Any potential CCR-exposures during the Source Control-Upgradient Barrier Wall and GWE Trench or Source Control-Horizontal GWE Well alternative would be managed through the use of rigorous safety protocols and personal protective equipment.

2.2.5.5 Other Identified Impacts

Source control (CIP) was implemented for all three potential corrective action alternatives (AECOM, 2017). Thus, there are no further risks associated with source control implementation.

In addition to safety impacts, cross-media impacts, and the potential for workers to be exposed to residual contamination, construction activities and remedial operations can have significant energy demands and can cause nuisance impacts such as traffic and noise. Energy consumption at a construction site is synonymous with fossil fuel consumption because the energy to power construction vehicles and equipment comes from the burning of fossil fuels. Fossil fuel demands considered here include the burning of diesel fuel during construction equipment and vehicle travel miles. Because GHG emission impacts and energy consumption impacts both arise from the same sources at construction sites, the trends discussed in Section 2.2.5.2 with respect to GHG emissions also apply to the evaluation of energy demands. Specifically, the energy demands of construction equipment and vehicles associated with residual plume management would be greater under the Source Control-Upgradient Barrier Wall and GWE Trench Source and Control-Horizontal GWE Well alternatives, while the energy demands under the Source Control-GWP alternative associated with residual plume management are expected to be lower because Source Control-GWP would not require any significant construction activity. Additionally, energy would be required for the operation of the extraction systems and transfer pumps under the Source Control-Upgradient Barrier Wall and GWE Trench Source and Control-Horizontal GWE Well alternatives; there is no operational energy required under the Source Control-GWP because it would rely only on natural physical and geochemical processes.

Traffic and noise impacts associated with residual plume management are expected to be higher under the Source Control-Upgradient Barrier Wall and GWE Trench Source and Control-Horizontal GWE Well alternatives than the Source Control-GWP alternative, due to the construction activities required to construct the barrier wall and the extraction trench system under the Source Control-Upgradient Barrier Wall alternative, and construction activities related to installation of the horizontal well under the Source Control-Horizontal GWE Well alternative, respectively. Traffic may increase temporarily around the Site under the Source Control-Upgradient Barrier Wall and GWE Trench and Source Control-Horizontal GWE Well alternatives due to the daily arrival and departure of the workforce, equipment mobilization/ demobilization, and material deliveries. However, these impacts would be expected to largely occur at the beginning or end of each workday (for the arrival/departure of the work force), at the beginning or end of the construction period (for equipment mobilization/demobilization), and at specific times throughout the construction period (for material deliveries). Traffic and noise impacts associated with residual plume management from the Source Control-GWP alternative is expected to be significantly less than those associated with the Source Control-Upgradient Barrier Wall and GWE Trench Source and Control-Horizontal GWE Well alternative.

Construction activities can negatively impact natural resources and habitats near the Site, as well as scenic, historical, and recreational value. Based on a review of the IDNR Historic Preservation Division database and the Illinois State Archaeological Survey database, there are no historic sites located within 1,000 m of AP2 (Ramboll, 2021a). There would be no impacts under the Source Control-GWP alternative because no additional construction activities would occur after implementation of source control. However, the Source Control-Upgradient Barrier Wall and GWE Trench Source alternative would require construction of a

barrier wall, an extraction trench, and an on-Site settling pond. The Source Control-Horizontal GWE Well alternative would require installation of a horizontal well and an on-Site settling pond. These impacts would include disturbance of some existing habitats atop portions of the construction areas, and habitat in the immediate vicinity of these locations by causing alarm and escape behavior in nearby wildlife (*e.g.*, due to noise disturbances). It is also possible that limited negative short-term impacts could occur to sensitive aquatic and wetland species in Coffeen Lake and other wetlands or surface water bodies located within the SFWA near AP2 (see Section 1.1.3) due to sediment runoff during construction required in any residual plume management.

2.2.6 Time Until Groundwater Protection Standards Are Achieved/Attain the Groundwater Protection Standards Specified in Section 845.600 (IAC Section 845.670(e)(1)(E)/IAC Section 845.680(d)(2))

This section of the report evaluates the time required to achieve GWPSs, pursuant to requirements under IAC Section 845.670(e)(1)(E) (IEPA, 2021) and under IAC Section 845.680(d)(2).

AP2 is underlain by the UCU beneath the majority of the impoundment footprint. There is a groundwater flow divide within the UA in the center of the CPP property between the two lobes of Coffeen Lake. Groundwater in the UA flows from the center of the CPP property west toward Coffeen Lake and east toward the Unnamed Tributary. Groundwater near AP2 flows east and south toward a former surface water discharge flume and the Unnamed Tributary (NRT, 2017b). There is limited groundwater flow from AP2 toward the west due to a thinning or lower hydraulic conductivity of the Hagarstown Beds (NRT, 2017b). Both the discharge flume and the Unnamed Tributary intersect and cut off the Hagarstown Member in the UA, which blocks any further migration of potentially impacted groundwater (NRT, 2017a). Groundwater flow within the UA is predominantly horizontal due to the underlying low-permeability LCU (NRT, 2017b). Groundwater flow directions in the vicinity of AP2 are typically stable and do not have significant seasonal change. Groundwater elevations are controlled by the water level along the shoreline of Coffeen Lake (NRT, 2017a).

Groundwater modeling was performed in support of the Closure Plan (AECOM, 2017). The model predicted that source control would result in a reduction of CCR leachate generation and contraction of the groundwater contaminant plume, which was predicted to begin after the completion of the source control (NRT, 2017a). Additional modeling was conducted for each of the corrective action alternatives to evaluate future groundwater quality in the vicinity of AP2 as a result of residual plume management (Appendix B; Ramboll, 2025b). The results of modeling indicate that groundwater concentrations would meet the GWPSs for all of the constituents⁷ identified as having potential groundwater exceedances in approximately 135 years under the Source Control-GWP alternative after approval of the corrective action plan. Under the Source Control-Upgradient Barrier Wall and GWE Trench alternative, the time to achieve GWPSs in all monitoring wells would be approximately 59 years of post-construction O&M) after approval of the Construction Permit Application. Under the Source Control-Horizontal GWE Well alternative, the time to achieve GWPSs would be approximately 17.5 to 19.5 years after approval of the Construction Permit Application (3.5 to 5.5 years of pre-construction and construction activities followed by approximately 14 years of system operation until the GWPSs are achieved). For the Source Control-Horizontal GWE Well

⁷ Sulfate was selected as a surrogate for the contaminant fate and transport simulations to evaluate the effectiveness of each of the corrective action alternative. Sulfate was detected in AP2 groundwater at the highest concentrations relative to its GWPS and it is expected to take the longest time to achieve GWPS. Sulfate has also been detected above the GWPS at more well locations adjacent to AP1 and AP2 than any other IAC Section 845.600 parameter which contributed to its selection for modeling at both units. Modeling all constituents that exceed GWPS or have been detected at lower concentrations relative to their GWPSs is unnecessary, as these constituents will likely more quickly achieve their GWPSs (Ramboll, 2025b).

alternative, current modeling indicates that an additional 25 years of system operation may be required to prevent concentrations from rebounding above the GWPSs (Appendix B; Ramboll, 2025a); however, additional modeling would be performed and additional data would be collected as part of the Corrective Action Groundwater Monitoring Plan to evaluate and assess the exact required duration of additional system operation. The timeframe for achieving GWPS under the Source Control-Horizontal GWE Well is, thus, predicted to be shorter than the timeframe for the other two alternatives (Table 2.6).
	•		Timeframe		
Implementation Phase	Implementation Task	Source Control-GWP ^a	Source Control- Upgradient Barrier Wall and GWE Trench ^b	Source Control- Horizontal GWE Well ^b	
	Agency Coordination, Approvals, and Permitting		18 to 24 months	12 to 18 months	
1: Pre-Construction	Final Design and Bid Process	NA	24 to 36 months	24 to 36 months	
	Total Timeframe to Complete Pre- Construction Activities	42 to 60 (3.5 to	42 to 60 months (3.5 to 5 years)	36 to 54 months (3 to 4.5 years)	
	Corrective Action Construction		6 to 12 months	6 to 12 months	
2: Corrective Action Construction	Total Timeframe to Complete Corrective Action Construction	NA	6 to 12 months	6 to 12 months	
	Corrective Action Operation (Time to Meet GWPS)	1,620 months (135 years)	708 months (59 years)	168 months (14 years)	
3. Corrective	Potential Additional Corrective Action Operation (After GWPS have been Achiever)	NA	NA	300 months (25 years) ^c	
3: Corrective Action O&M and Closeout	Corrective Action Confirmation Monitoring	36 months	36 months	36 months	
	Corrective Action Completion Reporting	6 months	6 months	6 months	
	Total Timeframe to Complete Corrective Action O&M and Closeout	Over 100 years	750 months (63 years)	510 months (43 years)	
Total Timeline to Complete Corrective Action (all phases)		Over 100 years	798 to 822 months (67 to 69 years)	552 to 576 months (46 to 48 years)	

Table 2.6 Estimated Timeline and Implementation Schedule Under Each Corrective Action Alternative

Notes:

Source Control-GWP = Source Control with Groundwater Polishing; Source Control-Horizontal GWE Well = Source Control with a Horizontal Groundwater Extraction Well; Source Control-Upgradient Barrer Wall and GWE Trench = Source Control with an Upgradient Barrier Wall and Groundwater Extraction Trench.

(a) All timelines are assumed to occur after approval of the Corrective Action Plan.

(b) All timelines are assumed to occur after approval of the Construction Permit Application.

Source: Appendix B; Ramboll, 2025a.(c) For the Source Control-Horizontal GWE Well alternative, current modeling indicates that an additional 25 years of system operation may be required to prevent concentrations from rebounding above the GWPSs (Appendix B; Ramboll, 2025a); however, additional modeling would be performed and data would be collected as part of the Corrective Action Groundwater Monitoring Plan to evaluate and assess the exact required duration of additional system operation.

2.2.7 Potential for Exposure of Humans and Environmental Receptors to Remaining Wastes, Considering the Potential Threat to Human Health and the Environment Associated with Excavation, Transportation, Re-disposal, Containment, or Changes in Groundwater Flow (IAC Section 845.670(e)(1)(F))

Section 2.2.1 describes the magnitude of reduction of existing risks under each corrective action alternative. Section 2.2.2 describes the effectiveness of the remedy in controlling the source, including the extent to which containment practices would reduce further releases. Section 2.2.3 describes the likelihood of future releases of CCR occurring under each corrective action alternative, and Section 2.2.5 describes the short-term risks to workers, the community, and the environment during implementation of the remedy, including safety impacts and control of exposure to any residual contamination. In summary, source control measures (CIP) were implemented at the Site in 2020. Thus, all corrective action alternatives would essentially eliminate the potential for a sudden CCR release to occur post-closure (*e.g.*, a dike failure or flooding event) due to the absence of impounded water within the unit and all corrective action alternatives are equally and fully protective with regard to exposure to residual CCR. There are no current or future risks to any human or ecological receptors at the Site, and there would be no risk of CCR releases post-closure.

For construction workers, risks arising from potential contact with residual contamination during construction, operation, and maintenance activities associated with residual plume management would be higher for the Source Control-Upgradient Barrier Wall and GWE Trench and Source Control-Horizontal GWE Well alternatives than for the Source Control-GWP alternative. The Source Control-Upgradient Barrier Wall and GWE Trench would involve the production, management, and treatment of extracted groundwater, as well as on-Site disposal of excavated spoils generated during extraction trench construction. The Source Control-Horizontal GWE Well would involve the construction of the horizontal GWE well and production, management and treatment of extracted groundwater. The Source Control-GWP alternative would not involve exposure to any soils, surface waters or groundwater waste streams. Any potential CCR exposures occurring under Source Control-Upgradient Barrier Wall and GWE Trench and Source Control-Horizontal GWE Well during groundwater extraction and treatment would be managed through the use of rigorous safety protocols, personal protective equipment, and appropriate disposal practices.

Some changes in groundwater flow (*i.e.*, potential controlled discharge of extracted groundwater) may occur under the residual plume management for Source Control-Upgradient Barrier Wall and GWE Trench alternative, due to the operation of the GWE trench system and installation of a subsurface barrier wall in the UA. Hydrogeological changes as a result of this alternative would be lowering the groundwater table in the vicinity of the extraction trench and creating a subsurface barrier wall perpendicular to groundwater flow which would both alter flow patterns in the UA and cause changes in hydraulic gradients. Under the residual plume management for Source Control-Horizontal GWE Well alternative, a horizontal GWE well would be installed. This remedy would reduce hydraulic head beneath AP2, alter the hydraulic gradient and corresponding groundwater flow pattern. However, changes to groundwater flow would not be expected to have an effect on the potential for the exposure of humans and environmental receptors to remaining wastes for either of these alternatives.

2.2.8 Long-Term Reliability of the Engineering and Institutional Controls (IAC Section 845.670(e)(1)(G))

Source control (CIP) was implemented in 2020. Thus, long-term reliability during source control would be the same for all three corrective action alternatives (AECOM, 2017). The long-term reliability of the

engineering and institutional controls associated with residual plume management of each corrective action alternative are summarized below.

- Residual plume management under the Source Control-GWP alternative would be reliable, because it would rely on physical and geochemical processes, rather than the installation, operation, and maintenance of engineered systems or structures. Site specific evaluations have shown that chemical attenuation is feasible, and remobilization is unlikely to impact the time to achieve GWPS as groundwater returns to background conditions for sulfate. Remobilization of boron may occur at some locations and affect the time to achieve GWPS compared to sulfate (Appendix E; Geosyntec Consultants, Inc., 2025). Under this alternative, engineering failure would not occur, and no O&M activities would be required to ensure the success of the alternative (other than those required for groundwater monitoring). Active groundwater monitoring would be in place to track the remediation progress. Should the predicted decrease in groundwater concentrations not occur, the adaptive site management approach would enable prompt adjustments or enhancements to the corrective action in accordance with IAC Section 845.680(b). This strategy would allow continuous improvement of AP2 groundwater remediation in response to new Site information and/or the performance of the corrective action alternative.
- GWE trench and barrier wall are proven remedies that have been implemented at many sites. Thus, residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would be expected to be reliable provided that the barrier wall and the extraction trench are constructed in accordance with standard design and specifications. Under this alternative, the extraction trench system and settling pond would require engineering design and implementation of the barrier wall, and groundwater extraction and treatment. Routine and non-routine maintenance of the GWE trench are required to ensure reliable operation of the extraction trench and pumps, as well as other mechanical components. The barrier wall component provides an inert, continuous, low-permeability barrier to groundwater flow and is not expected to need maintenance (Appendix B; Ramboll, 2025a). Active groundwater monitoring would be in place, similar to those required under the Source Control-GWP alternative.
- Horizontal GWE well is a proven remedy that has been implemented at many sites. Thus, residual
 plume management under the Source Control-Horizontal GWE Well alternative would be reliable
 provided that the horizontal well is constructed in accordance with standard design and
 specifications. The horizontal well system is a passive drain system; however, conveyance of
 extracted groundwater to the settling pond operates as a mechanical system and would require
 routine and non-routine operation and maintenance. Active groundwater monitoring would be in
 place, similar to the Source Control-GWP alternative.
- For all corrective action alternatives, remedy optimizations would be implemented if necessary under the adaptive site management program.

2.2.9 Potential Need for Replacement of the Remedy (IAC Section 845.670(e)(1)(H))

The potential need for the eventual replacement of the residual plume management remedy under each corrective action alternative is summarized as follows:

 Source Control-GWP would rely on physical and geochemical processes to achieve reductions in groundwater concentrations to below the GWPSs. Because no installation, operation, and maintenance of engineered systems or structures would be required, it would be unlikely that the residual plume management remedy under the Source Control-GWP alternative would need to be replaced. Adaptive site management strategies would be used to implement remedy optimizations or replacement, as necessary based on data that are collected, to ensure that remedial goals are achieved.

- Source Control-Upgradient Barrier Wall and GWE Trench alternative would utilize a subsurface low-permeability barrier wall to prevent flow towards AP2; as well as an extraction trench and settling pond to extract and treat impacted groundwater to achieve reductions in groundwater concentrations to below GWPSs. The barrier wall is a robust, engineered, and maintenance-free subsurface structure and therefore physical replacement is unlikely; while the GWE Trench system would need ongoing maintenance and potential replacement of system components to ensure its effectiveness. It is unlikely that the remedy would need to be replaced, if implemented as designed. Adaptive site management strategies would be used to implement remedy optimizations or replacement, as necessary based on data that are collected, to ensure that remedial goals are achieved.
- Source Control-Horizontal GWE Well alternative would consist of installing a horizontal GWE well conveyance system to drain and convey groundwater beneath AP2. Physical replacements for this remedy are not likely. The conveyance of extracted groundwater to the settling pond would constitute a mechanical system which may require routine maintenance to reliably operate. Ongoing monitoring and maintenance of the horizontal well would be needed to retain its effectiveness. Similar to other alternatives, adaptive site management strategies would be used to implement remedy optimizations or replacement, as necessary based on data that are collected, to ensure that remedial goals are achieved.

2.3 The Ease or Difficulty of Implementing a Remedy (IAC Section 845.670 (e)(3))

2.3.1 Degree of Difficulty Associated with Constructing the Remedy (IAC Section 845.670(e)(3)(A))

Source control (CIP) was previously implemented in 2020. Thus, there would be no further construction difficulties associated with source control. The expected degree of difficulty associated with residual plume management for each of the corrective action alternatives is summarized below.

- Residual plume management under the Source Control-GWP alternative would rely on physical and geochemical attenuation processes and therefore would not pose any significant construction challenges. Therefore, there would be minimal difficulty in constructing the Source Control-GWP remedy.
- Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench would involve the construction of a barrier wall, an extraction trench, settling pond and conveyance system to extract and treat impacted groundwater to address downgradient groundwater quality impacts. The construction of the shallow groundwater trench and barrier wall required by this alternative are commonly constructed at similar depths and can be performed using specialized (*i.e.*, one-pass trenching) and conventional construction equipment (Appendix B; Ramboll, 2025a). Therefore, while some construction is necessary, the degree of difficulty is expected to be low. Groundwater monitoring would be conducted using a groundwater monitoring network designed in accordance with IAC Section 845.680(c).
- Residual plume management under the Source Control-Horizontal GWE Well would involve the installation of a horizontal well to drain water beneath AP2 to address downgradient groundwater

quality impacts. This alternative would require the use of specialty equipment such as horizontal directional drill rigs and other supporting equipment such as excavating and grading equipment that would need to be mobilized to the site. Horizontal wells are routinely constructed in similar environments, however there may be difficulties due to potential heterogeneities encountered in the subsurface at the bottom of the CCR and top of the UA interface, and would require specialized techniques/equipment to address the issue. Therefore, the degree of difficulty is expected to be moderate for the horizontal well component (Appendix B; Ramboll, 2025a). Groundwater monitoring would be conducted using a groundwater monitoring network designed in accordance with IAC Section 845.680(c).

2.3.2 Expected Operational Reliability of the Remedy (IAC Section 845.670(e)(3)(B))

Source control (CIP) was implemented in 2020. Thus, the operational reliability of the remedy would be the same for all three corrective action alternatives. All three corrective action alternatives would likely be highly reliable with respect to operational controls associated with residual plume management; specific details for each corrective action alternative are discussed below.

- Residual plume management under the Source Control-GWP alternative would have high operational reliability because it would rely on physical and geochemical processes and active monitoring, rather than the installation, operation, and maintenance of engineered systems or structures (other than monitoring wells). Under the Source Control-GWP alternative, engineering failure would not occur, and no O&M activities would be required to ensure the success of the alternative. However, it should be noted that some boron re-mobilization may occur as groundwater returns to background conditions at AP2, which may affect the time to achieve GWPSs (Appendix E; Geosyntec Consultants, Inc., 2025).
- Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would also have high operational reliability because it is an established and commonly used remedial technique, as long as the barrier wall and the extraction trench system are constructed in accordance with standard design and specifications. The barrier wall is an inert, continuous, low-permeability subsurface structure and is not expected to require maintenance after construction. The GWE trench system operates as a mechanical system and would require routine and non-routine maintenance ensure reliable operation.
- Residual plume management under the Source Control-Horizontal GWE Well alternative would also have high operational reliability if the horizontal well and conveyance system are constructed in accordance with standard design and specifications. The horizontal well system is a passive drain system; however, conveyance of extracted groundwater to the settling pond would operate as a mechanical system and require operation and routine/non-routine maintenance to ensure reliable operation.

2.3.3 Need to Coordinate with and Obtain Necessary Approvals and Permits from Other Agencies (IAC Section 845.670(e)(3)(C))

All three corrective action alternatives would require regulatory approvals. Specific permits and approvals associated with source control were the same for all corrective action alternatives and were discussed in the Closure Plan (AECOM, 2017). The specific approvals and permits associated with residual plume management for each corrective action alternatives are discussed below.

- Residual plume management under the Source Control-GWP alternative would not need additional permits from other agencies, other than the approval of the eventual Corrective Action Plan.
- Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would require approvals and permits. Groundwater discharge from the extraction trench would require a modified NPDES permit, which would likely require renewals depending on the timeline of corrective action implementation. In addition, permits from IEPA for construction stormwater controls, BMPs, and operating would be required. An IDNR Dam Safety modification permit would be obtained for modifications of the embankment. These permits and plans typically take 18-24 months to obtain (Appendix B; Ramboll, 2025a).
- Residual plume management under the Source Control-Horizontal GWE Well alternative would require approvals and permits. Modifications would be necessary to the Site's NPDES permit to allow for discharge of groundwater from the horizontal well. In addition, permits from IEPA for construction stormwater controls and BMPs would be required. These permits and plans typically take 18 to 24 months to obtain (Appendix B; Ramboll, 2025a).

2.3.4 Availability of Necessary Equipment and Specialists (IAC Sections 845.670(e)(3)(D) and 845.660(c)(1), "Ease of Implementation")

Source control (CIP) was implemented in 2020. Thus, there are no further equipment and specialist needs associated with the implementation of the source control remedy. Specialized equipment and personnel are essential for field data collection and groundwater sampling for residual plume management under all three potential corrective action alternatives. Additionally, the assessment of groundwater concentrations for Site constituents would necessitate laboratory equipment and specialists for all three alternatives. The availability of equipment and specialists associated with residual plume management for each corrective action alternative is summarized below.

- Residual plume management under the Source Control-GWP alternative would require groundwater professionals, such as geologists, hydrogeologists, statisticians (*i.e.*, statistical analysis), and geochemists to evaluate all monitoring data, ensuring that physical and geochemical processes function as anticipated for this alternative. The equipment and specialists needed for Site groundwater monitoring and analysis are currently engaged in these tasks as part of the routine groundwater monitoring program outlined in accordance with IAC Section 845.220(c)(4).
- Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would require specialists to construct the barrier wall and the GWE trench system and to manage the GWE Trench system throughout its operational period.
 - Construction of the groundwater extraction system and the barrier wall on the Site is expected to require a specialized contractor. The contractor would most likely need specialized and often custom-built equipment including one-pass construction equipment. The availability of contractors with such equipment may be limited.
 - Specialists including design engineers, geotechnical experts, construction managers and contractor staff experienced in trench construction and similar geologic environments would be required as well.
 - Geotechnical specialists would be required to design the working platform and oversee the AP2 embankment, monitoring for any signs of distress during the one-pass trench installation.
 - In addition, specialists and equipment may have backlogs due to high demand in similar specialty ground improvement projects in the area, which could delay the project schedule.

- After the construction phase, specialists and equipment would be required during the operation of the GWE system. Routine maintenance would include inspection of system components such as totalizers, instrumentation, and the extraction and transfer pumps. Non-routine maintenance such as flushing or jetting of the conveyance lines, replacement of faulty system components, replacement of pumps or pump controllers, and replacement of faulty system instrumentation would also be necessary. Specialists and replacement equipment needed to operate the system would be generally available to the Site, although some of the more complex equipment (*i.e.*, transfer pumps and transfer pump controller) may have extended lead times for servicing.
- This alternative would also necessitate the use of equipment and the expertise of specialists for tasks such as field data collection, groundwater sampling, analysis, and periodic corrective action groundwater monitoring and reporting. Similar to those in the GWP alternative, these activities are already being conducted as part of routine groundwater monitoring in accordance with IAC Section 845.220(c)(4).
- Residual plume management under the Source Control-Horizontal GWE Well alternative would require specialists for horizontal well installation and maintenance.
 - Construction of the horizontal well would require design engineers, geologists, construction managers, and contractor staff experienced with horizontal well construction and specialized equipment operation.
 - Contractors would be required during the operation of the system including replacement of components and periodic well re-development (*i.e.*, flushing or jetting of conveyance lines). Specialists and equipment needed for O&M are generally available within close proximity to the Site with the exception of more complex system components, such as transfer pumps and transfer pump controller.
 - As with the other two alternatives, this alternative would necessitate the use of equipment and the expertise of specialists for tasks such as field data collection, groundwater sampling, analysis, and periodic corrective action groundwater monitoring and reporting. These activities are already being conducted as part of routine groundwater monitoring in accordance with IAC Section 845.220(c)(4).

2.3.5 Available Capacity and Location of Needed Treatment, Storage, and Disposal Services (IAC Section 845.670(e)(3)(D))/Comply with Standards for Management of Wastes as Specified in Section 845.680(d) (IAC Section 845.670(e)(3)(D)/IAC Section 845.670(d)(5))

The available capacity and location of needed treatment, storage, and disposal services associated with residual plume management under each corrective action alternative is summarized below. All the practices employed in each alternative would comply with standards for the management of wastes as specified in IAC Section 845.670(e)(3)(D) and IAC Section 845.680(d)(5).

 Residual plume management for the Source Control-GWP remedy would not require any treatment, storage, or disposal services, because GWP is not anticipated to produce a substantial amount of waste or wastewater, aside from minor purge water volumes generated during routine groundwater sampling activities for residual plume management. This could be managed by a standard waste management contractor.

- Residual plume management for the Source Control-Upgradient Barrier Wall and GWE Trench alternative would require the construction of the extraction of the barrier wall, the extraction trench system, and a new settling pond on-Site:
 - The waste materials (*i.e.*, spoils) generated from barrier wall and extraction trench would be disposed of in the on-Site landfill.
 - The extraction trench system would send extracted groundwater to the newly constructed settling pond, which would settle solids removed during groundwater recovery *via* the pneumatic extraction pumps and transfer piping. The settling pond would need to be sited, designed, constructed, and maintained properly. The siting of the settling pond would need to consider limiting impacts to existing and future Site infrastructure and other surface impoundments at CPP.
 - Discharge from the settling pond would be conveyed to an NPDES permitted outfall. Renewal of the NPDES permits may be necessary to continue operations, depending on the timeline of the corrective action implementation in relation to the source control completion.
- Residual plume management for the Source Control-Horizontal GWE Well alternative would require installation of a horizontal well and extracted groundwater conveyance system.
 - The horizontal well system would send extracted groundwater to a newly constructed on-Site settling pond to settle solids extracted during groundwater recovery. The settling pond would need to be sited, designed, constructed, and maintained properly. The siting of the settling pond would need to consider limiting impacts to existing and future Site infrastructure and other surface impoundments at CPP. Flows from the horizontal GWE wells would be discharged through an NPDES permitted outfall. Depending on the timeline of the corrective action, NPDES permit renewals may be required.

2.4 The Degree to Which Community Concerns Are Addressed by the Remedy (IAC Section 845.670(e)(4))

Several nonprofits raised concerns regarding the potential impacts of AP2 on groundwater and surface water quality including Earthjustice, the Prairie Rivers Network, and the Sierra Club (Earthjustice *et al.*, 2018; Lydersen, 2017; Sierra Club and CIHCA, 2014). The combination of source control (*i.e.*, CIP) and residual plume management would cause groundwater concentrations to decline over time under all of the corrective action alternatives, as suggested by the groundwater modeling (NRT, 2017a).

A public meeting will be held on May 1, 2025, pursuant to requirements under IAC Section 845.710(e). Questions raised by attendees will be answered at the meeting; subsequently, a written summary of all questions and responses will be made available to interested parties.

2.5 Remove from the Environment as Much of the Contaminated Material that Was Released from the CCR Surface Impoundment as Is Feasible, Taking into Account Factors such as Avoiding Inappropriate Disturbance of Sensitive Ecosystems (IAC Section 845.670(d)(4))

There have been no documented releases of CCR from the unit (Ramboll, 2025). All three potential corrective action alternatives include source control and would have residual plume management efforts. Source Control for AP2 included CIP with the installation of a low-permeability final geomembrane cover

system designed to limit the infiltration of precipitation into the impounded CCR. Groundwater modeling was performed in support of the Closure Plan (AECOM, 2017), and concluded that this source control approach would result in a reduction of CCR leachate production, a decrease in CCR leachate constituent concentrations, and a contraction of the groundwater contaminant plume (NRT, 2017a). Therefore, source control will prevent further releases from AP2 into the environment and remove from the environment as much CCR and impacted material as is feasible.

Moreover, residual plume management under each corrective action alternative will further result in the removal of contaminated material from the environment and/or the improvement of downgradient groundwater quality. Groundwater modeling has predicted that GWPSs would be achieved in all monitoring wells after remedy implementation in approximately 135 years under the Source Control-GWP alternative, approximately 63 to 65 years (4 to 6 years of pre-construction and construction activities followed by 59 years of post-construction) under the Source Control-Upgradient Barrier Wall and GWE Trench alternative, and approximately 17.5 to 19.5 years (3.5 to 5.5 years of pre-construction and construction and construction activities followed by approximately 14 years of system operation until the GWPSs are achieved) under the Source Control-Horizontal GWE Well alternative. Under the Source Control-Horizontal GWE Well alternative, current modeling indicates that an additional 25 years of system operation may be required to prevent concentrations from rebounding above the GWPSs (see Section 2.2.6; Appendix B; Ramboll, 2025b); however, additional modeling would be performed and additional data would be collected as part of the Corrective Action Groundwater Monitoring Plan to evaluate and assess the exact required duration of additional system operation. Specific considerations for residual plume management for each alternative are provided below.

- Residual plume management under the Source Control-GWP alternative would address impacted groundwater by relying on natural physical and geochemical attenuation processes to reduce the residual concentrations of CCR. Site-specific evaluation demonstrated conditions are favorable for the attenuation of inorganic contaminants *via* adsorption. Attenuation *via* sorption onto mineral surfaces should remain stable under post-closure conditions, and remobilization is unlikely to impact the time to achieve GWPS for sulfate. Remobilization of boron may occur at some locations and affect the time to achieve GWPS compared to sulfate (Appendix E; Geosyntec Consultants, Inc., 2025). In cases in which observed groundwater concentrations deviate significantly from modeled conditions, alternative methods or techniques would be evaluated under the adaptive site management, and if viable, incorporated as per IAC Section 845.680(b). No ecosystems would be disturbed, because no construction activities would be expected under the Source Control-GWP alternative.
- Residual plume management under the Source Control-Upgradient Barrier Wall and GWE Trench alternative would rely on the barrier wall to limit groundwater from flowing towards AP2 and to reduce the amount of groundwater that needs to be extracted from the trench. The GWE trench would collect impacted groundwater and reduce hydraulic head beneath AP2, to reduce or prevent migration of impacted groundwater. Groundwater quality would also be improved as a result of physical and geochemical attenuation processes. This approach would reduce groundwater flow toward AP2 by the barrier wall and remove constituent mass in groundwater through operation of the extraction trench. The construction activities would likely result in some negative impacts to the ecosystem, including disturbances of some existing habitats atop portions of the construction areas, and habitats in the immediate vicinity of these locations by causing alarm and escape behavior in nearby wildlife (*e.g.*, due to noise disturbances). Short-term impacts could also occur to sensitive aquatic and wetland species in Coffeen Lake and other wetlands or surface water bodies located within the SFWA near AP2 (see Section 1.1.3) due to potential sediment runoff during construction at the Site.

Residual plume management under the Source Control-Horizontal GWE Well alternative would rely on installation of a horizontal extraction well to drain water from beneath AP2, thus reducing the hydraulic head beneath AP2 and accelerating the time to achieve the GWPSs. The horizontal well would drain water from AP2 to reduce or prevent migration of impacted groundwater. Groundwater quality would also be improved as a result of physical and geochemical attenuation processes. The construction activities would likely result in some negative impacts to the ecosystem, and habitats in the immediate vicinity of these locations by causing alarm and escape behavior in nearby wildlife (*e.g.*, due to noise disturbances). Short-term impacts could also occur to sensitive aquatic and wetland species in Coffeen Lake and other wetlands or surface water bodies located within the SFWA near AP2 (see Section 1.1.3) due to sediment runoff during construction at the Site. Stormwater BMPs and turbidity curtains downstream of the weir would be installed to mitigate potential effects on Coffeen Lake.

2.6 Summary

This CAAA evaluates three corrective action alternatives identified as potentially viable in the CMA with regard to each of the factors specified in IAC Section 845.670(d) and 845.670(e) (IEPA, 2021). Based on this evaluation, the most appropriate corrective action for this Site is the Source Control-Horizontal GWE Well alternative. The timeframe for achieving GWPSs is expected to be shorter under the Source Control-Horizontal GWE Well alternative (approximately 17.5 to 19.5 years after approval of the Construction Permit Application) than under the Source Control-GWP alternative (over 100 years after approval of the Corrective Action Plan) and Source Control-Upgradient Barrier Wall and GWE Trench (approximately 63 to 65 years after approval of the Construction Permit Application). Additionally, risks to worker safety and the community under the Source Control-Horizontal GWE Well alternative are lower compared to the Source Control-Upgradient Barrier Wall and GWE Trench alternative are lower control-Horizontal GWE Well is the most appropriate corrective action alternative. Thus, Source Control-Horizontal GWE Well is the most appropriate corrective action alternative for AP2.

References

AECOM. 2017. "Closure and Post-Closure Care Plan for Ash Pond No. 2 at Illinois Power Generating Company, Coffeen Power Station, 1134 Cips Lane, Coffeen, IL 62107 (Final)." Report to Illinois Power Generating Co., Coffeen, IL. 1173p., January.

Burns & McDonnell. 2021. "Initial Operating Permit, Coffeen Ash Pond 2." Report to Illinois Power Generating Co., Collinsville, IL. Submitted to Illinois Environmental Protection Agency (IEPA). 1301p., October 25.

Buscher, WE. [Illinois Environmental Protection Agency (IEPA)]. 2018. "Letter to R. Diericx (Illinois Power Generating Co.) [re: Approval of Closure and Post-Closure Care Plan for the Coffeen Ash Pond No. 2 and GMZ plan application]." 1p., January 30.

Earthjustice; Prairie Rivers Network; Environmental Integrity Project (EIP); Sierra Club. 2018. "Cap and Run: Toxic Coal Ash Left Behind by Big Polluters Threatens Illinois Water." 45p.

Geosyntec Consultants, Inc. 2025. "Groundwater Polishing Evaluation Report, Coffeen Power Plant - Ash Pond No. 2 Unit (IEPA ID No. W1350150004-02 (Draft)." Report to Illinois Power Generating Co. (Collinsville, IL).

Gradient. 2025. "Human Health and Ecological Risk Assessment, Ash Pond 2, Coffeen Power Plant, Coffeen, Illinois." 43p.

Hesterberg, TW; Valberg, PA; Long, CM; Bunn, WB III; Lapin, C. 2009. "Laboratory studies of diesel exhaust health effects: Implications for near-roadway exposures." *EM Mag.* (August):12-16. Accessed at http://pubs.awma.org/gsearch/em/2009/8/hesterberg.pdf.

Illinois Dept. of Natural Resources (IDNR). 2014. "Coffeen Lake State Fish & Wildlife Area." 2p.

Illinois Environmental Protection Agency (IEPA). 2007. "Greenville Old Lake and Coffeen Lake Watersheds." IEPA/BOW/07-014, 155p., August.

Illinois Environmental Protection Agency (IEPA). 2019. "Appendix A-1. Illinois' 2018 303(d) List and Prioritization." In "Illinois Integrated Water Quality Report and Section 303(d) List, 2018 (Final as submitted to US EPA Region V on February 22, 2021)." 40p., May 20. Accessed at https://www2.illinois.gov/epa/topics/water-quality/watershed-management/tmdls/Documents/Appendix% 20A-1_303d_by_priority_FINAL_5-20-19.pdf.

Illinois Environmental Protection Agency (IEPA). 2021. "Standards for the disposal of coal combustion residuals in surface impoundments." Accessed at https://www.ilga.gov/commission/jcar/admincode/ 035/03500845sections.html.

Illinois Environmental Protection Agency (IEPA). 2023. "Draft Reissued NPDES Permit to Discharge into Waters of the State, Coffeen Power Station, Coffeen, Illinois." Submitted to Coffeen Power Station, Coffeen, IL. NPDES Permit No. IL0000108. 23p., September 14.

Illinois State Geological Survey (ISGS); University of Illinois at Urbana-Champaign. 2011. "Directory of Coal Mines in Illinois 7.5-Minute Quadrangle Series, Coffeen Quadrangle, Montgomery & Bond Counties." Report to Illinois Mine Subsidence Insurance Fund. 20p.

Lydersen, K. 2017. "Citizens fill void in oversight of potentially hazardous Illinois coal ash impoundments." *Energy News Network*. January 20. Accessed at https://energynews.us/2017/01/20/ citizens-fill-void-in-oversight-of-potentially-hazardous-illinois-coal-ash-impoundments/.

Mauderly, JL; Garshick, E. 2009. "Diesel exhaust." In *Environmental Toxicants: Human Exposures and Their Health Effects (Third Edition)*. (Ed.: Lippmann, M), John Wiley & Sons, Inc., Hoboken, NJ. p551-631.

National Research Council. 2013. "Alternatives for Managing the Nation's Complex Contaminated Groundwater Sites." Division of Earth and Life Sciences, Water Science and Technology Board, Committee on Future Options for Management in the Nation's Subsurface Remediation Effort. National Academies Press, Washington, DC. Accessed at http://www.nap.edu/catalog.php?record_id=14668.

Natural Resource Technology, Inc (NRT). 2017a. "Groundwater Modeling Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois (Final)." Report to Illinois Power Generating Co., Coffeen, IL. 63p., January 24.

Natural Resource Technology, Inc (NRT). 2017b. Letter to R. Diericx (Dynegy Operating Co.) re: Responses to IEPA comments - Coffeen Station Inactive Ash Pond No. 2, Closure and Post-Closure Care Plan for the Coffeen Ash Pond No. 2, NRT Project No. 2380. 24p., November 21.

Ramboll. 2020. "Corrective Measures Assessment, Revision 1, Coffeen Ash Pond No. 2, Cofeen [*sic*] Power Station, 134 Cips Lane, Coffeen, Illinois." Report to Illinois Power Generating Co. 82p., November 30.

Ramboll. 2021a. "Hydrogeologic Site Characterization Report, Ash Pond No. 1, Coffeen Power Plant, Coffeen, Illinois (Final)." Report to Illinois Power Generating Co. 700p., October 25.

Ramboll. 2021b. "Groundwater Monitoring Plan Addendum for Ash Pond No. 2, Coffeen Power Plant, Coffeen, IL." Report to Illinois Power Generating Co., Coffeen, IL. 219p., October 25.

Ramboll. 2024a. "35 I.A.C. § 845 Corrective Measures Assessment, Ash Pond No. 2, Coffeen Power Plant, Coffeen, Illinois, IEPA ID: W135015004-02 (Final)." Report to Illinois Power Generating Co.. 28p.

Ramboll. 2024b. "Nature and Extent Report, Coffeen Power Plant, Ash Pond No. 2, IEPA ID No. W1350150004-02." Report to Illinois Power Generating Co., Coffeen, IL. 386p., June 12.

Ramboll. 2025a. "Corrective Action Alternatives Analysis Supporting Information Report: Ash Pond No. 2, Coffeen Power Plant, IEPA ID No. W1350150004-02 (Final Draft)." Report to Illinois Power Generating Co. (Coffeen, IL).

Ramboll. 2025b. "Groundwater Modeling Technical Memorandum, Coffeen Power Plant, Ash Pond No. 2, IEPA ID No. W1350150004-02 (Draft)." Report to Illinois Power Generating Co., Coffeen, IL.

Sierra Club. 2021. "Sierra Club statement on Joppa closure and settlement agreement with Vistra Energy." April 7. Accessed at https://www.sierraclub.org/press-releases/2021/09/sierra-club-statement-joppa-closure-and-settlement-agreement-vistra-energy.

Sierra Club; Central Illinois Healthy Community Alliance (CIHCA). 2014. "Dynegy's Toxic Assets: Legacy Coal Pollution in the Heartland." 17p.

US Dept. of Labor (US DOL). 2020a. "Fatal occupational injuries, total hours worked, and rates of fatal occupational injuries by selected worker characteristics, occupations, and industries, civilian workers, 2019." Bureau of Labor Statistics, December. Accessed at https://www.bls.gov/iif/oshwc/cfoi/cfoi_rates_2019hb.xlsx.

US Dept. of Labor (US DOL). 2020b. "Table R100. Incidence rates for nonfatal occupational injuries and illnesses involving days away from work per 10,000 full-time workers by occupation and selected events or exposures leading to injury or illness, private industry, 2019." Bureau of Labor Statistics, October. Accessed at https://www.bls.gov/iif/oshwc/osh/case/cd_r100_2019.xlsx.

US Dept. of Transportation (US DOT). 2023. "Large Truck and Bus Crash Facts 2021." Federal Motor Carrier Safety Administration, Analysis Division, FMCSA-RRA-23-002, 118p., November.

US EPA. 2014. "Human and Ecological Risk Assessment of Coal Combustion Residuals (Final)." Office of Solid Waste and Emergency Response (OSWER), Office of Resource Conservation and Recovery. Submitted to US EPA Docket. EPA-HQ-OLEM-2020-0107-0885. 1237p., December. Accessed at http://www.regulations.gov/#!documentDetail;D=EPA-HQ-RCRA-2009-0640-11993.

US EPA. 2015a. "Hazardous and solid waste management system; Disposal of coal combustion residuals from electric utilities (Final rule)." *Fed. Reg.* 80(74):21302-21501. 40 CFR 257, 40 CFR 261, April 17.

US EPA. 2015b. "Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites." Office of Solid Waste and Emergency Response (OSWER). OSWER Directive 9283.1-36, 83p., August.

US EPA. 2022. "Coffeen, Illinois, Watershed: Rocky Fork Lakes-East Fork Shoal Creek (071402030305)." Accessed at https://mywaterway.epa.gov/community/coffeen/overview.

Appendix A

Human Health and Ecological Risk Assessment

Human Health and Ecological Risk Assessment Ash Pond 2 Coffeen Power Plant Coffeen, Illinois

March 28, 2025

One Beacon Street, 17th Floor Boston, MA 02108 617-395-5000

Table of Contents

1	Introd	uction .			1
2	Site Ov 2.1 2.2 2.3 2.4 2.5	verview Site De Geolog Conce Groun Surfac	escription gy/Hydro ptual Site dwater M e Water M	geology Model Ionitoring Monitoring	
3	Risk Ev	valuatio	n		9
	3.1	Risk Ev	aluation	Process	9
	3.2	Humai	n and Eco	logical Conceptual Exposure Models	
		3.2.1	Human	Conceptual Exposure Model	
			3.2.1.1	Groundwater or Surface Water as a Drinking V	Water/Irrigation
				Source	11
			3.2.1.2	Recreational Exposures	16
		3.2.2	Ecologic	al Conceptual Exposure Model	16
	3.3	Identif	ication of	^f Constituents of Interest	17
		3.3.1	Human	Health Constituents of Interest	17
		3.3.2	Ecologic	al Constituents of Interest	19
		3.3.3	Surface	Water and Sediment Modeling	21
	3.4	Humai	n Health F	Risk Evaluation	23
		3.4.1	Recreate	ors Exposed to Surface Water	23
		3.4.2	Recreate	ors Exposed to Sediment	
	3.5	Ecolog	ical Risk I	valuation	
		3.5.1	Ecologic	al Receptors Exposed to Surface Water	
		3.5.2	Ecologic	al Receptors Exposed to Sediment	
		3.5.3	Ecologic	al Receptors Exposed to Bioaccumulative Constitu	lents of Interest
	2.6				
	3.6	Uncert	tainties ai	nd Conservatisms	
4	Summ	ary and	Conclusi	ons	32
Refere	nces				
Appen	dix A		Surface	Water and Sediment Modeling	
Appen	dix B		Screenir	ng Benchmarks	

List of Tables

- Table 2.1 Groundwater Monitoring Wells Related to Coffeen Ash Pond 2
- Table 2.2Groundwater Data Summary (2018-2023)
- Table 2.3 Surface Water Data Summary
- Table 3.1 Human Health Constituents of Interest
- Table 3.2 Ecological Constituents of Interest
- Table 3.3 Groundwater and Surface Water Properties Used in Modeling
- Table 3.4 Sediment Properties Used in Modeling
- Table 3.5 Surface Water and Sediment Modeling Results
- Table 3.6
 Risk Evaluation for Recreators Exposed to Surface Water
- Table 3.7
 Risk Evaluation for Recreators Exposed to Sediment
- Table 3.8
 Risk Evaluation for Ecological Receptors Exposed to Surface Water
- Table 3.9
 Risk Evaluation for Ecological Receptors Exposed to Sediment

List of Figures

- Figure 2.1 Site Location Map
- Figure 2.2 Monitoring Well Locations
- Figure 2.3 Surface Water Sampling Locations
- Figure 3.1 Overview of Risk Evaluation Methodology
- Figure 3.2 Human Conceptual Exposure Model
- Figure 3.3 Water Wells Within 1,000 Meters of AP2
- Figure 3.4 Historic Property Use in the Vicinity of Well 32
- Figure 3.5 Ecological Conceptual Exposure Model

Abbreviations

Acceptable Daily Intake
Ash Pond 2
Bioconcentration Factor
Biota Concentration Guide
Corrective Action Alternatives Analysis
Coffeen Power Plant
Coal Combustion Residuals
Conceptual Exposure Model
Constituent of Interest
Constituent of Potential Concern
Cancer Slope Factor
Conceptual Site Model
Ecological Screening Value
Gypsum Management Facility
Groundwater Protection Standard
Groundwater Quality Standards
Human Threshold Criteria
Illinois Department of Natural Resources
Illinois Environmental Protection Agency
Illinois Water and Related Wells
Illinois Power Generating Company
Illinois State Geological Survey
Lower Confining Unit
Maximum Contaminant Level
Natural Resource Technology
National Recommended Water Quality Criteria
Oak Ridge National Laboratory Risk Assessment Information System
PicoCuries Per Liter
Preliminary Remediation Goal
Reference Dose
Reasonable Maximum Exposure
Regional Screening Level
Surface Impoundment
Surface Water Quality Criteria
Uppermost Aquifer
Upper Confining Unit
United States Department of Agriculture
United States Department of Energy
United States Environmental Protection Agency
United States Geological Survey

1 Introduction

Illinois Power Generating Company's (IPGC) Coffeen Power Plant (CPP, or "the Site") is an electric power generating facility with coal-fired units located approximately two miles south of the City of Coffeen, Illinois. The CPP operated as a coal-fired power plant from 1964 until November 2019 and has five coal combustion residuals (CCR) management units (Ramboll, 2021). The CCR unit that is the subject of this report is Ash Pond 2 (AP2), (Illinois Environmental Protection Agency [IEPA] ID No. W1350150004-02), a 60-acre, unlined surface impoundment (SI) that was used to manage CCR and non-CCR waste streams at the CPP (Ramboll, 2021).

This report presents the results of an evaluation that characterizes potential risk to human and ecological receptors that may be exposed to CCR constituents in environmental media originating from AP2. This risk evaluation was performed to support the Corrective Action Alternative Analysis (CAAA) for AP2 in accordance with requirements in Title 35 Part 845 of the Illinois Administrative Code (IEPA, 2021a). Human and ecological risks were evaluated for Site-specific constituents of interest (COIs). The conceptual site model (CSM) assumed that Site-related COIs in groundwater may migrate to the adjacent Coffeen Lake and affect surface water and sediment in the vicinity of the Site.

Consistent with United States Environmental Protection Agency (US EPA) guidance (US EPA, 1989), this report used a tiered approach to evaluate potential risks, which included the following steps:

- 1. Identify complete exposure pathways and develop a conceptual exposure model (CEM).
- Identify Site-related COIs: Constituents detected in groundwater were considered COIs if their maximum detected concentration over the period from 2015 to 2021 exceeded a groundwater protection standard (GWPS) identified in Part 845.600 (IEPA, 2021a), or a relevant surface water quality standard (IEPA, 2019; US EPA Region IV, 2018).
- 3. Perform screening-level risk analysis: Compare maximum measured or modeled COI concentrations in surface water and sediment to conservative, health-protective benchmarks to determine constituents of potential concern (COPCs).
- 4. Perform refined risk analysis: If COPCs are identified, perform a refined analysis to evaluate potential risks associated with the COPCs.
- 5. Formulate risk conclusions and discuss any associated uncertainties.

This assessment relies on a conservative (*i.e.*, health-protective) approach and is consistent with the risk approaches outlined in US EPA guidance. Specifically, we considered evaluation criteria detailed in IEPA guidance documents (*e.g.*, IEPA, 2013, 2019), incorporating principles and assumptions consistent with the Federal CCR Rule (US EPA, 2015a) and US EPA's "Human and Ecological Risk Assessment of Coal Combustion Residuals" (US EPA, 2014).

US EPA has established acceptable risk metrics. Risks above these US EPA-defined metrics are termed potentially "unacceptable risks." Based on the evaluation presented in this report, no unacceptable risks to human or ecological receptors resulting from CCR exposures associated with AP2 were identified. This means that the risks from the site are likely indistinguishable from normal background risks. Specific risk assessment results include the following:

- No completed exposure pathways were identified for any groundwater receptors; consequently, no risks were identified relating to the use of groundwater.
- No unacceptable risks were identified for recreators boating in Coffeen Lake adjacent to the Site.
- No unacceptable risks were identified for recreators exposed to sediment in Coffeen Lake adjacent to the Site.
- No unacceptable risks were identified for anglers consuming locally caught fish.
- No unacceptable risks were identified for ecological receptors exposed to surface water or sediment.
- No bioaccumulative ecological risks were identified.

It should be noted that this evaluation incorporates a number of conservative assumptions that tend to overestimate exposure and risk. Moreover, it should be noted that because current conditions do not present a risk to human health or the environment, there will also be no unacceptable risk to human health or the environment for future conditions because AP2 was already closed in 2020. For all future closure scenarios, potential releases of CCR-related constituents will decline over time and, consequently, potential exposures to CCR-related constituents in the environment will also decline.

2 Site Overview

2.1 Site Description

The CPP is located in Montgomery County, Illinois, approximately 2 miles south of the City of Coffeen and about 8 miles southeast of the City of Hillsboro, Illinois. Five CCR units are present on the CPP property, including Ash Pond 1, AP2, Gypsum Management Facility (GMF) Recycle Pond, GMF Gypsum Stack Pond, and the Landfill (Ramboll, 2021). AP2, the subject of this report, is an unlined SI that covers an area of approximately 60 acres (NRT, 2017). AP2 started operation in the early 1970s, and was removed from service and capped in the mid-1980s with a 2-foot clay and soil cap (NRT, 2017). The CPP is bordered by Coffeen Lake to the west, east, and south, and is bordered by agricultural land to the north. An unnamed tributary, located east of AP2, flows south into Coffeen Lake (Figure 2.1) (Ramboll, 2021). Coffeen Lake (approximately 1,100-acres) was formed in 1963 for use as an artificial cooling lake for the CPP, by damming the McDavid Branch of the East Fork of Shoal Creek (Ramboll, 2021).

Figure 2.1 Site Location Map. Adapted from NRT (2017).

2.2 Geology/Hydrogeology

The geology underlying the CPP Site in the vicinity of AP2 primarily consists of unlithified deposits (NRT, 2017; Ramboll, 2021). These unlithified deposits were categorized into the following hydrostratigraphic units (moving downward from the ground surface):

- Upper Confining Unit (UCU): The UCU underlies AP2. It consists of a Loess Unit and the upper portion of the Hagarstown Member, which has low permeability clays and silts. The Loess Unit in the area of AP2 is relatively thin with less than 1 foot of thickness and was likely removed during AP2 construction. The upper clayey till portion of the Hagarstown Member has varying thicknesses from 1.9 ft to over 12 ft to the south and west of AP2.
- Uppermost Aquifer (UA): The UA is comprised of moderately permeable sands, silty sand, and clayey gravel of the Hagarstown Member and, in some portions of the Site, the Vandalia Member. The UA unit is thin (generally less than 3 feet), discontinuous, and variable throughout AP2 due deposition and weathering.
- Lower Confining Unit (LCU): The LCU underlies the UA. It consists of three low hydraulic conductivity soils: the sandy clay till of the Vandalia Member, the silt of the Mulberry Grove Formation, and the compacted clay till of the Smithboro Member. The layer has been observed to be generally greater than 15 ft thick.
- **Deep Aquifer (DA):** The DA consists of sand and sandy silt/clay units of the Yarmouth Soil, which is discontinuous and less than 5 ft thick across the Site. This unit is also identified as a PMP.
- **Deep Confining Unit (DCU):** The DCU is comprised of the Banner Formation, with a mixture of clays, silts, and sands. The Lierle Clay Member, which was encountered at the Site, is the upper portion of the Banner Formation.

There is a groundwater flow divide within the UA in the center of the CPP property between the two lobes of Coffeen Lake. Groundwater in the UA flows from the center of the CPP property west toward Coffeen Lake and east toward the Unnamed Tributary. Groundwater near AP2 flows east and south toward a former surface water discharge flume and the Unnamed Tributary which discharges into the Coffeen Lake, respectively (NRT, 2017). There is limited groundwater flow from AP2 toward the west due to a thinning or lower hydraulic conductivity of the Hagarstown Beds (NRT, 2017). Both the discharge flume and the Unnamed Tributary intersect and cut off the Hagarstown Member in the UA, which blocks any further migration of potentially impacted groundwater (NRT 2017). Groundwater flow within the UA is predominantly horizontal due to the underlying low-permeability LCU, and the average horizontal hydraulic gradient calculated for the UA across AP2 is approximately 0.007 ft/ft (NRT, 2017; NRT, 2017). Groundwater flow directions in the vicinity of AP2 are typically stable and do not have significant seasonal change. Groundwater elevations are controlled by the water level along the shoreline of Coffeen Lake (NRT 2017).

2.3 Conceptual Site Model

A CSM describes sources of contamination, the hydrogeological units, and the physical processes that control the transport of water and solutes. In this case, the CSM describes how groundwater underlying AP2 migrates and interacts with surface water and sediment in the adjacent Coffeen Lake. The CSM was developed using available hydrogeologic data specific to AP2, including information on groundwater flow and surface water characteristics (NRT, 2017; Ramboll, 2020, 2021).

CCR-related constituents may migrate vertically downward through the UCU from AP2 into the underlying groundwater of the UA. Once in groundwater, CCR-related constituents may migrate to the south to the discharge flume and to the east to the Unnamed Tributary and the eastern branch of Coffeen Lake (NRT, 2017; Ramboll, 2020). Groundwater flow within the UA is mostly in the horizontal direction because the UA is underlain by the LCU, which is a low-permeability till unit inhibiting vertical flow of groundwater.

Groundwater near AP2 may mix with surface water in the Unnamed Tributary and eastern branch of Coffeen Lake, and dissolved constituents in groundwater may partition between the sediments and surface water.

2.4 Groundwater Monitoring

A total of 12 wells have been used to monitor the groundwater quality near and downgradient of AP2 (Figure 2.2). Of these, 11 wells are screened in the UA, 1 well is screened in the LCU (Table 2.1). The analyses presented in this report relied on the recent data from 11 of these wells collected between 2018 and 2023 (G1003 was not used due to lack of data, as the well was dry during the 2021-2023 sampling). Groundwater samples were analyzed for a suite of total metals, specified in Illinois CCR Rule Part 845.600 (IEPA, 2021a).¹ A summary of the groundwater data used in this risk evaluation is presented in Table 2.2. The AP2 well locations used in this risk evaluation are shown in Figure 2.2. The use of groundwater data in this risk evaluation does not imply that detected constituents are associated with AP2 or that they have been identified as potential groundwater exceedances.

Figure 2.2 Monitoring Well Locations. Source: Ramboll (2024a).

¹ Samples were analyzed for a longer list of inorganic constituents and general water quality parameters (including, but not limited to, fluoride, sulfate, pH, and total dissolved solids); however, these constituents were not evaluated in the risk assessment because toxicological criteria have not been developed. Given that these parameters are not likely to pose a human health or ecological risk concern even in the event of exposure, they are not typically evaluated in risk assessments.

Well	Date Constructed	Screen Top Depth (ft bgs)	Screen Bottom Depth (ft bgs)	Well Depth from Ground Surface (ft bgs)	Hydrogeologic Unit
G270	2/26/2008	13.1	17.9	18.3	UA
G280	02/26/2008	12.8	17.6	18.0	UA
G281	09/08/2015	15.5	20.2	20.3	UA
G401	09/14/2015	14.4	18.8	19.3	UA
G402	08/27/2010	10.0	20.0	20.4	UA
G403	09/11/2015	13.1	17.8	18.2	UA
G404	05/01/2007	6.4	11.2	11.6	UA
G405	05/01/2007	9.0	13.8	14.2	UA
G406	08/19/2016	13.6	18.4	18.8	UA
G407	08/16/2016	13.8	18.6	19.0	UA
G1001	04/05/2021	6.0	11.0	12.0	LCU
G1003	05/25/2021	8.0	12.0	12.0	UA

Table 2.1 Groundwater Monitoring Wells Related to Coffeen Ash Pond 2

Notes:

Source: Ramboll (2021).

bgs = Below Ground Surface; DA = Deep Aquifer; ft = Feet; LCU = Lower Confining Unit; UA = Uppermost Aquifer.

Total Metals (mg/L) Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	11 79 203 3	179 203	0.00052		
Antimony Arsenic Barium Beryllium Boron Cadmium Chromium	11 79 203 3	179 203	0.00052		
Arsenic Barium Beryllium Boron Cadmium Chromium	79 203 3	203		0.0049	0.0019
Barium Beryllium Boron Cadmium Chromium	203 3	202	0.00040	0.13	0.016
Beryllium Boron Cadmium Chromium	3	203	0.0092	1.5	0.0043
Boron Cadmium Chromium	-	193	0.0015	0.0030	0.00078
Cadmium Chromium	162	204	0.0090	21	0.16
Chromium	9	200	0.00020	0.018	0.0040
	30	202	0.00080	0.44	0.0076
Cobalt	80	203	0.00020	0.42	0.0030
Lead	40	198	0.00033	0.043	0.00060
Lithium	89	206	0.0029	0.32	0.0099
Mercury	4	191	0.00016	0.00029	0.00019
Molybdenum	80	203	0.00060	0.016	0.0012
Selenium	18	201	0.00076	0.021	0.016
Thallium	2	181	0.00051	0.0010	0.0010
Dissolved Metals (mg/L)					
Antimony	2	47	0.00050	0.0066	0.00040
Arsenic	30	226	0.00024	0.019	0.00040
Barium	47	47	0.020	0.060	0.00070
Beryllium	1	47	0.031	0.031	0.00023
Boron	190	235	0.0076	17	0.15
Cadmium	1	47	0.028	0.028	0.00020
Chromium	9	47	0.00013	0.031	0.00070
Cobalt	5	48	0.000080	0.028	0.00010
Lead	6	227	0.0010	0.010	0.00060
Lithium	NT	NT	NT	NT	NT
Molybdenum	21	47	0.00032	0.020	0.00060
Selenium	21	47	0.00026	0.022	0.00060
Thallium	1	47	0.0040	0.0040	0.0010
Radionuclides (pCi/L)				•	
Radium 226 + 228	201	202	0.0063	8.7	4.6
Other (mg/L or SU)					
рН	204	204	5.6	7.7	NA
Chloride	198	204	1.1	710	96
Fluoride	165	203	0.067	0.79	0.19
Sulfate	204	204	15	4600	307
Total Dissolved Solids	203	203	270	6600	40

 Table 2.2 Groundwater Data Summary (2018-2023)

Source: Ramboll (2024b).

NA = Not Applicable; NT = Not Tested; pCi/L = PicoCuries Per Liter.

2.5 Surface Water Monitoring

Geosyntec collected a total of six surface water samples from Coffeen Lake in the vicinity of AP2 in August 2021 (Geosyntec, 2021). The sample locations are shown in Figure 2.3, and the sampling results are summarized in Table 2.3.

Figure 2.3 Surface Water Sampling Locations. Source: Geosyntec (2021).

Constituent	Samples with Constituent Detected	Samples Analyzed	Minimum Detected Value	Maximum Detected Value	Maximum Laboratory Detection Limit
Total Metals (mg/L)					
Boron	5	5	0.086	0.33	0.05
Calcium	5	5	21	53	0.2
Cobalt	0	5	0	0	0.005
Iron	5	5	0.23	0.38	0.2
Lithium	0	5	0	0	0.01
Magnesium	5	5	10	16	0.1
Manganese	5	5	0.03	0.2	0.01
Potassium	5	5	2.5	4.9	0.5
Sodium	5	5	11	19	1
Other (mg/L)					
Chloride	5	5	7.2	11	0.4
Phosphorus	5	5	0.095	0.24	0.15
Sulfate	5	5	31	110	2
Total Dissolved Solids	5	5	120	240	10

Table 2.3	Surface	Water	Data	Summary
-----------	---------	-------	------	---------

Notes:

Source: Geosyntec (2021).

Surface water was analyzed for both total and dissolved metals; only the total metals are reported here because they generally have higher concentrations than dissolved metals. The only exception was iron, which had a maximum dissolved concentration 1.8 times higher than the maximum total concentration. However, iron was not measured in groundwater and, therefore, was not identified as a constituent of interest (COI).

3.1 Risk Evaluation Process

A risk evaluation was conducted to determine whether constituents present in groundwater underlying and downgradient of AP2 have the potential to pose adverse health effects to human and ecological receptors. The risk evaluation is consistent with the principles of risk assessment established by US EPA and has considered evaluation criteria detailed in Illinois guidance documents (*e.g.*, IEPA, 2013, 2019).

The general risk evaluation approach is summarized in Figure 3.1 and discussed below.

Figure 3.1 Overview of Risk Evaluation Methodology. GWQS = Groundwater Quality Standard; IEPA = Illinois Environmental Protection Agency; SWQS = Surface Water Quality Standard. (a) The IEPA Part 845 GWPS were used to identify COIs. (b) IEPA SWQS protective of chronic exposures to aquatic organisms were used to identify ecological COIs. In the absence of a SWQS, US EPA Region IV ecological screening values were used.

The first step in the risk evaluation was to develop the CEMs and identify complete exposure pathways. All potential receptors and exposure pathways based on groundwater use and surface water use in the vicinity of the Site were considered. Exposure pathways that are incomplete were excluded from the evaluation.

```
GRADIENT
```

Groundwater data were used to identify COIs. COIs were identified as constituents with maximum concentrations in groundwater in excess of groundwater quality standards (GWQS)² for human receptors and surface water quality standards (SWQS) for ecological receptors. Based on the CSM (Section 2.3), some groundwater underlying AP2 has the potential to interact with surface water in Coffeen Lake. Therefore, potential AP2-related constituents in groundwater may potentially flow toward and flow into surface water in Coffeen Lake.

Surface water samples have been collected from Coffeen Lake adjacent to the Site; however, sediment samples have not been collected from the lake. Gradient modeled the potential migration of COIs from groundwater to surface water and sediment to evaluate potential risks to receptors (see Section 3.3.3).

Gradient modeled the COI concentrations in surface water and sediment based on the groundwater data from the AP2-related wells. The measured and modeled COI concentrations in surface water and sediment were compared to conservative, generic risk-based screening benchmarks for human health and ecological receptors. These generic screening benchmarks rely on default assumptions with limited consideration of site-specific characteristics. Human health benchmarks are receptor-specific values calculated for each pathway and environmental medium that are designed to be protective of human health. Ecological benchmarks are medium-specific values designed to be protective of all potential ecological receptors exposed to surface water. Ecological and human health screening benchmarks are inherently conservative because they are intended to screen out chemicals that are of no concern with a high level of confidence. Therefore, a measured or modeled COI concentration exceeding a screening benchmark does not indicate an unacceptable risk, but only that further risk evaluation is warranted. COIs with maximum concentrations exceeding a conservative screening benchmark are identified as COPCs requiring further evaluation.

As described in more detail below, this evaluation relied on the screening assessment to demonstrate that constituents present in groundwater underlying AP2 do not pose an unacceptable human health or ecological risk. That is, after the screening step, no COPCs were identified and further assessment was not warranted.

3.2 Human and Ecological Conceptual Exposure Models

A CEM provides an overview of the receptors and exposure pathways requiring risk evaluation. The CEM describes the source of the contamination, the mechanism that may lead to a release of contamination, the environmental media to which a receptor may be exposed, the route of exposure (exposure pathway), and the types of receptors that may be exposed to these environmental media.

3.2.1 Human Conceptual Exposure Model

The human CEM for the Site depicts the relationships between the off-Site environmental media potentially impacted by constituents in groundwater and human receptors that could be exposed to these media. Figure 3.2 presents a human CEM for the Site. It considers a human receptor who could be exposed to COIs hypothetically released from AP2 into groundwater, surface water, sediment, and fish. The following human receptors and exposure pathways were evaluated for inclusion in the Site-specific CEM.

 $^{^{2}}$ As discussed further in Section 3.3.2, GWQS are protective of human health and not necessarily of ecological receptors. While ecological receptors are not exposed to groundwater, groundwater can potentially enter into the adjacent surface water and impact ecological receptors. Therefore, two sets of COIs were identified: one for humans and another for ecological receptors.

GRADIENT

- Residents exposure to groundwater/surface water as drinking water;
- Residents exposure to groundwater/surface water used for irrigation;
- Recreators in the lake adjacent to the Site:
 - Boaters exposure to surface water and sediment while boating;
 - Swimmers exposure to surface water and sediment while swimming;
 - Anglers exposure to surface water and sediment and consumption of locally caught fish.

All of these exposure pathways were considered to be complete, except for residential exposure to groundwater or surface water used for drinking water or irrigation, and swimming. Section 3.2.1.1 explains why the residential drinking water and irrigation pathways are incomplete, and Section 3.2.1.2 provides additional description of the recreational exposures. While a recreator's potential exposure to surface water in Coffeen Lake was evaluated, swimming is prohibited in Coffeen Lake and thus was not evaluated (IDNR, 2014).

Figure 3.2 Human Conceptual Exposure Model. CCR = Coal Combustion Residuals. Dashed line/Red X = Incomplete or insignificant exposure pathway. (a) Groundwater in the vicinity of the Site is not used as a drinking water or irrigation source. (b) Surface water is not used as a drinking water source.

3.2.1.1 Groundwater or Surface Water as a Drinking Water/Irrigation Source

Using groundwater as a source of drinking water and/or irrigation water is not a complete exposure pathway for CCR-related constituents originating from AP2. Specifically, there are no users of shallow groundwater from the UA in the vicinity of AP2; thus, no receptors can be exposed to any CCR-related constituents in groundwater originating from AP2.

Natural Resource Technology (NRT) completed a water well survey for AP2 in 2017 (NRT, 2017), Ramboll completed a water well survey for AP1 in 2021 (Ramboll, 2021), and Gradient updated the well survey in 2024. A total of 19 water wells were identified within a 1,000-meter radius of the AP2 boundary during a

```
GRADIENT
```

comprehensive search of the Illinois State Geological Survey's (ISGS) Illinois Water and Related Wells (ILWATER) Map (ISGS, 2024b) (Table 3.1). These included 13 monitoring wells and 6 farm/domestic wells (Figure 3.3). There is no information available about the current use of these wells. However, site-specific groundwater flow conditions support the conclusion that none of the six farm/domestic wells are or can ever be affected by potential CCR-related constituents originating from AP2.

- There is no off-Site migration of CCR-related constituents in groundwater. Groundwater from the UA flows north/east before flowing into the Unnamed Tributary and the eastern branch of Coffeen Lake (Ramboll, 2021). Five of the six farm/domestic wells within a 1,000 m radius of AP2 are located on the east/southeast side of Coffeen Lake's eastern branch and the unnamed tributary, *i.e.*, the opposite side of the lake from AP2 (Figure 3.3). These surface water bodies are hydraulic boundaries which limits any further migration of potentially impacted groundwater (NRT 2017). Furthermore, the surface waters are regional "sinks", meaning that groundwater flows into the surface water bodies both from the east and the west, but cannot flow past. Thus, because the eastern branch of Coffeen Lake and the unnamed tributary separate the farm/domestic wells from AP2 (Figure 3.3), there is no plausible mechanism by which the wells could be impacted by any potential constituents in groundwater associated with the AP2.
- There is one domestic/farm well located near the northeast corner of AP2 (Well ID 5 on Figure 3.3), side-gradient to AP2 and on the west side of the unnamed tributary. This well, which was installed in 1981, is located near the former location of several prior residents (Figure 3.4). The well was removed during the construction of the Recycle Pond in 2010 (Ramboll, 2021b; NRT, 2017). However, the property in this area has been purchased by IPGC and no residents are currently living or using groundwater in the area.
- Coffeen Lake is not used as a public water supply. Coffeen Lake is a cooling water pond owned and maintained by IPGC, and IPGC restricts the use of the lake as a source of drinking water. Therefore, the human exposure pathway of surface water ingestion (as potable water) adjacent to AP2 is not a complete pathway and was not evaluated further.
- AP2 has a limited hydraulic connection to underlying groundwater. The LCU underlying the UA forms a hydraulic barrier between AP2 and deeper groundwater resources. Due to the very low hydraulic conductivity of the LCU, downward migration of shallow groundwater is expected to be limited. Therefore, the likelihood of AP2-related impacts to deep groundwater is minimal.

Figure 3.3 Water Wells Within 1,000 Meters of AP2

Map ID #	ISGS API #	Well Depth (ft)	Year Drilled	Owner	Well Use
1	121352423200	20	2015	Illinois Power Holdings, LLC	Monitoring
2	121352423600	18	2015	Illinois Power Holdings, LLC	Monitoring
3	121352425400	16	2017	Coffeen Power Station	Monitoring
4	121352423400	18	2015	Illinois Power Holdings, LLC	Monitoring
6	121352361500	35	1993	White & Brewer	Monitoring
7	121352423300	16	2015	Illinois Power Holdings, LLC	Monitoring
8	121352423500	19	2015	Illinois Power Holdings, LLC	Monitoring
14	121352362000	20	-	White & Brewer	Monitoring
15	121352361900	40	-	White & Brewer	Monitoring
16	121352362100	33	-	White & Brewer	Monitoring
17	121352361800	23		White & Brewer	Monitoring
18	121352361700	25	_	White & Brewer	Monitoring
19	121352361600	17	_	White & Brewer	Monitoring
5	121352283200	39	1981	Wibel, William	Private Water Well
9	121350171700	29	1970	Marfield, Mac	Private Water Well
10	121352221400	151	1977	Warfield, William	Private Water Well
11	121352380200	363	1996	O'Dell, Kenneth & Chong	Private Water Well
12	121350172600	32	1971	Schuler, Paul	Private Water Well
13	121352380300	401	1996	Childers, Joe	Private Water Well

Table 3.1 Water Wells Within 1,000 Meters of AP2

Notes:

- = Unknown; LLC = Limited Liability Company.

a) 800 400 0 Feet 5 b) c) 5

Figure 3.4 Historic Property Use in the Vicinity of Well 32. (a) 1998; (b) 2005; (c) 2009. Sources: USGS (1998a,b, 2005a,b); USDA (2009a,b).

3.2.1.2 Recreational Exposures

Coffeen Lake is located adjacent to the Site and is owned by IPGC. Property along the lake has been leased to the Illinois Department of Natural Resources (IDNR) for use as a State Fish and Wildlife Area (Ramboll, 2021), and the lake is used for recreational fishing (IDNR, 2022). Recreational exposure to surface water and sediment may occur during activities such as boating or fishing in the lake. Recreational anglers may also consume locally caught fish from Coffeen Lake. Swimming does not occur in Coffeen Lake because it is owned by IPGC and used as a cooling reservoir (IDNR, 2022).

3.2.2 Ecological Conceptual Exposure Model

The ecological CEM for the Site depicts the relationships between off-Site environmental media (surface water and sediment) potentially impacted by COIs in groundwater and ecological receptors that may be exposed to these media. The ecological risk evaluation considered both direct toxicity and secondary toxicity *via* bioaccumulation. Figure 3.5 presents the ecological CEM for the Site. The following ecological receptor groups and exposure pathways were considered:

- Ecological Receptors Exposed to Surface Water:
 - Aquatic plants, amphibians, reptiles, and fish.
- Ecological Receptors Exposed to Sediment:
 - Benthic invertebrates (*e.g.*, insects, crayfish, and mussels).

• Ecological Receptors Exposed to Bioaccumulative COIs:

• Higher trophic-level wildlife (avian and mammalian) *via* direct exposures (surface water and sediment exposure) and secondary exposures through the consumption of prey (*e.g.*, plants, invertebrates, small mammals, and fish).

Figure 3.5 Ecological Conceptual Exposure Model. CCR = Coal Combustion Residuals.

3.3 Identification of Constituents of Interest

Risks were evaluated for COIs. A constituent was considered a COI if the maximum detected constituent concentration in groundwater exceeded a health-based benchmark. According to US EPA risk assessment guidance (US EPA, 1989), this screening step is designed to reduce the number of constituents carried through the risk evaluation that are anticipated to have a minimal contribution to the overall risk. Identified COIs are the constituents that are most likely to pose a risk concern in the surface water adjacent to the Site.

3.3.1 Human Health Constituents of Interest

For the human health risk evaluation, COIs were conservatively identified as constituents with maximum concentrations in groundwater above the GWPS listed in the Illinois CCR Rule Part 845.600 (IEPA, 2021a). Gradient used the maximum detected concentrations from groundwater samples collected from all of the AP2-associated wells, regardless of hydrostratigraphic unit. The use of groundwater data in this risk evaluation does not imply that detected constituents are associated with AP2 or that they have been identified as potential groundwater exceedances. Using this approach, 12 COIs (antimony, arsenic, beryllium, boron, cadmium, chromium, cobalt, lead, lithium, thallium, radium-226+228, and chloride) were identified for the human health risk evaluation *via* the surface water pathway (Table 3.1).

The water quality parameters that exceeded the GWPS included sulfate and total dissolved solids; however, these constituents were not included in the risk evaluation because the GWPS are based on aesthetic quality. US EPA set secondary maximum contaminant levels (MCLs) for sulfate and TDS based on aesthetic quality. The secondary MCL for sulfate (250 mg/L) is based on salty taste (US EPA, 2021a). The secondary MCL for total dissolved solids (500 mg/L) is based on hardness, deposits, colored water, staining, and salty taste (US EPA, 2021a). Given that these parameters are not likely to pose a human health risk concern in the event of exposure, they were not considered to be human health COIs.

Constituent ^a	Maximum Concentration ^b	GWPS	Human Health COI ^d
Total Metals (mg/L)			
Antimony	0.0049	0.0060	No
Arsenic	0.13	0.010	Yes
Barium	1.5	2.0	No
Beryllium	0.0030	0.0040	No
Boron	21	2.0	Yes
Cadmium	0.018	0.0050	Yes
Chromium	0.44	0.10	Yes
Cobalt	0.42	0.0060	Yes
Lead	0.043	0.0075	Yes
Lithium	0.32	0.040	Yes
Mercury	0.00029	0.0020	No
Molybdenum	0.016	0.10	No
Selenium	0.021	0.050	No
Thallium	0.0010	0.0020	No
Dissolved Metals (mg/L)			
Antimony	0.0066	0.0060	Yes
Arsenic	0.019	0.010	Yes
Barium	0.060	2.0	No
Beryllium	0.031	0.0040	Yes
Boron	17	2.0	Yes
Cadmium	0.028	0.0050	Yes
Chromium	0.031	0.10	No
Cobalt	0.028	0.0060	Yes
Lead	0.010	0.0075	Yes
Molybdenum	0.02	0.1	No
Selenium	0.022	0.05	No
Thallium	0.004	0.002	Yes
Radionuclides (pCi/L)			
Radium 226 + Radium 228	8.66	5	Yes
Other (mg/L, unless otherwise	noted)		
рН	7.7	6.5-9.0	No
Chloride	710	200	Yes
Fluoride	0.79	4.0	No
Sulfate	4600	400	No ^e
Total Dissolved Solids	6600	1200	No ^e

Table 3.1 Human Health Constituents of Interest

Notes:

COI = Constituent of Interest; GWPS = Groundwater Protection Standard; pCi/L = PicoCuries Per Liter.

Shaded = Compound identified as a COI.

(a) The constituents are those listed in the Illinois Part 845.600 GWPS (IEPA, 2021a).

(b) The maximum detected groundwater concentration was used to identify COIs.

(c) The Illinois Part 845.600 GWPS (IEPA, 2021a) were used to identify COIs.

(d) COIs are constituents for which the maximum concentration exceeds the groundwater standard.

(e) This constituent is not likely to pose a human health risk concern due to the absence of studies regarding toxicity to human health. Therefore, this constituent is not considered a COI.
3.3.2 Ecological Constituents of Interest

The Illinois GWPS, as defined in IEPA's guidance, were developed to protect human health, but not necessarily ecological receptors. While ecological receptors are not exposed to groundwater, groundwater can potentially migrate into the adjacent surface water and impact ecological receptors. Therefore, to identify ecological COIs, the maximum concentrations of constituents detected in groundwater were compared to ecological surface water benchmarks protective of aquatic life.

The surface water screening benchmarks for freshwater organisms were obtained from the following hierarchy of sources:

- IEPA (2019) Surface Water Quality Criteria (SWQC). IEPA SWQC are health-protective benchmarks for aquatic life exposed to surface water on a long-term basis (*i.e.*, chronic exposure). The SWQC for several metals are hardness-dependent (cadmium, chromium, copper, lead, manganese, nickel, and zinc). Screening benchmarks for these constituents were calculated assuming US EPA's default hardness of 100 mg/L (US EPA, 2022).³
- US EPA Region IV (2018) surface water Ecological Screening Values (ESVs) for hazardous waste sites.

Benchmarks from the United States Department of Energy's (US DOE) guidance document ("A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota") were used for radium (US DOE, 2019). US DOE (2019) presents benchmarks for radium-226 and radium-228 (4 and 3 picoCuries per liter [pCi/L], respectively). Given that radium concentrations are expressed as total radium (radium-226+228, *i.e.*, the sum of radium-226 and radium-228), Gradient used the lower of the two benchmarks (3 pCi/L for radium-228) to evaluate total radium concentrations.

Consistent with the human health risk evaluation, Gradient used the maximum detected concentrations from groundwater samples collected from all of the AP2-associated wells (regardless of hydrostratigraphic unit) without considering spatial or temporal representativeness for ecological receptor exposures. The use of the maximum constituent concentrations in this evaluation is designed to conservatively identify COIs that warrant further investigation. Boron, cadmium, chromium, cobalt, lead, radium-226+228, and chloride were identified as COIs for ecological receptors (Table 3.2).

³ Hardness data are not available for Coffeen Lake adjacent to the Site; therefore, the US EPA (2022) default hardness of 100 mg/L was used. Use of a higher hardness value would result in less stringent screening values; thus, use of the US EPA default hardness is conservative.

GRADIENT

Constituent ^a	Maximum Groundwater Concentration	Ecological Benchmark ^b	Basis	Ecological COI ^c
Total Metals (mg/L)			•	
Antimony	0.0049	0.19	EPA R4 ESV	No
Arsenic	0.13	0.19	IEPA SWQC	No
Barium	1.5	5.0	IEPA SWQC	No
Beryllium	0.0030	0.064	EPA R4 ESV	No
Boron	21	7.6	IEPA SWQC	Yes
Cadmium	0.018	0.0011	IEPA SWQC	Yes
Chromium	0.44	0.21	IEPA SWQC	Yes
Cobalt	0.42	0.019	EPA R4 ESV	Yes
Lead	0.043	0.020	IEPA SWQC	Yes
Lithium	0.32	0.44	EPA R4 ESV	No
Mercury	0.00029	0.0011	IEPA SWQC	No
Molybdenum	0.016	7.2	EPA R4 ESV	No
Selenium	0.021	1.0	IEPA SWQC	No
Thallium	0.0010	0.0060	EPA R4 ESV	No
Dissolved Metals (mg/L)				
Antimony	0.0066	0.19	EPA R4 ESV	No
Arsenic	0.019	0.19	IEPA SWQC	No
Barium	0.060	5.0	IEPA SWQC	No
Beryllium	0.031	0.064	EPA R4 ESV	No
Boron	17	7.6	IEPA SWQC	Yes
Cadmium	0.028	0.0011	IEPA SWQC	Yes
Chromium	0.031	0.21	IEPA SWQC	No
Cobalt	0.028	0.019	EPA R4 ESV	Yes
Lead	0.010	0.020	IEPA SWQC	No
Molybdenum	0.020	7.2	EPA R4 ESV	No
Selenium	0.022	1.0	IEPA SWQC	No
Thallium	0.0040	0.0060	EPA R4 ESV	No
Radionuclides (pCi/L)				
Radium 226 + 228	8.7	3.0	US DOE	Yes
Other (mg/L, unless other	wise noted)			
рН	7.7	6.5-9.0	IEPA SWQC	No
Chloride	710	500	IEPA SWQC	Yes
Fluoride	0.79	4.0	IEPA SWQC	No
Sulfate	4600	NA	NA	No
Total Dissolved Solids	6600	NA	NA	No

Table 3.2 Ecological Constituents of Interest

Notes:

AP2 = Ash Pond 2; COI = Constituent of Interest; ESV = Ecological Screening Value; IEPA = Illinois Environmental Protection Agency; NA = Not Available; pCi/L = picoCuries Per Liter; SWQC = Surface Water Quality Criteria; US DOE = United States Department of Energy; US EPA R4 = US Environmental Protection Agency Region IV. Shaded = Compound identified as a COI.

(a) The constituents are those listed in the Illinois Part 845.600 GWPS (IEPA, 2021a).

(b) Ecological benchmarks are from the hierarchy of sources discussed in Section 3.3.2: IEPA SWQC (IEPA, 2019); US EPA Region IV "Ecological Risk Assessment Supplemental Guidance" (US EPA Region IV, 2018); and US DOE's guidance document, "A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota" (US DOE, 2019).
(c) Constituents with maximum detected concentrations exceeding a benchmark protective of surface water exposure are considered ecological COIs.

3.3.3 Surface Water and Sediment Modeling

Surface water sampling has been conducted in Coffeen Lake adjacent to the Site. To estimate the potential contribution to surface water (and sediment) from groundwater specifically associated with AP2, Gradient modeled concentrations in Coffeen Lake surface water and sediment from groundwater flow into the lake for the detected human and ecological COIs. This is because the constituents detected in groundwater above an ecological- or health-based benchmark are most likely to pose a risk concern in the adjacent surface water. Gradient modeled human health and ecological COI concentrations in the surface water and sediment using a mass balance calculation based on the surface water and groundwater mixing. The model assumes a well-mixed groundwater-surface water location. The maximum detected concentrations in groundwater (regardless of well location or hydrogeologic unit) from 2018 to 2023 were conservatively used to model COI concentrations in surface water and sediment. In cases where the maximum groundwater concentration was from the "total metals" analysis, use of the total metals concentration for these COIs may overestimate surface water concentrations because dissolved concentrations, which are lower than total concentrations, represent the mobile fractions of constituents that could likely flow into and mix with surface water.

This modeling approach does not account for geochemical transformations that may occur during groundwater mixing with surface water. Gradient assumed that predicted surface water concentrations were influenced only by the physical mixing of groundwater as it enters the surface water, and were not further influenced by the geochemical reactions in the water and sediment, such as precipitation. In addition, the model only predicts surface water and sediment concentrations as a result of the potential migration of COI concentrations in AP2-related groundwater and does not account for background concentrations in surface water or sediment.

For this evaluation, Gradient adapted a simplified and conservative form of US EPA's indirect exposure assessment methodology (US EPA, 1998) that was used in US EPA's coal combustion waste risk assessment (US EPA, 2014). The model is a mass balance calculation based on surface water and groundwater mixing and the concept that the dissolved and sorbed concentrations can be related through an equilibrium partitioning coefficient (K_d). The model assumes a well-mixed groundwater-surface water location, with partitioning among total suspended solids, dissolved water column, sediment pore water, and solid sediments.

Sorption to soil and sediment is highly dependent on the surrounding geochemical conditions. To be conservative, we ignored the natural attenuation capacity of soil and sediment and estimated the surface water concentration based only on the physical mixing of groundwater and surface water (*i.e.*, dilution) at the point of entry of groundwater to the surface water.

The aquifer and surface water properties used to estimate the volume of groundwater flowing into Coffeen Lake and surface water concentrations are presented in Table 3.3. The COI concentrations in sediment were modeled using the COI-specific sediment-to-water partitioning coefficients and the sediment properties presented in Table 3.4. In the absence of Site-specific information for Coffeen Lake, Gradient used default assumptions (*e.g.*, depth of the upper benthic layer and bed sediment porosity) to model sediment concentrations. The modeled surface water and sediment concentrations are presented in Table 3.5. These modeled concentrations reflect conservative contributions from groundwater flow. A description of the modeling and the detailed results are presented in Appendix A.

Parameter	Unit	Values	Notes/Source
Groundwater			
COI Concentration	mg/L	Constituent-	Maximum detected concentration in groundwater
		specific	
Cross Section Area for the UA ^a	m²	960	The average thickness of the UA (<i>i.e.</i> , 3 ft or
			0.9144 m) multiplied by the length of AP2
			affected groundwater intersecting Coffeen Lake
			(<i>i.e.</i> , sum of the eastern and southern sides of
			AP2, about 1050 m) (Ramboll, 2021)
Hydraulic Gradient	m/m	0.007	The average hydraulic gradient for the UA
			(Ramboll, 2021)
Hydraulic Conductivity of the UA	cm/s	0.002	The geometric mean horizontal hydraulic
			conductivity measured for the UA (Ramboll, 2021)
Surface Water			
Surface Water Flow Rate in the	L/yr	8.0×10^{10}	There are no flow records available for the
Eastern Branch of Coffeen Lake			eastern branch of Coffeen Lake. The flow rate
			was assumed to be the same (<i>i.e.</i> , 90 cfs) as
			estimated for the unnamed tributary that flows
			from north to south into the eastern branch of
			Coffeen Lake (Golder Associates Inc., 2020).
Total Suspended Solids	mg/L	3.2	Average Coffeen Lake concentration (Hanson
			Professional Services, Inc., 2020)
Depth of the Water Column	m	5.7	Mean depth of Coffeen Lake (Austen et al., 1993)
Suspended Sediment to Water	mg/L	Constituent-	Values based on US EPA (2014)
Partition Coefficient		specific	

Table 3.3	Groundwater	and Surface	Water Pro	perties Used	d in Modeling
	Groundfater	and Surrace	Water 110		

Notes:

AP2 = Ash Pond 2; cfs = Cubic Feet Per Second; COI = Constituent of Interest; ft = Feet; L/yr = Liter Per Year; UA = Uppermost Aquifer; US EPA = United States Environmental Protection Agency.

(a) Cross-sectional area represents the area through which groundwater flows from the UA into Coffeen Lake (i.e., the groundwater flow area that intersects with Coffeen Lake).

Table 3.4	Sediment Pro	perties Used i	in Modeling
	5Cument 110		

Parameter	Unit	Value	Notes/Source
Sediment			
Depth of Upper Benthic Layer	m	0.03	Default (US EPA, 2014)
Depth of Water Body	m	5.73	Sum of depth of water column (5.7 m, depth of
			Coffeen Lake) (Austen et al., 1993) and depth of
			upper benthic layer (0.03 m) (US EPA, 2014)
Bed Sediment Particle	g/cm ³	1	Default (US EPA, 2014)
Concentration			
Bed Sediment Porosity	-	0.6	Default (US EPA, 2014)
TSS Mass Per Unit Area	kg/m ²	0.018	Depth of water column × TSS × conversion factors
			(10 ⁻⁶ kg/mg and 1,000 L/m ³)
Sediment Mass Per Unit Area	kg/m ²	30	Depth of upper benthic layer × bed sediment
			particulate concentration × conversion factors
			(0.001 kg/g, 10 ⁶ cm ³ /m ³)
Sediment to Water Partition	mg/L	Constituent-	Values based on US EPA (2014)
Coefficients		specific	

Notes:

TSS = Total Suspended Solids; US EPA = United States Environmental Protection Agency.

	Groundwater	Mass Discharge	Total Water Column	Concentration Sorbed
COI	Concentration	Rate	Concentration (mg/L	to Bottom Sediments
	(mg/L or pCi/L)	(mg/yr or pCi/yr)	or pCi/L)	(mg/kg or pCi/kg)
Metals				
Antimony ^b	6.6E-03	2.8E+04	3.5E-07	1.2E-03
Arsenic	1.3E-01	5.5E+05	6.9E-06	1.7E-03
Beryllium ^b	3.1E-02	1.3E+05	1.6E-06	9.9E-04
Boron ^b	2.1E+01	9.0E+07	1.1E-03	6.9E-03
Cadmium	2.8E-02	1.2E+05	1.5E-06	2.4E-03
Chromium	4.4E-01	1.9E+06	2.3E-05	1.3E+00
Cobalt	4.2E-01	1.8E+06	2.2E-05	2.3E-02
Lead	4.3E-02	1.8E+05	2.3E-06	3.5E-02
Lithium	3.2E-01	1.4E+06	1.7E-05	NA ^a
Thallium ^b	4.0E-03	1.7E+04	2.1E-07	4.1E-06
Radionuclides				
Radium 226 + 228	8.7E+00	3.7E+07	4.6E-04	3.3E+00

Table 3.5 Surface Water and Sediment Modeling Results

Notes:

COI = Constituent of Concern; K_d = Equilibrium Partition Coefficient; NA = Not Applicable; pCi/L = PicoCuries Per Liter; pCi/kg = PicoCuries Per Kilogram.

(a) Lithium does not readily sorb to soil or sediment particles; a K_d value of 0 was used for the modeling.

(b) Maximum groundwater concentration was for dissolved metals.

3.4 Human Health Risk Evaluation

The section below presents the results of the human health risk evaluation for recreators (boaters and anglers) in Coffeen Lake adjacent to the Site. Risks were assessed using the maximum measured or modeled COIs in surface water.

3.4.1 Recreators Exposed to Surface Water

Screening Exposures: Recreators could be exposed to surface water *via* incidental ingestion and dermal contact while boating. In addition, anglers could consume fish caught in Coffeen Lake. The maximum measured or modeled COI concentrations in surface water were used as conservative upper-end estimates of the COI concentrations to which a recreator might be exposed directly (incidental ingestion of COIs in surface water while boating) and indirectly (consumption of locally caught fish exposed to COIs in surface water).

Screening Benchmarks: Illinois surface water criteria (IEPA, 2019), known as human threshold criteria (HTC), are based on incidental exposure through contact or ingestion of small volumes of water while swimming or during other recreational activities, as well as the consumption of fish. The HTC values were calculated from the following equation (IEPA, 2019):

$$HTC = \frac{ADI}{W + (F \times BCF)}$$

where:

HTC = Human health protection criterion in milligrams per liter (mg/L) ADI = Acceptable daily intake (mg/day) W = Water consumption rate (L/day) F = Fish consumption rate (kg/day) BCF = Bioconcentration factor (L/kg-tissue)

Illinois defines the acceptable daily intake (ADI) as the "maximum amount of a substance which, if ingested daily for a lifetime, results in no adverse effects to humans" (IEPA, 2019). US EPA defines its chronic reference dose (RfD) as an "estimate (with uncertainty spanning perhaps an order of magnitude) of a daily oral exposure for a chronic duration (up to a lifetime) to the human population (including sensitive subgroups) that is likely to be without an appreciable risk of deleterious effects during a lifetime" (US EPA, 2011a). Illinois lists methods to derive an ADI from the primary literature (IEPA, 2019). In accordance with Illinois guidance, Gradient derived an ADI by multiplying the MCL by the default water ingestion rate of 2 L/day (IEPA, 2019). In the absence of an MCL, Gradient applied the RfD used by US EPA to derive its Regional Screening Levels (RSLs) (US EPA, 2021b) as a conservative estimate of the ADI. The RfDs are given in mg/kg-day, while the ADIs are given in mg/day; thus, Gradient multiplied the RfD by a standard body weight of 70 kg to obtain the ADI in mg/day. The calculation of the HTC values is shown in Appendix B, Table B.1.

Gradient used bioconcentration factors (BCFs) from a hierarchy of sources. The primary BCFs were those that US EPA used to calculate the National Recommended Water Quality Criteria (NRWQC) for human health (US EPA, 2002). Other sources included BCFs used in the US EPA coal combustion ash risk assessment (US EPA, 2014) and BCFs reported by Oak Ridge National Laboratory's Risk Assessment Information System (ORNL RAIS) (ORNL, 2023).⁴ Lithium did not have a BCF value available from any authoritative source; therefore, the water quality criterion for lithium was calculated assuming a BCF of 1. This is a conservative assumption, as lithium does not readily bioaccumulate in the aquatic environment (ECHA, 2020).

Illinois recommends a fish consumption rate of 0.020 kg/day (20 g/day) for an adult weighing 70 kg (IEPA, 2019). Illinois recommends a water consumption rate of 0.01 L/day for "incidental exposure through contact or ingestion of small volumes of water while swimming or during other recreational activities" (IEPA, 2019). Appendix B, Table B.1 presents the calculated HTC for fish consumption and water ingestion, and for fish consumption only.

The HTC for fish consumption for radium-226+228 was calculated as follows:

$$HTC = \frac{TCR}{(SF \times BAF \times F)}$$

where:

F

HTC = Human health protection criterion in picoCuries per liter (pCi/L)

TCR = Target cancer risk (1×10^{-5})

SF = Food ingestion slope factor (risk/pCi)

- BAF = Bioaccumulation factor (L/kg-tissue)
 - = Fish consumption rate (kg/day)

The food ingestion slope factor (lifetime excess total cancer risk per unit exposure, in risk/pCi) used to calculate the HTC was the highest value of those for radium-226 (Ra-226), radium-228 (Ra-228), and "Ra-228+D" (US EPA, 2001). According to US EPA (2001), "+D" indicates that "the risks from associated

⁴ Although recommended by US EPA (2015b), US EPA EpiSuite 4.1 (US EPA, 2019) was not used as a source of BCFs because inorganic compounds are outside the estimation domain of the program.

short-lived radioactive decay products (*i.e.*, those decay products with radioactive half-lives less than or equal to 6 months) are also included."

Screening Risk Evaluation: The maximum modeled and measured COI concentrations in surface water were compared to the calculated Illinois HTC values (Table 3.6). All surface water concentrations were below their respective benchmarks. The HTC values are protective of recreational exposure via water and/or fish ingestion and do not account for dermal exposures to COIs in surface water while boating. However, given that the measured and modeled COI surface water concentrations are orders of magnitude below an HTC protective of water and/or fish ingestion, dermal exposures to COIs are not expected to be a risk concern. Moreover, the dermal uptake of metals is considered to be minimal and only a small proportion of ingestion exposures. Thus, none of the COIs evaluated would be expected to pose an unacceptable risk to recreators exposed to surface water while boating or anglers consuming fish caught in Coffeen Lake.

COI	Max Surfac Conce	kimum ae Water ntration	HTC for HTC for Water Water F and Fish Only		HTC for	СОРС	
	Modeled	Measured ^a			Fish Only	Based on Modeled Concentrations	Based on Measured Concentrations
Total Metals	(mg/L)						
Arsenic	6.9E-06	NA	2.2E-02	2.0E+00	2.3E-02	No	NA
Boron	1.1E-03	3.3E-01	4.7E+02	1.4E+03	7.0E+02	No	No
Chromium	2.3E-05	NA	6.1E-01	2.0E+01	6.3E-01	No	NA
Cobalt	2.2E-05	ND	3.5E-03	2.1E+00	3.5E-03	No	No
Lead	2.3E-06	NA	1.5E-02	1.5E-02	1.5E-02	No	NA
Lithium	1.7E-05	ND	4.7E+00	1.4E+01	7.0E+00	No	No
Dissolved Me	etals (mg/L)						
Antimony	3.5E-07	NA	4.0E-01	1.2E+00	6.0E-01	No	NA
Beryllium	1.6E-06	NA	2.1E-02	8.0E-01	2.1E-02	No	NA
Cadmium	1.5E-06	NA	1.8E-03	1.0E+00	1.9E-03	No	NA
Thallium	2.1E-07	NA	1.7E-03	4.0E-01	1.7E-03	No	NA
Radionuclide	es (pCi/L)						
Radium	4.6E-04	NA	1.0E+03	1.0E+03	8.7E+04	No	NA
220 + 228							

Table 3.6	Risk	Evaluation	for	Recreators	Exposed	to	Surface	Water
Table 3.0	11131	LValuation	101	Incercators	LAPOSCU	ιu	Junace	vvatci

Notes:

COI = Constituent of Interest; COPC = Constituent of Potential Concern; HTC = Human Threshold Criteria; NA = Not Applicable; ND = Not Detected; pCi/L = PicoCuries Per Liter.

(a) Measured concentrations are listed only for the constituents identified as COIs. Measured surface water concentrations may be different from modeled concentrations because measured data include the effects of background and other industrial sources. Modeled concentrations only represent the potential effect on surface water quality resulting from the measured groundwater concentrations. COIs with no measured surface water data were listed as NA.

3.4.2 Recreators Exposed to Sediment

Recreational exposure to sediment may occur during boating activity in Coffeen Lake; exposure to sediment may occur through incidental ingestion and dermal contact.

Screening Exposures: COIs in impacted groundwater flowing into the river can sorb to sediments. In the absence of sediment data, sediment concentrations were modeled using maximum detected groundwater concentrations.

Screening Benchmarks: There are no established recreator RSLs that are protective of recreational exposures to sediment (US EPA, 2021c). Therefore, benchmarks that are protective of recreational exposures to sediment via incidental ingestion and dermal contact were calculated using US EPA's RSL guidance (US EPA, 2021c). These benchmarks were calculated using the recommended assumptions (*i.e.*, oral bioavailability, body weights, and averaging time) and toxicity reference values (*i.e.*, RfD and cancer slope factor [CSF]), with the following changes: Recreators were assumed to be exposed to sediment while recreating 60 days per year (or two weekend days per week for 30 weeks per year, from April to October). The exposure duration was assumed for a child 6 years of age and an adult 20 years of age, per US EPA guidance (Stalcup, 2014). The daily recommended residential soil ingestion rates of 200 mg/day for a child and 100 mg/day for an adult are based on an all-day exposure to residential soils (Stalcup, 2014; US EPA, 2011b). Since recreational exposures to sediment are assumed to occur for less than 4 hours per day, onethird of the daily residential soil ingestion (67 mg/day for a child and 33 mg/day for an adult) was used as a conservative assumption. For dermal exposures, recreators were assumed to be exposed to sediment on their lower legs and feet (1,026 cm² for the child and 3,026 cm² for the adult, based on the age-weighted surface areas reported in US EPA, 2011b). While other body parts may be exposed to sediment, the contact time will likely be very short, as the sediment would wash off in the surface water. Gradient used US EPA's recommended adherence factor of 0.2 mg/cm² based on child exposure to wet soil (US EPA, 2004; Stalcup, 2014), which was used in the US EPA RSL User's Guide for a child recreator exposed to soil or sediment (US EPA, 2021c). The sediment screening benchmarks were calculated based on a target hazard quotient of 1, or a target cancer risk of 1×10⁻⁵. Appendix B, Table B.2 presents the calculation of screening benchmarks protective of recreational exposures to sediment. A recreator sediment screening benchmark for radium-226+228 was based on soil Preliminary Remediation Goals (PRGs) calculated for radium-226 and radium-228 using US EPA's PRG calculator (US EPA, 2020). The lower of the two values (7,900) was used as the recreator sediment screening benchmark for radium-226+228 (Appendix B, Table B.3).

Screening Risk Evaluation: The modeled sediment concentrations were well below the recreational sediment screening benchmarks (Table 3.7). Therefore, exposure to sediment is not expected to pose an unacceptable risk to recreators while boating.

Modeled					
Sediment	Recreator RSL	COPC			
Concentration					
1.7E-03	6.8E+01	No			
6.9E-03	2.7E+05	No			
1.3E+00	2.1E+06	No			
2.3E-02	4.1E+02	No			
3.5E-02	2.0E+02	No			
NA ^a	2.7E+03	NA			
1.2E-03	5.5E+02	No			
9.9E-04	2.7E+03	No			
2.4E-03	1.2E+02	No			
4.1E-06	1.4E+01	No			
Radionuclides (pCi/kg)					
3.3E+00	7.9E+03	No			
	Modeled Sediment Concentration 1.7E-03 6.9E-03 1.3E+00 2.3E-02 3.5E-02 NA ^a 1.2E-03 9.9E-04 2.4E-03 4.1E-06	Modeled Sediment Concentration Recreator RSL 1.7E-03 6.8E+01 6.9E-03 2.7E+05 1.3E+00 2.1E+06 2.3E-02 4.1E+02 3.5E-02 2.0E+02 NA ^a 2.7E+03 1.2E-03 5.5E+02 9.9E-04 2.7E+03 2.4E-03 1.2E+02 4.1E+06 1.4E+01			

Table 3.7 Risk Evaluation for Recreators Exposed to Sediment

Notes:

COI = Constituent of Interest; COPC = Constituent of Potential Concern; K_d = Equilibrium Partition Coefficient; mg/kg = Milligram Per Kilogram; NA = Not Applicable; pCi/kg = PicoCuries Per Kilogram; RSL = Regional Screening Level.

(a) Lithium does not readily sorb to soil or sediment particles; a K_d value of 0 was used for the modeling.

3.5 Ecological Risk Evaluation

Based on the ecological CEM (Figure 3.4), ecological receptors could be exposed to surface water and dietary items (*i.e.*, prey and plants) potentially impacted by identified COIs (*i.e.*, boron, cadmium, chromium, cobalt, lead, radium-226+228, and chloride).

3.5.1 Ecological Receptors Exposed to Surface Water

Screening Exposures: The ecological evaluation considered aquatic communities in Coffeen Lake potentially impacted by identified ecological COIs. Measured and modeled surface water concentrations were compared to risk-based ecological screening benchmarks.

Screening Benchmarks: Surface water screening benchmarks protective of aquatic life were obtained from the following hierarchy of sources:

- IEPA SWQC (IEPA, 2019), regulatory standards that are intended to protect aquatic life exposed to surface water on a long-term basis (*i.e.*, chronic exposure). For cadmium, the surface water benchmark is hardness-dependent and calculated using a default hardness of 100 mg/L (US EPA, 2022)⁵;
- US EPA Region IV (2018) surface water ESVs for hazardous waste sites; and

⁵ Conservatisms associated with using a default hardness value are discussed in Section 3.6.

• US DOE benchmarks from the guidance document, "A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota" (US DOE, 2019).

Risk Evaluation: The maximum measured and modeled COI concentrations in surface water were compared to the benchmarks protective of aquatic life (Table 3.8). The measured and modeled surface water concentrations for the COIs were below their respective benchmarks. Thus, none of the COIs evaluated are expected to pose an unacceptable risk to aquatic life in Coffeen Lake.

	Max Surfac Conce	Maximum Surface Water Concentration		Pacis	СОРС	
	Modeled	Measured ^a	Benchmark	Dasis	Based on Modeled Concentrations	Based on Measured Concentrations
Total Metals (mg/L)						
Boron	1.1E-03	3.3E-01	7.6E+00	IEPA SWQC	No	No
Chromium	2.3E-05	NA	2.1E-01	IEPA SWQC	No	NA
Cobalt	2.2E-05	ND	1.9E-02	EPA R4 ESV	No	No
Lead	2.3E-06	NA	2.0E-02	IEPA SWQC	No	NA
Dissolved Metals (r	ng/L)					
Cadmium	1.5E-06	NA	1.1E-03	IEPA SWQC	No	NA
Radionuclides (pCi/L)						
Radium 226 + 228	4.6E-04	NA	3.0E+00	US DOE	No	NA
Other (mg/L)	Other (mg/L)					
Chloride	3.8E-02	1.1E+01	5.0E+02	IEPA SWQC	No	No
Notos						

 Table 3.8 Risk Evaluation for Ecological Receptors Exposed to Surface Water

Notes

COI = Constituent of Interest; COPC = Constituent of Potential Concern; ESV = Ecological Screening Value; IEPA = Illinois Environmental Protection Agency; NA = Not Applicable; ND = Not Detected; pCi/L = PicoCuries Per Liter; SWQC = Surface Water Quality Criteria; US DOE = United States Department of Energy; US EPA = United States Environmental Protection Agency. (a) COIs with no measured surface water data were listed as NA.

3.5.2 Ecological Receptors Exposed to Sediment

Screening Exposures: COIs in impacted groundwater discharging into Coffeen Lake can sorb to sediments *via* chemical partitioning. In the absence of sediment data, sediment concentrations were modeled using maximum detected groundwater concentrations. Therefore, the modeled COI sediment concentrations reflect the potential maximum Site-related sediment concentration from groundwater discharge.

Screening Benchmarks: Sediment screening benchmarks were obtained from US EPA Region IV (2018). The majority of the sediment ESVs are based on threshold effect concentrations from MacDonald *et al.* (2000), which provide consensus values that identify concentrations below which harmful effects on sediment-dwelling organisms are unlikely to be observed. In the absence of an ESV for radium-226+228, a sediment screening value of 90,000 pCi/kg was used, based on the biota concentration guide (BCG) for radium-228 (US DOE, 2019).⁶ Chloride is not expected to sorb to sediment; therefore, risk to ecological receptors exposed to sediment was not evaluated for chloride. The benchmarks used in this evaluation are listed in Table 3.9.

⁶ US DOE (2019) reported the BCG for sediment as 90 pCi/g for Ra-228 and 100 pCi/g for Ra-226; the lower of the two values was used for Ra-226+228, and converted to pCi/kg.

Screening Risk Results: The maximum modeled COI sediment concentrations were below their respective sediment screening benchmarks (Table 3.9). The modeled sediment concentrations attributed to potential contributions from Site groundwater for all COIs were less than or equal to 3% of the sediment screening benchmark. Therefore, the modeled sediment concentrations attributed to potential contributions from Site groundwater are not expected to significantly contribute to ecological exposures in Coffeen Lake adjacent to the Site.

COIª	Modeled Sediment Concentration	ESVª	СОРС	% of Benchmark		
Metals (mg/kg)						
Boron	6.9E-03	38 ^b	No	0.02%		
Cadmium ^d	2.4E-03	0.99	No	0.2%		
Chromium	1.3E+00	43	No	3%		
Cobalt	2.3E-02	50	No	0.05%		
Lead	3.5E-02	35.8	No	0.1%		
Radionuclides (pCi/kg)						
Radium 226 +						
Radium 228	3.3E+00	90,000 ^c	No	0.004%		
Other (mg/kg)	Other (mg/kg)					
Chloride	NA	NA	NA	NA		

Table 3.9 Risk Evaluation for Ecological Receptors Exposed to Sediment

Notes:

COI = Constituent of Interest; COPC = Constituent of Potential Concern; ESV = Ecological Screening Value; NA = Not Applicable; NOEC = No Observed Effect Concentration; pCi/kg = PicoCuries Per Kilogram; US DOE = United States Department of Energy; US EPA = United States Environmental Protection Agency.

(a) ESV from US EPA Region IV (2018).

(b) Boron NOEC of 38 mg/kg was used as a conservative benchmark for boron in the absence of an ESV (ECHA, 2019).

(c) ESV from US DOE (2019); value converted from 90 pCi/g to 90,000 pCi/kg.

(d) Modeled sediment was based on maximum dissolved concentration in groundwater.

3.5.3 Ecological Receptors Exposed to Bioaccumulative Constituents of Interest

Screening Exposures: COIs with bioaccumulative properties can impact higher-trophic-level wildlife exposed to these COIs *via* direct exposures (surface water and sediment exposure) and secondary exposures through the consumption of dietary items (*e.g.*, plants, invertebrates, small mammals, and fish).

Screening Benchmark: US EPA Region IV (2018) and IEPA SWQC (IEPA, 2019) guidance were used to identify constituents with potential bioaccumulative effects.

Risk Evaluation: The ecological COIs were not identified as having potential bioaccumulative effects. Therefore, these COIs are not considered to pose an ecological risk *via* bioaccumulation.

3.6 Uncertainties and Conservatisms

A number of uncertainties and their potential impact on the risk evaluation are discussed below. Wherever possible, conservative assumptions were used in an effort to minimize uncertainties and overestimate rather than underestimate risks.

Exposure Estimates:

- The risk evaluation included the Illinois Part 845.600 constituents detected in groundwater samples (above GWPS) collected from wells associated with AP2. However, it is possible that not all of the detected constituents are related specifically to AP2.
- The human health and ecological risk characterizations were based on the maximum measured or modeled COI concentrations, rather than on averages. Thus, the variability in exposure concentrations was not considered. Assuming continuous exposure to the maximum concentration overestimates human and ecological exposures, given that receptors are mobile and concentrations change over time. For example, US EPA guidance states that risks should be estimated using average exposure concentrations as represented by the 95% upper confidence limit on the mean (US EPA, 1992). Given that exposure estimates based on the maximum concentrations did not exceed risk benchmarks, Gradient has greater confidence that there is no risk concern.
- Only constituents detected in groundwater were used to identify COIs and model COI concentrations in surface water and sediment. For the constituents that were not detected in AP2 groundwater, the detection limits were below the Illinois Part 845.600 GWPS and thus do not require further evaluation.
- COI concentrations in surface water were modeled using the maximum detected total concentrations in groundwater for four of the COIs. Modeling surface water concentrations using total metal concentrations may overestimate surface water concentrations because dissolved concentrations, which are lower than total concentrations, represent the mobile fractions of constituents that could likely flow into and mix with surface water.
- The COIs identified in this evaluation also occur naturally in the environment. Contributions to exposure from natural or other non-AP2-related sources were not considered in the evaluation of modeled concentrations; only exposure contributions potentially attributable to Site groundwater mixing with surface water were evaluated. While not quantified, exposures from potential AP2-related groundwater contributions are likely to represent only a small fraction of the overall human and ecological exposure to COIs that also have natural or non-AP2-related sources.
- Screening benchmarks for human health were developed using exposure inputs based on US EPA's recommended values for reasonable maximum exposure (RME) assessments (Stalcup, 2014). RME is defined as "the highest exposure that is reasonably expected to occur at a site but that is still within the range of possible exposures" (US EPA, 2004). US EPA states the "intent of the RME is to estimate a conservative exposure case (*i.e.*, well above the average case) that is still within the range of possible exposures" (US EPA, 1989). US EPA also notes this high-end exposure "is the highest dose estimated to be experienced by some individuals, commonly stated as approximately equal to the 90th percentile exposure category for individuals" (US EPA, 2015c). Thus, most individuals will have lower exposures than those presented in this risk assessment.

Toxicity Benchmarks:

Screening-level ecological benchmarks were compiled from IEPA and US EPA guidance and designed to be protective of the majority of Site conditions, leaving the option for Site-specific refinement. In some cases, these benchmarks may not be representative of the Site-specific conditions or receptors found at the Site, or may not accurately reflect concentration-response relationships encountered at the Site. For example, the ecological benchmark for cadmium is hardness-dependent. However, hardness data are not available for Coffeen Lake; therefore, Gradient relied on US EPA's default hardness of 100 mg/L. Use of a higher hardness value would increase the cadmium SWQC because benchmarks become less stringent with higher levels of

hardness. Regardless of the hardness, the maximum modeled cadmium concentration is orders of magnitude below the SWQC.

- In addition, for the ecological evaluation, Gradient conservatively assumed all constituents to be 100% bioavailable. Modeled COI concentrations in surface water are considered total COI concentrations. In addition, the measured surface water data used in this report represent total concentrations. US EPA recommends using dissolved metals as a measure of exposure to ecological receptors because it represents the bioavailable fraction of metal in water (US EPA, 1993). Therefore, the modeled surface water COI concentrations may be an overestimation of exposure concentrations to ecological receptors.
- In general, it is important to appreciate that the human health toxicity factors used in this risk evaluation are developed to account for uncertainties, such that safe exposure levels used as benchmarks are often many times lower (even orders of magnitude lower) than the levels that cause effects which have been observed in human or animal studies. For example, toxicity factors incorporate a 10-fold safety factor to protect sensitive subpopulations. This means that a risk exceedance does not necessarily equate to actual harm.

A screening-level risk evaluation was performed for potential Site-related constituents in groundwater at the CPP in Coffeen, Illinois. The CSM developed for the Site indicates that groundwater beneath AP2 flows into Coffeen Lake adjacent to the Site and may potentially impact surface water and sediment.

CEMs were developed for human and ecological receptors. The complete exposure pathways for humans include recreators (boaters) in Coffeen Lake who are exposed to surface water and sediment, and anglers who consume locally caught fish. Based on the local hydrogeology, residential exposure to groundwater used for drinking water or irrigation is not a complete pathway and was not evaluated. The complete exposure pathways for ecological receptors include aquatic life (including aquatic and marsh plants, amphibians, reptiles, and fish) exposed to surface water; benthic invertebrates exposed to sediment; and avian and mammalian wildlife exposed to bioaccumulative COIs in surface water, sediment, and dietary items.

Groundwater data collected from 2018 to 2023 were used to estimate exposures. Surface water data collected from Coffeen Lake in 2021 were also evaluated. For groundwater constituents retained as COIs, surface water and sediment concentrations were modeled using the maximum detected groundwater concentration. Surface water and sediment exposure estimates were screened against benchmarks protective of human health and ecological receptors for this risk evaluation.

US EPA has established acceptable risk metrics. Risks above these US EPA-defined metrics are termed potentially "unacceptable risks." Based on the evaluation presented in this report, no unacceptable risks to human or ecological receptors resulting from CCR exposures associated with AP2 were identified. This means that the risks from the site are likely indistinguishable from normal background risks. Specific risk assessment results include the following:

- For recreators exposed to surface water, all COIs were below the conservative risk-based screening benchmarks. Therefore, none of the COIs evaluated in surface water are expected to pose an unacceptable risk to recreators in Coffeen Lake adjacent to the Site.
- For recreators exposed to sediment *via* incidental ingestion and dermal contact, the modeled sediment concentrations were below health-protective sediment benchmarks. Therefore, the modeled sediment concentrations are not expected to pose an unacceptable risk to recreators exposed to sediment in Coffeen Lake adjacent to the Site.
- For anglers consuming locally caught fish, the modeled concentrations of all COIs in surface water (as well as the measured data) were below conservative benchmarks protective of fish consumption. Therefore, none of the COIs evaluated are expected to pose an unacceptable risk to recreators consuming fish caught in Coffeen Lake.
- Ecological receptors exposed to surface water include aquatic and marsh plants, amphibians, reptiles, and fish. The risk evaluation showed that none of the modeled or measured COIs in surface water exceeded protective screening benchmarks. Ecological receptors exposed to sediment include benthic invertebrates. The modeled sediment COIs did not exceed the conservative screening benchmarks; therefore, none of the COIs evaluated in sediment are expected to pose an unacceptable risk to ecological receptors.

• Ecological receptors were also evaluated for exposure to bioaccumulative COIs. However, none of the ecological COIs were identified as having potential bioaccumulative effects. Therefore, these COIs are not considered to pose an ecological risk *via* bioaccumulation. Overall, this evaluation demonstrated that none of the COIs evaluated are expected to pose an unacceptable risk to ecological receptors.

It should be noted that this evaluation incorporates a number of conservative assumptions that tend to overestimate exposure and risk. The risk evaluation was based on the maximum detected COI concentration for each constituent; however, US EPA guidance states that risks should be based on a representative average concentration such as the 95% upper confidence limit on the mean. Thus, using the maximum concentration tends to overestimate exposure. Although the COIs identified in this evaluation also occur naturally in the environment, the contributions to exposure from natural background sources and nearby industry were not considered; thus, CCR-related exposures were likely overestimated. In addition, exposure estimates assumed 100% metal bioavailability, which likely results in overestimates of exposure and risks. Further, exposure estimates were based on inputs to evaluate the "reasonable maximum exposure"; thus, most individuals will have lower exposures than those estimated in this risk assessment.

Finally, it should be noted that because current conditions do not present a risk to human health or the environment, there will also be no unacceptable risk to human health or the environment for future conditions because AP2 was already closed in 2020. For all future closure scenarios, potential releases of CCR-related constituents will decline over time and, consequently, potential exposures to CCR-related constituents in the environment will also decline.

References

Austen, DJ; Peterson, JT; Newman, B; Sobaski, ST; Bayley, PB. [Illinois Natural History Survey]. 1993. "Compendium of 143 Illinois Lakes: Bathymetry, Physico-chemical Features, and Habitats. Volume 2 -Lakes in Regions 4 and 5 (Final)." Report to Illinois Dept. of Conservation, Division of Fisheries, Center for Aquatic Ecology. Aquatic Ecology Technical Report 93/9 (2); F-69-R(4-6) 273p., June.

European Chemicals Agency (ECHA). 2019. "Ecotoxicological information: Sediment toxicity: 001 Weight of evidence." In REACH dossier for Boron (CAS No. 7740-42-8). Accessed at https://echa.europa.eu/registration-dossier/-/registered-dossier/14776/6/3

European Chemicals Agency (ECHA). 2020. "REACH dossier for lithium (CAS No. 7439-93-2)." Accessed at https://echa.europa.eu/registration-dossier/-/registered-dossier/14178.

Geosyntec Consultants. 2021. "Draft Surface Water Analytical Results, Coffeen Site." August 3. 2p.

Golder Associates Inc. 2020. "Construction Completion Report, Unnamed Tributary Relocation at the Illinois Power Generating Company Coffeen Site." Report to Illinois Power Generating Co., 161p., November.

Hanson Professional Services Inc. 2020. "Antidegradation Assessment for Discharge of Gypsum Management Facility Waters to Coffeen Lake, Coffeen Power Plant, Illinois Power Generating Company, NPDES Permit No. IL000108." Report to Illinois Power Generating Co., Collinsville, IL. 37p., July 20.

Illinois Dept. of Natural Resources (IDNR). 2014. Coffeen Lake State Fish and Wildlife Area.

Illinois Dept. of Natural Resources (IDNR). 2022. "Coffeen Lake profile." Accessed at https://www.ifishillinois.org/profiles/waterbody.php?waternum=00600.

Illinois Environmental Protection Agency (IEPA). 2013. "Title 35: Environmental Protection, Subtitle F: Public Water Supplies, Chapter I: Pollution Control Board, Part 620: Ground Water Quality." Accessed at https://www.ilga.gov/commission/jcar/admincode/035/035006200D04200R.html.

Illinois Environmental Protection Agency (IEPA). 2019. "Title 35: Environmental Protection, Subtitle C: Water Pollution, Chapter I: Pollution Control Board, Part 302: Water Quality Standards." Accessed at https://www.epa.gov/sites/production/files/2019-11/documents/ilwqs-title35-part302.pdf.

Illinois Environmental Protection Agency (IEPA). 2021. "Standards for the disposal of coal combustion residuals in surface impoundments." Accessed at https://www.ilga.gov/commission/jcar/admincode/035/03500845sections.html.

Illinois State Geological Survey. 2024. "Illinois Water Well (ILWATER) Interactive Map." Accessed at https://prairie-research.maps.arcgis.com/apps/webappviewer/index.html?id=e06b64ae0c814ef3a4e43a 191cb57f87

GRADIENT

MacDonald, DD; Ingersoll, CG; Berger, TA. 2000. "Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems." *Arch. Environ. Contam. Toxicol.* 39:20-31. doi: 10.1007/s002440010075.

Natural Resource Technology, Inc. (NRT). 2017. "Hydrogeologic Site Characterization Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois." Report to Illinois Power Generating Co. (Coffeen, IL). 2380 Hydrogeologic Characterization Report 170124. 811p., January 24.

Oak Ridge National Laboratory (ORNL). 2023. "Risk Assessment Information System (RAIS) Toxicity Values and Physical Parameters Search: Chemical Toxicity Values." Report to US Department of Energy (DOE), Office of Environmental Management, Oak Ridge Operations Office. Accessed at https://rais.ornl.gov/cgi-bin/tools/TOX_search?select=chemtox.

Ramboll. 2020. "Corrective Measures Assessment, Revision 1, Coffeen Ash Pond No. 2, Coffeen Power Station, 134 Cips Lane, Coffeen, Illinois." Report to Illinois Power Generating Co.. 82p., November 30.

Ramboll. 2021. "Hydrogeologic Site Characterization Report, Ash Pond No. 1, Coffeen Power Plant, Coffeen, Illinois (Final)." Report to Illinois Power Generating Co. 700p., October 25.

Ramboll. 2024a. "Corrective Action Alternatives Analysis Supporting Information Report: Coffeen Power Plant, Ash Pond No. 2, IEPA ID No. W1350150004-02 (Draft)." Report to Illinois Power Generating Co. (Coffeen, IL). 81p., March 27.

Ramboll. 2024b. "Groundwater and surface water data for Ash Pond 2, Coffeen Power Plant, 2008-2023."

Stalcup, D. 2014. Memorandum to Superfund National Policy Managers, Regions 1-10 re: Human Health Evaluation Manual, Supplemental Guidance: Update of standard default exposure factors. US EPA, Office of Solid Waste and Emergency Response (OSWER), OSWER Directive 9200.1-120, February 6. Accessed at https://www.epa.gov/sites/production/files/2015-11/documents/oswer_directive_9200.1-120_exposurefactors_corrected2.pdf.

US Dept. of Agriculture (USDA). 2009a. "Aerial imagery of the Coffeen, IL area [Northeast]." National Agricultural Imagery Program. Accessed at https://earthexplorer.usgs.gov/.

US Dept. of Agriculture (USDA). 2009b. "Aerial imagery of the Coffeen, IL area [Southeast]." National Agricultural Imagery Program. Accessed at https://earthexplorer.usgs.gov/.

US Dept. of Energy (US DOE). 2019. "A Graded Approach for Evaluating Radiation Doses to Aquatic and Terrestrial Biota." DOE-STD-1153-2019. Accessed at https://www.standards.doe.gov/standards-documents/1100/1153-astd-2019/@@images/file.

US EPA. 1989. "Risk Assessment Guidance for Superfund (RAGS). Volume I: Human Health Evaluation Manual (Part A) (Interim final)." Office of Emergency and Remedial Response, NTIS PB90-155581, EPA-540/1-89-002, December.

US EPA. 1992. "Risk Assessment Guidance for Superfund: Supplemental Guidance to RAGS: Calculating the Concentration Term." Office of Emergency and Remedial Response, OSWER Directive 9285.7-08I, NTIS PB92-963373, May.

GRADIENT

US EPA. 1993. Memorandum to US EPA Directors and Regions re: Office of Water policy and technical guidance on interpretation and implementation of aquatic life metals criteria. Office of Water, EPA-822-F93-009, October 1.

US EPA. 1998. "Methodology for assessing health risks associated with multiple pathways of exposure to combustor emissions." National Center for Environmental Assessment (NCEA), EPA 600/R-98/137, December. Accessed at http://www.epa.gov/nceawww1/combust.htm.

US EPA. 2001. "Radionuclide Table: Radionuclide Carcinogenicity – Slope Factors (Federal Guidance Report No. 13 Morbidity Risk Coefficients, in Units of Picocuries)." Health Effects Assessment Summary Tables (HEAST) 72p. Accessed at https://www.epa.gov/radiation/radionuclide-table-radionuclide-carcinogenicity-slope-factors.

US EPA. 2002. "National Recommended Water Quality Criteria [NRWQC]: 2002. Human Health Criteria Calculation Matrix." Office of Water, EPA-822-R-02-012, November.

US EPA. 2004. "Risk Assessment Guidance for Superfund (RAGS). Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) (Final)." Office of Superfund Remediation and Technology Innovation, EPA/540/R/99/005, OSWER 9285.7-02EP; PB99-963312, July. Accessed at http://www.epa.gov/oswer/riskassessment/ragse/pdf/part_e_final_revision_10-03-07.pdf.

US EPA. 2011a. "IRIS Glossary." August 31. Accessed at https://ofmpub.epa.gov/ sor_internet/registry/termreg/searchandretrieve/glossariesandkeywordlists/search.do?details=&glossaryN ame=IRIS%20Glossary#formTop.

US EPA. 2011b. "Exposure Factors Handbook: 2011 Edition." Office of Research and Development, US EPA, National Center for Environmental Assessment (NCEA) EPA/600/R-090/052F. September. Accessed at https://www.epa.gov/expobox/about-exposure-factors-handbook.

US EPA. 2014. "Human and Ecological Risk Assessment of Coal Combustion Residuals (Final)." Office of Solid Waste and Emergency Response (OSWER), Office of Resource Conservation and Recovery, December. Accessed at http://www.regulations.gov/#!documentDetail;D=EPA-HQ-RCRA-2009-0640-11993.

US EPA. 2015a. "Hazardous and solid waste management system; Disposal of coal combustion residuals from electric utilities (Final rule)." *Fed. Reg.* 80(74):21302-21501, 40 CFR 257, 40 CFR 261, April 17.

US EPA. 2015b. "Human Health Ambient Water Quality Criteria: 2015 Update." Office of Water, EPA 820-F-15-001. June.

US EPA. 2015c. "Conducting a Human Health Risk Assessment." October 14. Accessed at http://www2.epa.gov/risk/conducting-human-health-risk-assessment#tab-4.

US EPA. 2019. "EPI Suite[™] - Estimation Program Interface." March 12. Accessed at https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface.

US EPA. 2020. "Preliminary Remediation Goals for Radionuclides (PRG): PRG Calculator." Accessed at https://epa-prgs.ornl.gov/cgi-bin/radionuclides/rprg_search. July 24.

US EPA. 2021a. "Secondary drinking water standards: Guidance for nuisance chemicals." January 7. Accessed at https://www.epa.gov/sdwa/secondary-drinking-water-standards-guidance-nuisance-chemicals.

US EPA. 2021b. Regional Screening Level (RSL) Summary Table (TR=1E-06, HQ=1). November. 11p. Accessed at https://semspub.epa.gov/work/HQ/401635.pdf.

US EPA. 2021c. "Regional Screening Levels (RSLs) - User's Guide." 82p. Accessed at https://www.epa.gov/risk/regional-screening-levels-rsls-users-guide. November.

US EPA. 2022. "National Recommended Water Quality Criteria - Aquatic Life Criteria Table." Accessed at https://www.epa.gov/wqc/national-recommended-water-quality-criteria-aquatic-life-criteria-table. January 6.

US EPA Region IV. 2018. "Region 4 Ecological Risk Assessment Supplemental Guidance (March 2018 Update)." Superfund Division, Scientific Support Section. March. Accessed at https://www.epa.gov/sites/production/files/2018-03/documents/era_regional_supplemental_guidance_report-march-2018_update.pdf.

US Geological Survey (USGS). 1998a. "Aerial imagery of the Coffeen, IL area [Northeast]." Accessed at https://earthexplorer.usgs.gov/.

US Geological Survey (USGS). 1998b. "Aerial imagery of the Coffeen, IL area [Southeast]." Accessed at https://earthexplorer.usgs.gov/.

US Geological Survey (USGS). 2005a. "Aerial imagery of the Coffeen, IL area [Northeast]." Accessed at https://earthexplorer.usgs.gov/.

US Geological Survey (USGS). 2005b. "Aerial imagery of the Coffeen, IL area [Southeast]." Accessed at https://earthexplorer.usgs.gov/.

Appendix A

Surface Water and Sediment Modeling

Gradient modeled concentrations in eastern Coffeen Lake surface water and sediment based on available groundwater data. First, Gradient estimated the flow rate of constituents of interest (COIs) that may flow into the eastern branch Coffeen Lake *via* groundwater. Then, Gradient adapted United States Environmental Protection Agency's (US EPA's) indirect exposure assessment methodology (US EPA, 1998) in order to model surface water and sediment water concentrations in Coffeen Lake.

Model Overview

Groundwater flow into Coffeen Lake is represented by a one-dimensional steady-state model. In this model, the groundwater plume migrates horizontally in the Uppermost Aquifer (UA) before flowing into the eastern branch of Coffeen Lake. The groundwater flow entering the lake is the flow going through a cross-sectional area with a length equal to the length of the lake adjacent to Ash Pond 2 (AP2) with potential CCR-related impacts and a height equal to the average saturated thickness of the UA. It was assumed that all the groundwater in the UA flowing through this cross-section flows into the eastern branch of Coffeen Lake.

Groundwater flow into Coffeen Lake mixes with the surface water in the lake. The COIs entering the lake *via* groundwater can dissolve into the water column, sorb to suspended sediments, or sorb to benthic sediments. Using US EPA's indirect exposure assessment methodology (US EPA, 1998), the model evaluates the surface water and sediment concentrations at a location downstream of the groundwater discharge, assuming a well-mixed water column.

Groundwater Discharge Rate

The groundwater discharge rate was evaluated using conservative assumptions. Gradient conservatively assumed that the groundwater concentrations were uniformly equal to the maximum detected concentration for each individual COI. Gradient ignored adsorption by subsurface soil and assumed that all the groundwater flowing through the uppermost aquifer flows into the lake.

 $0 = K \times i \times A$

For each groundwater unit, the groundwater flow rate into the lake was derived using Darcy's Law:

Q = Groundwater flow rate (m³/s)

- K = Hydraulic conductivity (m/s)
- i = Hydraulic gradient (m/m)
- A = Cross-sectional area (m²)

For each COI, the mass discharge rate into the lake was then calculated by:

$$m_c = C_c \times Q \times CF$$

where:

m_c	=	Mass discharge rate of the COI (mg/year)
C_c	=	Maximum groundwater concentration of the COI (mg/L)
CF	=	Conversion factors: 1,000 L/m ³ ; 31,557,600 s/year

The values of the aquifer parameters used for these calculations are provided in Table A.1. The calculated mass discharge rates were then used as inputs for the surface water and sediment partitioning model.

Surface Water and Sediment Concentration

Groundwater flowing into the lake gets diluted in the surface water flow. Constituents transported by groundwater into the surface water migrate into the water column and the bed sediments. The surface water model Gradient used to estimate the surface water and sediment concentrations is a steady-state model described in US EPA's indirect exposure assessment methodology (US EPA, 1998), and also used in US EPA's "Human and Ecological Risk Assessment of Coal Combustion Residuals" (US EPA, 2014). This model describes the partitioning of constituents between surface water, suspended sediments, and benthic sediments based on equilibrium partition coefficients. It estimates the concentrations of constituents in surface water, suspended sediments, and benthic sediments at steady-state equilibrium at a theoretical location downstream of the discharge point after complete mixing of the water column. In the analysis, Gradient used the partitioning coefficients given in Table J-1 of the US EPA CCR Risk Assessment for all COIs (US EPA, 2014). These coefficients are presented in Table A.2.

To be conservative, Gradient assumed that the constituents were not affected by dissipation or degradation once they entered the water body. The total water body concentration of the COI was calculated as (US EPA, 1998):

$$C_{wtot} = \frac{m_c}{V_f \times f_{water}}$$

where:

 C_{wtot} =Total water body concentration of the constituent (mg/L) m_c =Mass discharge rate of the COI (mg/year) V_f =Water body annual flow (L/year) f_{water} =Fraction of COI in the water column (unitless)

There are no flow records available for the eastern branch of Coffeen Lake. The flow rate was assumed to be the same as that estimated for the unnamed tributary (*i.e.*, 90 cfs) (Golder Associates Inc., 2020), which flows from north to south into the eastern branch of the lake. The surface water parameters are presented in Table A.3.

The fraction of COI in the water column was calculated for each COI using the sediment/water and suspended solids/water partition coefficients (US EPA, 2014, Table J-1). The fraction of COI in the water column is defined as (US EPA, 2014):

$$f_{water} = \frac{(1 + [K_{dsw} \times TSS \times 0.000001]) \times \frac{d_w}{d_z}}{\left([1 + (K_{dsw} \times TSS \times 0.000001)] \times \frac{d_w}{d_z}\right) + ([bsp + K_{dbs} \times bsc] \times \frac{d_b}{d_z})}$$

where:

K _{dsw}	=	Suspended sediment-water partition coefficient (mL/g)
K _{dbs}	=	Sediment-water partition coefficient (mL/g)
TSS	=	Total suspended solids in the surface water body (mg/L)
0.000001	=	Units conversion factor
d_w	=	Depth of the water column (m)
d_b	=	Depth of the upper benthic layer (m), set equal to 0.03 m (US EPA, 2014)
$d_z = d_w + d_b$	=	Depth of the water body (m)

bsp	=	Bed sediment porosity (unitless), set equal to 0.6 (US EPA, 2014)
bsc	=	Bed sediment particle concentration (g/cm ³), set equal to 1.0 g/cm ³ (US
		EPA, 2014)

The fraction of COIs dissolved in the water column (f_d) is calculated as (US EPA 2014):

$$f_d = \frac{1}{1 + K_{dsw} \times TSS \times 0.000001}$$

The values of the fraction of COIs in the water column and other calculated parameters are presented in Table A.4.

The total water column concentration (C_{wcTot}) of the COIs, comprising both the dissolved and suspended sediment phases, is then calculated as (US EPA, 2014):

$$C_{wcTot} = C_{wtot} \times f_{water} \times \frac{d_z}{d_w}$$

Finally, the dissolved water column concentration (C_{dw}) for the COIs is calculated as (US EPA, 2014):

$$C_{dw} = f_d \times C_{wcTot}$$

The dissolved water column concentration was then used to calculate the concentration of COIs sorbed to suspended solids in the water column (US EPA, 1998):

$$C_{sw} = C_{dw} \times K_{dsw}$$

where:

C_{sw}	=	Concentration sorbed to suspended solids (mg/kg)
C_{dw}	=	Concentration dissolved in the water column (mg/L)
K _{dsw}	=	Suspended solids/water partition coefficient (mL/g)

In the same way, using the total water body concentration and the fraction of COIs in the benthic sediments, the model derives the total concentration in benthic sediments (US EPA, 2014, Table J-1-12):

$$C_{bstot} = f_{benth} \times C_{wtot} \times \frac{d_z}{d_b}$$

where:

C _{bstot}	=	Total concentration in bed sediment $(mg/L \text{ or } g/m^3)$
C _{wtot}	=	Total water body concentration of the constituent (mg/L)
f _{benth}	=	Fraction of constituent in benthic sediments (unitless)
d_b	=	Depth of the upper benthic layer (m)
$d_z = d_w + d_b$	=	Depth of the water body (m)

This value can be used to calculate dry weight sediment concentration as follows:

$$C_{sed-dw} = \frac{C_{bstot}}{bsc}$$

where:

C _{sed-dw}	=	Dry weight sediment concentration (mg/kg)
C _{bstot}	=	Total sediment concentration (mg/L)
bsc	=	Bed sediment bulk density (default value of 1 g/cm ³ from US EPA, 2014)

The total sediment concentration is composed of the concentration dissolved in the bed sediment pore water (equal to the concentration dissolved in the water column) and the concentration sorbed to benthic sediments (US EPA, 1998).

The concentration sorbed to benthic sediments was calculated from (US EPA, 1998):

$$C_{sb} = C_{dbs} \times K_{dbs}$$

where:

C_{sb}	=	Concentration sorbed to bottom sediments (mg/kg)
C_{dbs}	=	Concentration dissolved in the sediment pore water (mg/L)
K _{dbs}	=	Sediments/water partition coefficient (mL/kg)

For each COI, the modeled total water column concentration, the modeled dry weight sediment concentration, and the modeled concentration sorbed to sediment are presented in Table A.5.

Groundwater Unit	Parameter	Name	Value	Unit	
Uppermost Aquifer	А	Cross-Sectional Area	960	m ²	
Uppermost Aquifer	i	Hydraulic Gradient	0.007	m/m	
Uppermost Aquifer	К	Hydraulic Conductivity	0.002	cm/s	

Table A.1 Parameters Used to Estimate Groundwater Discharge to Surface Water

Notes:

Cross-sectional area calculated by multiplying the average thickness of the UA (i.e., 3 ft or 0.91 m) by the length of AP2 intersecting Coffeen Lake (conservatively assumed to be the sum of the eastern and southern sides of AP2; about 1,050 m).

Source: Hydraulic gradient from Dynegy (2017) and hydraulic conductivity values from Ramboll (2021).

Constituent	Sediment-Water, Mean, K _{dbs}		Suspended Sediment-Water, Mean, K _{dsw}			
Constituent	Value (log ₁₀) (mL/g)	Value (mL/g)	Value (log ₁₀) (mL/g)	Value (mL/g)		
Metals						
Antimony	3.6	3.98E+03	4.8	6.31E+04		
Arsenic	2.4	2.51E+02	3.9	7.94E+03		
Beryllium	2.8	6.31E+02	4.2	1.58E+04		
Boron	0.8	6.31E+00	3.9	7.94E+03		
Cadmium	3.3	2.00E+03	4.9	7.94E+04		
Chromium	4.9	7.94E+04	5.1	1.26E+05		
Cobalt	3.1	1.26E+03	4.8	6.31E+04		
Lead	4.6	3.98E+04	5.7	5.01E+05		
Lithium	-	-	-	-		
Thallium	1.3	2.00E+01	4.1	1.26E+04		
Radionuclides						
Radium-226+228	-	7.40E+03	-	7.40E+03		
Other	Other					
Chloride	-	-	-	-		
Sulfate	-	-	-	-		

Table A.2 Partition Coefficients

Notes:

Source: US EPA (2014).

Lithium, chloride and sulfate do not readily sorb to soils and sediments. Consequently, sediment concentrations were not modeled for these constituents (K_d was assumed to be 0).

Parameter	Name	Value	Unit
TSS	Total Suspended Solids	3.2	mg/L
V _{fx}	Surface Water Flow Rate	8.04×10^{10}	L/yr
d _b	Depth of Upper Benthic Layer (default)	0.03	m
d_w	Depth of Water Column	5.70	m
dz	Depth of Water Body	5.73	m
bsc	Bed Sediment Bulk Density (default)	1	g/cm ³
bsp	Bed Sediment Porosity (default)	0.6	-
M _{TSS}	TSS Mass Per Unit Area ^a	0.0182	kg/m²
Ms	Sediment Mass Per Unit Area ^b	30	kg/m ²

Table A.3 Surface Water Parameters

Notes:

Source of default values: US EPA (2014).

Other sources: total suspended solids from Hanson Professional Services, Inc. (2020), surface water flow rate from Golder (2020), and depth of water column from Austen *et al.* (1993).

(a) Determined by multiplying total suspended solids, TSS by the depth of water column, d_w . (b) Determined by multiplying depth of upper benthic layer, d_b , with sediment bed particle concentration of 1 g/cc.

Table A.4 Calculated Parameters

	Fraction of Constituent	Fraction of Constituent	Fraction of Constituent
COI	in the Water Column	in the Benthic Sediments	Dissolved in the Water Column
	f water	$f_{benthic}$	f dissolved
Antimony	0.0542	0.9458	0.8320
Arsenic	0.436	0.564	0.975
Beryllium	0.2402	0.7598	0.9517
Boron	0.9657	0.0343	0.9752
Cadmium	0.1067	0.8933	0.7973
Chromium	0.0033	0.9967	0.7128
Cobalt	0.153	0.847	0.832
Lead	0.012	0.988	0.384
Lithium	0.997	0.003	
Thallium	0.906	0.094	0.961
Radionuclides			
Radium-226+228	0.026	0.974	0.977

Note:

COI = Constituent of Interest.

Table A.5 Surface Water and Sediment Modeling Results

соі	Groundwater Concentration (mg/L or pCi/L)	Mass Discharge Rate (mg/year or pCi/year)	Total Water Column Concentration (mg/L or pCi/L)	Concentration Sorbed to Bottom Sediments (mg/kg or pCi/kg)
Total Metals				
Antimony	6.60E-03	2.80E+04	3.50E-07	1.16E-03
Arsenic	1.30E-01	5.51E+05	6.89E-06	1.69E-03
Boron	3.10E-02	1.31E+05	1.64E-06	9.87E-04
Beryllium	2.12E+01	8.99E+07	1.12E-03	6.92E-03
Cadmium	2.80E-02	1.19E+05	1.48E-06	2.36E-03
Chromium	4.40E-01	1.87E+06	2.33E-05	1.32E+00
Cobalt	4.20E-01	1.78E+06	2.23E-05	2.33E-02
Lead	4.30E-02	1.82E+05	2.28E-06	3.49E-02
Lithium	3.20E-01	1.36E+06	1.70E-05	(a)
Thallium	4.00E-03	1.70E+04	2.12E-07	4.07E-06
Radionuclides				
Radium-226+228	8.66E+00	3.67E+07	4.59E-04	3.32E+00
Other				
Chloride	7.10E+02	3.01E+09	3.76E-02	(a)
Sulfate	4.60E+03	1.95E+10	2.44E-01	(a)

Notes:

pCi/kg = PicoCuries Per Kilogram; pCi/L = PicoCuries Per Liter.

(a) Lithium, chloride, and sulfate do not readily sorb to soil or sediment particles; a K_d value of 0 was used for the modeling.

Austen, DJ; Peterson, JT; Newman, B; Sobaski, ST; Bayley, PB. [Illinois Natural History Survey]. 1993. "Compendium of 143 Illinois Lakes: Bathymetry, Physico-chemical Features, and Habitats. Volume 2 -Lakes in Regions 4 and 5 (Final)." Report to Illinois Dept. of Conservation, Division of Fisheries, Center for Aquatic Ecology. Aquatic Ecology Technical Report 93/9 (2); F-69-R(4-6) 273p., June.

Dynegy Operating Co. 2017. "Letter to W. Buscher (Illinois EPA) re: Responses to IEPA's October 27, 2017 Comments on IPGC's February 1, 2017 Closure and Post-Closure Care Plans, Inactive Ash Pond No. 2, Coffeen Power Station." Report to Illinois Power Generating Co. 24p., November 21.

Golder Associates Inc. 2020. "Construction Completion Report, Unnamed Tributary Relocation at the Illinois Power Generating Company Coffeen Site." Report to Illinois Power Generating Co., 161p., November.

Hanson Professional Services Inc. 2020. "Antidegradation Assessment for Discharge of Gypsum Management Facility Waters to Coffeen Lake, Coffeen Power Plant, Illinois Power Generating Company, NPDES Permit No. IL000108." Report to Illinois Power Generating Co., Collinsville, IL. 37p., July 20.

Ramboll. 2021. "Hydrogeologic Site Characterization Report, Ash Pond No. 1, Coffeen Power Plant, Coffeen, Illinois (Final)." Report to Illinois Power Generating Co. 700p., October 25.

US EPA. 1998. "Methodology for assessing health risks associated with multiple pathways of exposure to combustor emissions." National Center for Environmental Assessment (NCEA), EPA 600/R-98/137, December. Accessed at http://www.epa.gov/nceawww1/combust.htm.

US EPA. 2014. "Human and Ecological Risk Assessment of Coal Combustion Residuals (Final)." Office of Solid Waste and Emergency Response (OSWER), Office of Resource Conservation and Recovery, December. Accessed at http://www.regulations.gov/#!documentDetail;D=EPA-HQ-RCRA-2009-0640-11993.

Appendix B

Screening Benchmarks

Variable	Recreator Soil Default Value	Form-input Value
A (PEF Dispersion Constant)	16.2302	16.8653
B (PEF Dispersion Constant)	18.7762	18.7848
City (Climate Zone)	Default	Chicago, IL (7)
C (PEF Dispersion Constant)	216.108	215.0624
Cover layer thickness for GSF (gamma shielding factor) cm	0 cm	0 cm
CF _{rec-fowl} (fowl contaminated fraction) unitless	1	1
CF _{rec-game} (game contaminated fraction) unitless	1	1
ED _{rec} (exposure duration - recreator) yr		26
EF _{rec} (exposure frequency - recreator) day/yr		60
f _{p-fowl} (fowl on-site fraction) unitless	1	1
f _{p-game} (land game on-site fraction) unitless	1	1
f _{s-fowl} (fraction of year fowl is on site) unitless	1	1
f _{s-game} (fraction of year land game is on site) unitless	1	1
MLF _{pasture} (pasture plant mass loading factor) unitless	0.25	0.25
t _{rec} (time - recreator) yr		26
TR (target risk) unitless	0.000001	0.000001
$F(x)$ (function dependent on U_m/U_t) unitless	0.194	0.182
PEF (particulate emission factor) m ³ /kg	1,359,344,438	1,560,521,177
Q/C_{wind} (g/m ² -s per kg/m ³)	93.77	98.431
A _s (acres)	0.5	0.5
Site area for ACF (area correction factor) m ²	1,000,000 m ²	1,000 m ²
ED _{rec} (exposure duration - recreator) yr		26
ED _{rec-a} (exposure duration - recreator adult) yr		20
ED _{resc-c} (exposure duration - recreator child) yr		6
EF _{rec} (exposure frequency - recreator) day/yr		60
EF _{rec-a} (exposure frequency - recreator adult) day/yr		60
EF _{rec-c} (exposure frequency - recreator child) day/yr		60
ET _{rec} (exposure time - recreator) hr/day		8
ET _{rec-a} (exposure time - recreator) hr/day		8
ET _{rec-c} (exposure time - recreator) hr/day		8
IFA _{rec-adi} (age-adjusted inhalation rate - recreator) m ³		9,200
IFS _{rec-adj} (age-adjusted soil intake rate - recreator) mg		63,720
IRA _{rec-a} (inhalation rate - recreator adult) m ³ /day	20	20
IRA _{rec-c} (inhalation rate - recreator child) m ³ /day	10	10
IRS _{rec-a} (soil intake rate - recreator adult) mg/day	100	33
IRS _{rec-c} (soil intake rate - recreator child) mg/day	200	67
t _{rec} (time - recreator) yr		26
TR (target risk) unitless	0.000001	0.000001
U _m (mean annual wind speed) m/s	4.69	4.65
Ut (equivalent threshold value)	11.32	11.32
V (fraction of vegetative cover) unitless	0.5	0.5

Table B.3.1 Recreator PRGs for Soil, input values

Notes:

IL = Illinois; PRG = Preliminary Remediation Goal; yr = year.

Table B.3.2 Recreator PRGs for Soil, Ra-226 and Ra-228

Isotope	ICRP Lung Absorption Type	Soil Ingestion Slope Factor (risk/pCi)	Inhalation Slope Factor (risk/pCi)	External Exposure Slope Factor (risk/yr per pCi/g)	Food Ingestion Slope Factor (risk/pCi)	Lambda (1/yr)	Half-life (yr)	1,000 m ² Soil Volume Area Correction Factor	0 cm Soil Volume Gamma Shielding Factor	Particulate Emission Factor (m ³ /kg)	Soil-to-plant transfer factor (pCi/g-fresh plant	Beef Transfer Factor (pCi/kg per pCi/d)	Poultry Transfer Factor (pCi/kg per pCi/d)	Ingestion PRG TR=1.0E-06 (pCi/g)	Inhalation PRG TR=1.0E-06 (pCi/g)	External Exposure PRG TR=1.0E-06 (pCi/g)	Total PRG TR=1.0E-06 (pCi/g)	Total PRG TR=1.0E-06 (mg/kg)	Total PRG TR=1.0E-06 (pCi/kg)
Ra-226	S	6.77E-10	2.82E-08	2.50E-08	5.14E-10	4.33E-04	1.60E+03	6.85E-01	1.00E+00	1.56E+09	1.95E-02	1.70E-03	-	2.32E+01	6.02E+03	4.10E+01	1.48E+01	1.50E-05	1.48E+04
Ra-228	S	1.98E-09	4.37E-08	3.43E-11	1.42E-09	1.21E-01	5.75E+00	1.00E+00	1.00E+00	1.56E+09	1.95E-02	1.70E-03	-	7.93E+00	3.89E+03	2.04E+04	7.91E+00	2.90E-08	7.91E+03
Notes:																			

d = Day; ICRP = International Commission on Radiological Protection; Ra = Radium; S = Slow; pCi = Picocurie; PRG = Preliminary Remediation Goal; TR = Target Risk; yr = Year.

Appendix B

Corrective Action Alternative Analysis – Supporting Information Report Intended for Illinois Power Generating Company 134 Cips Lane Coffeen, Illinois 62017

Date April 1, 2025

Project No. 1940110241-001

CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT ASH POND NO. 2 COFFEEN POWER PLANT IEPA ID NO. W1350150004-02

CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT IEPA ID NO. W1350150004-02

Project name	Coffeen Power Plant Ash Pond No. 2
Project no.	1940110241-001
Recipient	Illinois Power Generating Company
Document type	Corrective Action Plan
Revision	DRAFT
Date	April 1, 2025
Prepared by	Katlyn Nohr, Sarah Slagle-Garrett
Checked by	J. Austin Bond, PE
Approved by	Brian G. Hennings, PG
Description	Corrective Action Alternatives Analysis Supporting Information Report

J. Austin Bond, PE Qualified Professional Engineer Brian G. Hennings, PG Project Officer Hydrogeology Ramboll

Fifth Floor

USA

234 W. Florida Street

Milwaukee, WI 53204

T 414-837-3607 F 414-837-3608 https://ramboll.com

CONTENTS

1.	Introduction and Background	4
1.1	Plant and Site Information	4
1.2	CAAA-SIR Background and Scope	4
1.2.1	Identified Corrective Action Alternatives	4
1.2.2	Scope of CAAA-SIR	5
1.2.3	Criterion for Estimating Time to Achieve GWPS	6
1.3	Report Contents	6
2.	Alternative 1 Remedy: Source Control with Groundwater	
	Polishing	7
2.1	Supporting Groundwater Modeling and Time to Reach GWPS	7
2.2	Remedy Implementation	7
2.2.1	Remedy Implementation Schedule	9
2.2.2	Management of Extracted Groundwater	9
2.2.3	35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3)	
	Information	9
3.	Alternative 2 Remedy: Source Control with Upgradient	
	Barrier Wall and GWE Trench	11
3.1	Remedy Scoping and Groundwater Modeling Results	11
3.2	Remedy Implementation	12
3.2.1	Phase 1: Pre-Construction Activities	12
3.2.2	Phase 2: Corrective Action Construction	12
3.2.3	Phase 3: Corrective Action Operations, Maintenance, and Closeout	14
3.2.4	Remedy Implementation Schedule	16
3.2.5	Management of Extracted Groundwater	16
3.2.6	35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3)	
	Information	17
4.	Alternative 3 Remedy: Source Control with Horizontal GWE	
	Well	20
4.1	Remedy Scoping and Groundwater Modeling Results	20
4.2	Remedy Implementation	21
4.2.1	Phase 1: Pre-Construction Activities	21
4.2.2	Phase 2: Corrective Action Construction	21
4.2.3	Phase 3: Corrective Action Operations, Maintenance, and Closeout	23
4.2.4	Remedy Implementation Schedule	24
4.2.5	Management of Extracted Groundwater	24
4.2.6	35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3)	
	Information	25
5.	Material Quantity, Labor, and Mileage Estimates	27
6.	References	28

TABLES (WITHIN TEXT)

- Table A
 Feasibility-Level Implementation Schedule Alternative 1 Source Control with GWP
- Table BFeasibility-Level Implementation Schedule Alternative 2 Source Control with
Upgradient Barrier Wall and GWE Trench
- Table C
 Feasibility-Level Implementation Schedule Alternative 3 Source Control with Horizontal GWE Well

APPENDICES

- Appendix A Feasibility-Level Design Drawings for Alternative 2 and Alternative 3 Remedies
- Appendix B.1 Groundwater Modeling Technical Memorandum
- Appendix B.2 Groundwater Modeling Report (2022)
- Appendix C Material Quantity, Labor, and Mileage Estimates for Alternative 2 and Alternative 3 Remedies

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
40 C.F.R.	Title 40 of the Code of Federal Regulations
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2 ("the site")
bgs	below ground surface
BMP	best management practices
CAAA	Corrective Action Alternatives Analysis
CAAA-SIR	Corrective Action Alternatives Analysis Supporting Information Report
CAP	Corrective Action Plan
CCR	coal combustion residuals
CCR Rule	40 C.F.R. § 257 Subpart D
CIP	closure-in-place
CMA	Corrective Measures Assessment
COC	constituent of concern
COF	Coffeen Power Station
CPP	Coffeen Power Plant
GMF	Gypsum Management Facility (GMF)
Gradient	Gradient Corporation
GSP	Gypsum Stack Pond
GWE	groundwater extraction
GWP	groundwater polishing
GWPS	groundwater protection standard(s)
HDPE	high-density polyethylene
ID	identification
IDNR	Illinois Department of Natural Resources
IEPA	Illinois Environmental Protection Agency
IGPC	Illinois Power Generating Company
Kd	soil adsorption coefficient
LCU	lower confining unit
mL/g	milliliters per gram
NAVD88	North American Vertical Datum of 1988
NID	National Inventory of Dams
No.	number
NPDES	National Pollutant Discharge Elimination System
NRT	Natural Resource Technology, Inc.
O&M	operations and maintenance
Ramboll	Ramboll Americas Engineering Solutions, Inc.
RP	Recycle Pond
RS Means	RS Means Heavy Construction Cost Data
SI	surface impoundment
TDS	total dissolved solids
UA	uppermost aquifer
USEPA	United States Environmental Protection Agency
1. INTRODUCTION AND BACKGROUND

1.1 Plant and Site Information

Illinois Power Generating Company (IPGC) is the owner of the inactive coal-fired Coffeen Power Plant (CPP), also referred to as the Coffeen Power Station (COF), in Coffeen, Montgomery County, Illinois. IPGC intends to complete groundwater corrective action at the coal combustion residuals (CCR) surface impoundment (SI) Ash Pond number (No.) 2 (AP2), which is identified by Illinois Environmental Protection Agency (IEPA) identification (ID) No. W1350150004-02, CCR Unit ID 102, and National Inventory of Dams (NID) No. IL50723. Groundwater corrective action for COF AP2 will be performed under the requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845, Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments [1] and the requirements of Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257, herein referred to as the Federal CCR Rule [2].

1.2 CAAA-SIR Background and Scope

35 I.A.C. § 845 requires a Corrective Action Alternatives Analysis (CAAA) to be completed as part of remedy selection, pursuant to the requirements of 35 I.A.C. § 845.670(e). The CAAA for COF AP2 was prepared by Gradient Corporation (Gradient). Ramboll Americas Engineering Solutions, Inc. (Ramboll) has prepared this Corrective Action Alternatives Analysis Supporting Information Report (CAAA-SIR) to provide information requested by Gradient to support the CAAA for COF AP2.

This CAAA-SIR was prepared to address specific constituents of concern (COCs) where exceedances¹ of the 35 I.A.C. § 845.600 groundwater protection standards (GWPS) have been detected in the COF AP2's groundwater compliance monitoring wells.

This CAAA-SIR is a feasibility-level assessment utilized to evaluate multiple groundwater corrective action alternatives. The remedy that is ultimately selected within the CAAA, to which this CAAA-SIR is attached, was then further developed into a permit-level remedy within the Corrective Action Plan (CAP), to which the CAAA is attached. Therefore, there may be minor differences in information presented for the selected remedy between this CAAA-SIR and the CAP. Information that may be different includes, but is not limited to, groundwater quality data, groundwater modeling inputs and results, implementation schedules, time to reach GWPS, the physical dimensions and scope of the remedy, and engineering design parameters. These differences are due to the further remedy refinement that is inherent with advancing the selected alternative into the permit-level remedy that is included within the CAP.

1.2.1 Identified Corrective Action Alternatives

Corrective action remedies selected for evaluation within this CAAA-SIR include:

• Alternative 1: Source control with groundwater polishing (GWP);

¹ Throughout this document, "exceedance" or "exceedances" is intended to refer only to potential exceedances of proposed applicable background statistics or GWPSs as described in the proposed groundwater monitoring program, which was submitted to the IEPA on October 25, 2021 as part of IPGC's operating permit application for COF AP2. That operating permit application, including the proposed groundwater monitoring program, remains under review by the IEPA and, therefore, IPGC has not identified any actual exceedances

- Alternative 2: Source control with upgradient barrier wall with groundwater extraction (GWE) trench; and
- Alternative 3: Source control with horizontal GWE well.

Multiple remedies were evaluated in the Corrective Measures Assessment (CMA) prepared by Ramboll and attached to the CAAA prepared by Gradient, including source control with GWP, source control with GWE, source control with groundwater cutoff wall, and source control with insitu chemical treatment.

Out of these remedies, source control with GWP, source control with GWE, and source control with groundwater cutoff wall were identified for further assessment, while the remaining remedy was determined to be infeasible. As part of the further assessment performed during this CAAA-SIR modeling and development, the following adjustments were made to the remedies identified by the CMA:

- Following groundwater modeling, the source control with groundwater cutoff wall remedy was determined to be infeasible for attaining GWPS in a reasonable amount of time without a supplementary hydraulic control method. The source control with groundwater cutoff wall remedy expanded into the upgradient barrier wall with GWE trench remedy.
- The source control with GWE remedy was further refined into the source control with horizontal GWE well remedy. The remedy includes an alternate method of GWE well installation via horizontal directional drilling, which would significantly reduce disturbance of the completed final cover system while allowing for targeted installation near the CCR/native soil interface beneath AP2. Additional information on the modified remedy is provided in **Section 4**.

Other remedies, including source control with in-situ treatment (permeable reactive barrier or chemical treatment), were determined to be infeasible for the site during the CMA process.

1.2.2 Scope of CAAA-SIR

Ramboll completed the following tasks and documented the tasks within this CAAA-SIR, for each of the corrective action alternative remedies listed in **Section 1.2.1**:

- Feasibility-level design drawings (**Appendix A**) were developed to show the approximate extents and typical sections/details of the Alternative 2 remedy (source control with upgradient barrier wall and GWE trench) and the Alternative 3 remedy (source control with horizontal GWE well). Drawings were not prepared for the Alternative 1 remedy as it does not involve construction at the site.
- Narratives describing the implementation of each remedy were developed, including the predesign, design, construction, operations and maintenance (O&M), and closeout phases.
- Feasibility-level schedules providing the estimated time to implement the remedy were developed, including design, permitting, construction, and post-construction O&M.
- Feasibility-level plans for the management of extracted groundwater were developed for alternatives that include the generation of extracted groundwater.
- Information required to evaluate specific portions of 35 I.A.C. § 845.670(e) requirements were prepared, as requested by Gradient, including 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3).

• Estimates of implementation-based equipment mileage, vehicle delivery mileage, labor hour, and labor commuting mileage, were developed for each remedy alternative where physical construction and/or O&M activities are expected to occur.

All remedies presented in this CAAA-SIR are in conjunction with source control for the AP2, which was completed in 2020 [3] in accordance with the closure plan and supporting groundwater modeling that was submitted to and approved by IEPA in 2018 [4, 5]. Source control was the primary corrective action completed for AP2 and utilized a closure-in-place (CIP) approach. The CIP approach included capping AP2 with a geosynthetic and soil final cover system [6].

1.2.3 Criterion for Estimating Time to Achieve GWPS

Times to achieve GWPS for each of the remedial alternative remedies were estimated using monitoring wells within the existing AP2 compliance monitoring system. This approach was utilized to provide a consistent comparison of the estimated time to reach GWPS for each remedy, as required by 35 I.A.C. § 845.670(e)(f).

Closure for AP2 serves as the primary corrective action for the unit and was completed in 2020, as discussed in **Section 1.2.2**. Supplemental remedial alternatives for AP2 will need to be integrated with the completed closure. This affects the time to reach GWPS for each remedy, as the timeframe for each remedial alternative to become functional varies significantly based on the required level of remedy permitting, design, and construction, or lack thereof. To provide a simplified comparative framework for the remedial alternatives, the groundwater modeling provided in **Appendix B.1** used a remedial action start date of 2024, in order to provide a normalized estimate of time to reach GWPS between the various remedies.

1.3 Report Contents

The following information is included within this report:

- Section 1 includes the introduction and background;
- Section 2 includes information for the Alternative 1 remedy: source control with GWP;
- **Section 3** includes information for the Alternative 2 remedy: source control with upgradient barrier wall and GWE trench;
- Section 4 includes information for the Alternative 3 remedy: source control with horizontal GWE well;
- Section 5 includes information used to develop estimates of material quantities, labor hours, and mileage; and
- Section 6 includes reference documents used in the development of this CAAA-SIR.

2. ALTERNATIVE 1 REMEDY: SOURCE CONTROL WITH GROUNDWATER POLISHING

The Alternative 1 remedy, source control with GWP, includes the completed source control and GWP. GWP is a remedial alternative that relies on natural geochemical processes and can be an appropriate remedy as recognized by the United States Environmental Protection Agency (USEPA) in a final policy directive for groundwater remediation [7]. GWP has been naturally occurring at AP2 since source control was completed in 2020. For the purposes of this CAAA-SIR, the Alternative 1 remedy would involve formalizing the ongoing natural GWP processes with adaptive management as the corrective action remedy for the AP2.

2.1 Supporting Groundwater Modeling and Time to Reach GWPS

The COCs exceeding the GWPS at compliance groundwater monitoring wells as of the 2024 Annual Report [8] are boron, cobalt, pH, sulfate, and TDS. In 2017, groundwater modeling conducted by Natural Resource Technology, Inc. (NRT) simulated the fate and transport of boron to support the closure of AP2 [9]. In 2024, Ramboll updated this model, using sulfate as the constituent to evaluate the effectiveness of both the completed closure scenario and corrective action alternatives (Appendix B.2). Sulfate has been detected in AP2 groundwater at the highest concentrations relative to its GWPS and will likely take the longest time to meet the GWPS (Appendix B.1). Sulfate was therefore identified as a surrogate for the exceedances of boron, cobalt, pH, and TDS, as described in the Groundwater Modeling Technical Memorandum. For modeling purposes, it was assumed that sulfate would not significantly sorb or chemically react with aquifer solids (soil adsorption coefficient [Kd] was set to 0 milliliters per gram [mL/g]) which is a conservative estimate for predicting contaminant transport times in the model. Sulfate transport is likely to be affected by both chemical and physical attenuation mechanisms (i.e., adsorption and/or precipitation reactions as well as dilution and dispersion) (Appendix B.1). Physical attenuation (dilution and dispersion) of contaminants in groundwater is simulated in the groundwater computer models. Chemical attenuation mechanisms and their effect on modeled times for exceedances to reach the GWPS are discussed in the Groundwater Polishing Evaluation Report [10] and discussed herein.

Groundwater modeling for the Alternative 1 remedy performed to support the closure plan for AP2 was updated to included additional data collected since the 2017 modeling was completed (**Appendix B.1**). Modeling results estimated that GWPS will be met in approximately 135 years for all wells within the existing AP2 monitoring well network.

2.2 Remedy Implementation

Implementation of the source control portions of this remedy (*e.g.*, final closure of AP2) was completed in 2020. Although a formal groundwater polishing remedy has not yet been initiated and approved by IEPA, natural geochemical attenuation processes have been ongoing since the closure was completed. Implementation of GWP would include performing corrective action groundwater monitoring, enacting an adaptive management strategy, and, after GWPS have been met, performing corrective action closure and completion activities. Information associated with each of these activities is described below.

Corrective Action Groundwater Monitoring

- Regular corrective action groundwater monitoring would be conducted utilizing a corrective action groundwater monitoring well network designed in accordance with 35 I.A.C. §
 845.680(c), which specifies that wells must be installed in the plume of contamination that lies beyond the waste boundary.
 - Samples would be collected for major ions for evaluating groundwater chemistry and COCs. Samples would be collected on a quarterly basis initially and potentially reduced to a semiannual basis once five years of monitoring have occurred, in accordance with 35 I.A.C. § 845.650(b)(4).
 - Monitoring results would be submitted to IEPA for each monitoring event, in addition to an annual groundwater monitoring and corrective action report, in accordance with 35 I.A.C. § 845.610(e).
 - Routine maintenance of the monitoring well network would occur during the monitoring period. This would include inspecting the wells, making repairs to the wells (as and if needed), and rehabilitating and/or replacing wells to improve performance (as and if needed).
- Adaptive Management during Monitoring
 - Groundwater monitoring results would be evaluated and documented in in the monitoring reports submitted to IEPA, in accordance with 35 I.A.C. § 845.610(e).
 - Remedy progress evaluation as part of adaptive site management may include additional investigation to inform updates to the conceptual site, groundwater, and geochemical models.
 - If remedy progress does not correspond with expectations, additional methods or techniques to achieve compliance with GWPS would be evaluated and, if feasible, implemented in accordance with 35 I.A.C. § 845.680(b).
- Corrective Action Confirmation Monitoring and Completion
 - After GWPS have been met for all corrective action monitoring wells, corrective action confirmation groundwater monitoring would be implemented. This would include monitoring each well for three additional years to confirm that GWPS have been achieved, in accordance 35 I.A.C. § 845.680(c).
 - After completion of the corrective action confirmation monitoring period, a Corrective Action Completion Report and Certification would be prepared and submitted to IEPA, in accordance with 35 I.A.C. § 845.680(e).

2.2.1 Remedy Implementation Schedule

A feasibility-level implementation schedule for the Alternative 1 source control with GWP remedy is provided in **Table A** below.

Table A. Feasibility-Level Implementation Schedul	le – Alternative 1: Source Control with GWP
---	---

Implementation Phase	Implementation Task	Timeframe (Preliminary Estimates)
Corrective Action	Corrective Action Monitoring (Time to Meet GWPS)	1,620 months
Implementation		(135 years)
	Corrective Action Confirmation Monitoring	36 months
	Corrective Action Completion	6 months
	Timeframe to Complete Corrective Action	1,662 months (139
	Implementation	years)
	Total Timeline to Complete Corrective Action	1,662 months
	(after approval of Corrective Action Plan)	(139 years)

2.2.2 Management of Extracted Groundwater

No groundwater extraction would occur under this remedy.

2.2.3 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3) Information

As requested by Gradient, the following information required by 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3) has been developed for the remedy. The information was developed based on preliminary-level information contained within the CMA for AP2 and then refined based on additional feasibility-level design activities performed as part of the development of this CAAA-SIR.

- Potential Need for Replacement of the Remedy 35 I.A.C. § 845.670(e)(1)(H)
 - No replacement of the remedy would be required for source control with GWP, as a physical remedy would not be constructed.
- Degree of Difficulty Associated with Constructing the Remedy 35 I.A.C. § 845.670(e)(3)(A)
 - No construction would be required with the source control with GWP remedy; therefore, there is no difficulty in construction of the remedy.
- Expected Operational Reliability of the Remedy 35 I.A.C. § 845.670(e)(3)(B)
 - As documented in the Groundwater Polishing Evaluation Report [10], groundwater geochemical processes anticipated to occur as downgradient groundwater approaches ambient background conditions are not expected to delay the modeled time to achieve GWPS compliance.
 - GWP would begin once source control has been completed without delays and continuously function during the corrective action period.
- Need to Coordinate with and Obtain Necessary Approvals and Permits from Other Agencies -35 I.A.C. § 845.670(e)(3)(C)

- No permits from other agencies would be required.
- Availability of Necessary Equipment and Specialists 35 I.A.C. § 845.670(e)(3)(D)
 - Equipment and specialists for field data collection and groundwater sampling are required for the GWP alternative. Laboratory equipment and specialists will also be required to assess groundwater concentrations of site constituents. Groundwater professionals (*i.e.*, geologists, hydrogeologists, statisticians, geochemists) would be required to perform statistical analysis and other assessments to confirm that GWP is functioning as intended and prepare corrective-action related groundwater monitoring and progress reports.
 - The equipment and specialists required for site groundwater monitoring and analysis are currently performing this work as part of the routine groundwater monitoring program in accordance with 35 I.A.C. § 845.220(c)(4). Therefore, no new equipment or specialists are required for groundwater monitoring for this alternative.
- Available Capacity and Location of Needed Treatment, Storage, and Disposal Services 35 I.A.C. § 845.670(e)(3)(E)
 - No treatment, storage, or disposal services would be required with the source control with GWP remedy, as GWP would not generate any appreciable volume of waste or wastewater.

3. ALTERNATIVE 2 REMEDY: SOURCE CONTROL WITH UPGRADIENT BARRIER WALL AND GWE TRENCH

The Alternative 2 remedy, source control with upgradient barrier wall and GWE trench, would include the construction of a barrier wall that would be located adjacent to the northern and western sides of AP2 with a GWE trench running parallel to and hydraulically downgradient of the barrier wall. The barrier wall and extraction trench would be constructed from grade surface down to approximately 8 feet below ground surface (bgs) (approximate elevation 615 feet²), in order to penetrate the uppermost aquifer (UA). The extraction trench and barrier wall are both expected to be on the order of 2 to 3 feet thick, with approximately 1 to 2 feet of separation between them. The purpose of the combined extraction trench and barrier wall is to prevent the flow of groundwater towards AP2 from the northwest, while providing a means to capture groundwater and reduce hydraulic head beneath AP2, which would accelerate achieving GWPS.

The GWE trench portion of the remedy would be constructed by excavating existing subgrade soils, installing a horizontal collection pipe in the trench, backfilling with clean granular fill, and placing a compacted clay cap over the trench to reduce surface water infiltration. The collection pipe will drain to sumps spaced throughout the trench with an extraction pump within each sump. Extracted groundwater would be routed via conveyance piping to a new on-site lined settling pond and discharged through either a new or existing outfall, where it would be managed in accordance with site National Pollutant Discharge Elimination System (NPDES) permits.

The barrier wall portion of the remedy would be constructed adjacent to the extraction trench by mixing in-situ soils with a low-permeability mixture down to the target elevation. The upgradient barrier wall is intended to reduce the flow of groundwater towards AP2 and reduce the volume of groundwater that needs to be extracted from the trench.

A feasibility-level drawing of the source control with upgradient barrier wall and GWE trench remedy is provided as **Figure 1** in **Appendix A.**

3.1 Remedy Scoping and Groundwater Modeling Results

The location of the barrier wall and GWE trench were selected by reviewing physical constraints around AP2 and designating locations on IPGC property where the barrier wall and extraction trench could feasibly be constructed with limited impacts to other site features. The location was additionally selected to avoid sensitive areas such as wetlands and floodplains [11, 12] and avoid areas with steep slopes and/or limited access which could increase construction complexity and risk. This assessment identified that the barrier wall and GWE trench could not be constructed south of AP2 because of the limited space between the toe of the dike and the former CPP cooling water discharge flume. Construction in this area could not be performed without major dike modifications and geotechnical considerations.

Assessment of physical constraints resulted in the barrier wall and GWE trench alignments being located within the open area along the access road to the north of AP2 and between the access road and the dikes west of AP2. These areas provide a generally straight and level alignment for construction of the barrier wall and GWE trench. The location of the barrier wall and GWE trench

² All elevations in this report are referenced to North American Vertical Datum of 1988 (NAVD88), unless otherwise noted.

is generally perpendicular to existing groundwater flow patterns between the Gypsum Management Facility (GMF) Recycle Pond (RP) and AP2.

The depth of the barrier wall and GWE trench was selected based on interception with the existing groundwater table and the base of the UA. The surface elevation at the base of the northern AP2 CIP berm (approximate elevation 623 feet) results in an extraction trench and cutoff wall depth of approximately 8 feet bgs to terminate at the bottom of the UA (approximate elevation 615 feet) in order to reduce the flow of off-site groundwater into the AP2 footprint from the north/west and to direct groundwater from beneath the AP2 footprint into the trench.

Groundwater modeling for the Alternative 2 remedy (**Appendix B.1**) estimated that GWPS will be met approximately 59 years after remedy construction for all wells within the existing AP2 monitoring well network.

3.2 Remedy Implementation

Implementation of the Alternative 2 source control with upgradient barrier wall and GWE trench remedy is expected to include multiple tasks spread out over three phases, including preconstruction activities (Phase 1), corrective action construction (Phase 2), and corrective action operations, maintenance, and closeout (Phase 3). Information for each phase is described in this section.

3.2.1 Phase 1: Pre-Construction Activities

Pre-construction activities would include further pre-design investigation, obtaining permits from other agencies, completing the final design of the remedy, and selecting a remedy implementation contractor via a bidding process. Information associated with each of these activities is described below.

- Completing pre-design investigation, final design and bid activities, including:
 - Completion of final pre-design subsurface investigations, laboratory soil testing, cutoff wall backfill mix design bench testing, engineering calculations, design drawings, specifications, and a construction quality assurance plan.
 - Bidding and selection of a GWE trench and barrier wall construction contractor.
- Obtaining permits from other agencies including:
 - A general stormwater permit for construction site activities through IEPA, including construction stormwater controls and other best management practices (BMPs) such as silt fences and other measures.
 - An Illinois Department of Natural Resources (IDNR) Office of Water Resources, Dam Safety modification permit may need to be obtained, for construction of the GWE trench and barrier wall in the vicinity of the embankment.
 - A modification to the site's NPDES permit would be obtained to accept discharge of extracted groundwater for the operational lifetime of the GWE trench.

3.2.2 Phase 2: Corrective Action Construction

Corrective action construction would be initiated after pre-construction activities are complete. It will include mobilizing construction equipment to the site, preparing the site for construction

activities, construction of the GWE trench (the trench and associated mechanical elements and piping installation), construction of the barrier wall, construction of a settling pond, and performing post-construction and site restoration activities.

Information associated with each of these activities is described below.

- The contractor would mobilize equipment and materials to the site, install stormwater BMPs around the construction area, construct a staging and laydown area, and construct a level working platform and/or temporary construction access roads along the GWE trench/barrier wall alignment.
- Construction of the working platform would include removing, relocating, or modifying existing site infrastructure that may conflict with the construction of the GWE trench/barrier wall, grading to ensure a level working platform, and placing a granular fill working pad to support trench installation equipment. The existing road surfaces along the wall alignment would be saw-cut where necessary for GWE trench/barrier wall construction.
- The approximately 3,300-foot long GWE trench would be installed along the northern and western perimeter of AP2. For the purposes of this CAAA-SIR, the GWE trench was assumed to be installed using one-pass technology, although other installation methods may be evaluated during a later phase of design.
 - The GWE trench would be excavated to an approximate depth of 8 feet bgs (elevation 615 feet), terminating at the bottom of the UA. The trench would be on the order of 2 to 3 feet wide.
 - Sump locations would be installed along the trench, spaced approximately 500 feet apart.
 Sumps would consist of a vertical pit to collect water, a discharge line, a pneumatic pump to pump water to the conveyance line, and a common air compressor to drive the pumps.
 - Perforated 6-inch-diameter high-density polyethylene (HDPE) collection pipe would be installed approximately 8 inches from the bottom of the trench at a very slight grade (approximately 0.5 to 2 percent) towards the sump locations.
 - Simultaneously with pipe installation, in-situ soils would be removed, and the trench would be backfilled with granular material consisting of premixed sand and gravel.
 - The trench would be backfilled with clean granular material and capped to reduce surface water infiltration into the trench.
 - \circ $\,$ Where the trench is located within a site access road, the cap would include asphalt or concrete.
 - Where the trench is located outside of a site access road, the cap would include lowpermeability clay and topsoil at the surface or a more erosion-resistant material (*i.e.*, a turf-reinforced mat or gravel).
- Following the installation of the GWE trench, an approximately 3,300-foot adjacent barrier wall would be installed on the outer (hydraulically upgradient) side of the trench. For the purposes of this CAAA-SIR, the barrier wall was assumed to be installed using one-pass technology, although other installation methods may be evaluated during a later phase of design.

- A temporary on-site batch plant and/or material handling system would be established for the purpose of generating low permeability backfill for the barrier wall. This would include either mixing bentonite with the subgrade soils or producing a cement-bentonite slurry to place into the wall.
- In-situ soils would be either mixed with bentonite or removed and backfilled with a cement-bentonite or soil-bentonite mixture.
- The wall would likely be constructed in one continuous unit along the western side of AP2, and one continuous unit along the northern side. The wall would be on the order of 2 to 2.5 feet thick and 8 feet deep in order to tie into the lower confining unit (LCU).
- Excavated soils (*e.g.*, spoils) from the GWE trench and barrier wall installations would be placed into off-road dump trucks and hauled to the on-site landfill for disposal.
- An approximately 1-acre settling pond for management of extracted groundwater was assumed to be constructed using conventional construction equipment. However, other groundwater treatment and management technologies may be evaluated during a later phase of design. A temporary wastewater treatment plant that is being constructed on-site to treat existing CCR-contact water within the GMF Gypsum Stack Pond (GSP) and adjacent GMF RP is not expected to operate post-closure, and therefore was assumed to be unavailable for treating extracted groundwater from the GWE trench.
 - The location of the settling pond would be selected to limit adverse impacts or conflicts with future solar redevelopment and other existing and future site infrastructure. The precise location of the pond will be evaluated during later phases of design.
 - The settling pond would be approximately 1 acre in size and 2 feet deep. Soils would be
 mechanically excavated from the settling pond and used to create 10-foot-wide berms
 around the perimeter of the settling pond to contain extracted groundwater. All excavated
 soils from the settling pond would be managed within the settling pond footprint.
 - A geomembrane liner system would be installed in the settling pond to reduce the potential for releases of extracted groundwater.
 - Fused HDPE piping would be used to convey groundwater from the GWE trench to the settling pond and from the settling pond to the appropriate NPDES outfall. This would include the installation of electrical, mechanical, and pneumatic infrastructure to operate the conveyance piping system.
- Site restoration would be completed following the installation of the barrier wall and GWE trench. This would include repairing site infrastructure that was relocated or damaged during construction, restoration of the road surfaces, and minor regrading and seeding of disturbed areas.
 - Temporary BMPs would be installed during the site restoration period, if required in accordance with site land disturbance permits. The BMPs would be removed once vegetation is established.

3.2.3 Phase 3: Corrective Action Operations, Maintenance, and Closeout

Corrective action operations, maintenance, and closure would be initiated after corrective action construction is completed. It would include performing corrective action groundwater monitoring,

and, after GWPS have been met, performing corrective action closeout and completion activities. Information associated with each of these activities is described below.

- Corrective Action O&M
 - Continued operation of the GWE trench and barrier wall system would require routine scheduled inspections and associated maintenance including, but not limited to, totalizer data collection, filter system maintenance (if needed), and maintenance of extraction pumps, as well as other system components.
 - Non-routine maintenance that may occur during extended operation of the GWE trench may include tasks such as repair or replacement of the extraction and/or transfer pumps, repair or replacement of the system air compressor, and flushing or jetting of water conveyance lines in the event organic or inorganic solids accumulate on the interior walls.
 - Routine monitoring and compliance activities associated with the treatment and discharge of extracted water via the site's NPDES permit.
- Corrective Action Monitoring
 - Regular corrective action groundwater monitoring would be conducted using a corrective action groundwater monitoring well network designed in accordance with 35 I.A.C. § 845.680(c), which specifies that wells must be installed within the plume of contamination that lies beyond the waste boundary.
 - Samples would be collected for major ions for evaluating groundwater chemistry and COCs. Samples will be collected on a quarterly basis initially and potentially reduced to a semiannual basis once five years of monitoring have occurred, in accordance with 35 I.A.C. § 845.650(b)(4).
 - Monitoring results would be submitted to IEPA after each monitoring event, in addition to an annual groundwater monitoring and corrective action report, in accordance with 35 I.A.C. § 845.640(e). The annual corrective action report would include an evaluation of the actual performance of the remedy relative to the remedy's expected performance.
 - Routine maintenance of the monitoring well network would be conducted during the monitoring period. This would include inspecting the wells, making repairs to the wells (as and if needed), and rehabilitation and/or replacing the wells to improve performance (as and if needed).
 - If the remedy does not achieve its expected performance, additional methods or techniques to achieve compliance with GWPS would be evaluated and, if feasible, implemented in accordance with 35 I.A.C. § 845.680(b).
- Adaptive Management during Monitoring
 - Groundwater monitoring results would be evaluated and documented in in the monitoring reports submitted to IEPA, in accordance with 35 I.A.C. § 845.610(e).
 - Remedy progress evaluation as part of adaptive site management may include additional investigation to inform updates to the conceptual site, groundwater, and geochemical models.

- If remedy progress does not correspond with expectations, additional methods or techniques to achieve compliance with GWPS would be evaluated and, if feasible, implemented in accordance with 35 I.A.C. § 845.680(b).
- Corrective Action Completion
 - After GWPS have been met for all compliance wells for a period of three years, corrective action would be considered complete, per 35 I.A.C. § 845.680(c).
 - After completion of the corrective action confirmation monitoring period, a Corrective Action Completion Report and Certification would then be submitted to IEPA, in accordance with 35 I.A.C. § 845.680(e).

3.2.4 Remedy Implementation Schedule

A feasibility-level implementation schedule for the Alternative 2 source control with upgradient barrier wall and GWE trench remedy is provided in **Table B** below.

Implementation Phase	Implementation Task	Timeframe (Preliminary Estimates)
1: Pre-	Agency Coordination, Approvals, and Permitting	18 to 24 months
Construction	Final Design and Bid Process	24 to 36 months
Activities	Timeframe to Complete Corrective Pre- Construction Activities	42 to 60 months after CAP Approval
2: Corrective	Corrective Action Construction	6 to 12 months
Action Construction	Timeframe to Complete Corrective Action Construction	6 to 12 months after completion of pre- construction activities.
3: Corrective Action O&M and Closeout	Corrective Action Monitoring (Time to Meet GWPS)	708 months (59 years)
	Corrective Action Confirmation Monitoring	36 months
	Corrective Action Completion	6 months
	Timeframe to Complete Corrective Action O&M and Closeout	750 months (63 years)
Total Timel	ine to Complete Corrective Action (after approval of Construction Permit Application)	798 to 822 months (67 to 69 years)

Table B. Feasibility-Level Implementation Schedule – Alternative 2: Source Control withUpgradient Barrier Wall and GWE Trench

3.2.5 Management of Extracted Groundwater

Extracted groundwater from the trench was assumed to be managed and treated by a newly constructed on-site settling pond, although other treatment technologies may be evaluated at a later phase of design. The settling pond would need to be sited to avoid conflict with planned solar redevelopment, other site infrastructure, and closure activities related to AP1 and other SIs at CPP. A settling pond of approximately 1 acre in size was assumed to be sufficient to allow sediments to settle from extracted groundwater prior to discharge. Groundwater collected from the extraction well network would be sent to the settling pond via the pneumatic extraction

pumps and transfer piping. Treated water would be discharged via a NDPES outfall, in accordance with site-specific NPDES permit requirements [13].

3.2.6 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3) Information

As requested by Gradient, the following information required by 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3) has been developed for the remedy. The information was developed based on preliminary-level information contained within the CMA for COF AP2 and then refined based on additional feasibility-level design activities performed as part of the development of this CAAA-SIR.

- Potential Need for Replacement of the Remedy 35 I.A.C. § 845.670(e)(1)(H)
 - The upgradient barrier wall and GWE trench would be unlikely to require replacement of the remedy, as the barrier wall would be a robust, engineered, and maintenance-free subsurface structure.
 - No replacement of the GWE trench is expected to be required, although the trench would require ongoing monitoring and maintenance to retain its effectiveness.
- Degree of Difficulty Associated with Constructing the Remedy 35 I.A.C. § 845.670(e)(3)(A)
 - The remedy would require use of specialized contractors and equipment (*i.e.*, one-pass trenching/barrier wall contractor and equipment) for the installation of the trench and barrier wall, in addition to general construction equipment (*i.e.*, excavation and grading equipment).
- Expected Operational Reliability of the Remedy 35 I.A.C. § 845.670(e)(3)(B)
 - The GWE trench and barrier wall system is expected to have a high operational reliability if it is constructed in accordance with the design and specifications.
 - The barrier wall provides an inert, continuous, low-permeability barrier to groundwater flow which is not expected to need maintenance.
 - The GWE trench system is a mechanical system that would require routine maintenance to reliably operate, as outlined in **Section 3.2.3**.
- Need to Coordinate with and Obtain Necessary Approvals and Permits from Other Agencies -35 I.A.C. § 845.670(e)(3)(C)
 - Agency permits would need to be obtained from IEPA for discharge of extracted groundwater, construction of stormwater controls and BMPs, and potentially an IDNR Dam Safety modification permit. These permits typically take 18 to 24 months to obtain, with the NPDES permit modification taking longer to obtain than the other permits.
- Availability of Necessary Equipment and Specialists 35 I.A.C. § 845.670(e)(3)(D)
 - Construction of the barrier wall and GWE trench would require a specialized contractor experienced with constructing similar types of trenches and barrier walls in similar geologic environments. Relatively few construction contractors with this experience, particularly using one-pass equipment, are available. The contractor would likely need specialized and often custom-built equipment.
 - Specialists in one-pass trenching and barrier wall methods would also need to be utilized during the design and construction phase. The specialists would include design engineers,

construction managers, and contractor staff experienced with trench construction and equipment operation.

- Geotechnical specialists would be needed to design the working platform and monitor the AP2 embankment for signs of distress during one-pass trench installation.
- These types of equipment and specialists have been utilized in the past for other similar types of barrier wall and GWE trench design and construction projects. However, there may be backlogs associated with the equipment and specialists, due to high existing backlog for specialty ground improvement contractors and design specialists who are supporting similar types of projects in the electric utility, dam/levee, and other market sectors. These backlogs could delay the project schedule beyond current assumptions.
- Specialists would be needed to maintain the GWE system during the operational timeframe and are currently being utilized as part of GWE O&M. System components that require maintenance include totalizers, instrumentation, and the extraction and transfer pumps.
 - Additionally, specialists are occasionally needed for non-routine O&M which may include flushing or jetting of the conveyance lines, replacement of faulty system components, replacement of pumps or pump controllers, and replacement of faulty system instrumentation.
 - Specialists and replacement equipment are generally available in proximity (*i.e.*, 100 to 300 miles) of the site but some of the more complex equipment, including the transfer pumps and transfer pump controller, may have extended lead times for replacement or servicing.
- Equipment and specialists for field data collection and groundwater sampling are required for the remedy. Laboratory equipment and specialists would also be required to assess groundwater concentrations of site COCs. Groundwater professionals (*i.e.*, geologists, hydrogeologists, statisticians, geochemists) would be required to perform statistical analysis and other assessments to confirm that the remedy is functioning as intended and prepare corrective action-related groundwater monitoring and progress reports.
 - The equipment and specialists required for site groundwater monitoring and analysis are currently performing this work in accordance with 35 I.A.C. § 845.220(c)(4). Therefore, no new equipment or specialists are required for groundwater monitoring for this alternative.
- Available Capacity and Location of Needed Treatment, Storage, and Disposal Services 35 I.A.C. § 845.670(e)(3)(E)
 - Wastes generated during barrier wall and GWE trench construction would be limited to spoils; these would be disposed of in the on-site landfill.
 - The GWE trench system would send extracted groundwater to an on-site settling pond to settle solids extracted during groundwater recovery via the pneumatic pumps and transfer piping. This settling pond would be new construction that would need to be sited, designed, constructed, and maintained.
 - The settling pond would need to be sited to not conflict with planned solar redevelopment, wetlands, floodplains, or other site infrastructure.

- Continued NPDES permit renewals may be required, depending on the timeline of corrective action implementation relative to completion of source control activities.

4. ALTERNATIVE 3 REMEDY: SOURCE CONTROL WITH HORIZONTAL GWE WELL

The Alternative 3 remedy, source control with horizontal GWE well, would include construction of one horizontal well within the eastern portion of AP2 to collect groundwater from beneath AP2. The horizontal well would be single ended, initiating from the southern bank of AP2 at an elevation of approximately 600 feet and terminating approximately 1,325 feet to the north at an elevation of approximately 606 feet. The horizontal well would drain water from beneath AP2 reducing hydraulic head beneath AP2, which would accelerate achieving GWPS. Extracted water would be directed through a freely draining culvert or be pumped to a settling pond prior to discharge.

The discharge flume is was part of CPP operations and was utilized to route plant process water towards Coffeen Lake. Since the CPP is closed, the flume no longer receives any plant process flows and only receives site stormwater. The water level in the flume is currently at an elevation of 598 to 599.3 feet.

A feasibility-level design drawing of the Alternative 3: source control with horizontal GWE well remedy is provided as **Figure 2** in **Appendix A.**

4.1 Remedy Scoping and Groundwater Modeling Results

In the updated groundwater modeling the discharge flume was simulated as a drain located within the upper portion of the lower confining unit clays beneath the sands of the uppermost aquifer, with a drain stage set to 598.7 feet. This elevation was based on typical water level data obtained from the staff gage on the eastern side of the flume and a review of available survey data, which indicated a current bottom elevation of approximately 598 feet in the flume. Therefore, it was assumed that this elevation could be readily obtained without requiring extensive modifications to the flume or the existing weir structure. Further, if slightly higher water levels are present in the flume, up to 600 feet, there is minimal to no change in the time to reach GWPS.

One horizontal GWE well would be installed running north/south along the eastern portion of AP2. The location of the horizontal well was selected by reviewing physical constraints around AP2 and designating locations on the IPGC property where the well could feasibly be constructed with limited impacts to other site features. Sensitive areas, such as wetlands and floodplains were considered, which prevented the placement of the well east of AP2 and resulted in the horizontal extraction well located in a north-south orientation within the CIP footprint of AP2 [11, 12]. The horizontal drilling entry point would be located at the southern perimeter of AP2. While the entry point is not within regulatory flood plains or known wetlands, construction of a working platform would be required to span the flume. The location of the horizontal well would be at the CCR/native soil interface and would generally intersect (*i.e.*, be perpendicular to) the existing groundwater flow directions beneath AP2. The depth of the horizontal well was selected to coincide with the bottom of CCR based on as-built construction information for the bottom of AP2 [14]. The elevation of this base surface results in horizontal well depths at an approximate north to south elevation of 606 to 600 feet.

Groundwater modeling for the Alternative 3 remedy (**Appendix B.1**) estimated that GWPS would be met approximately 14 years after remedy construction for all wells within the existing AP2 monitoring well network. The horizontal well may require that extraction continue for a total of 39 years (*i.e.*, 25 years after GWPS have been met) to prevent concentrations from rebounding above the GWPS.

4.2 Remedy Implementation

Implementation of the Alternative 3 remedy, source control with horizontal GWE well, is expected to include multiple tasks spread out over three phases, including pre-construction activities (Phase 1), corrective action construction (Phase 2), and corrective action operations, maintenance, and closeout (Phase 3). Information for each phase is described in this section.

4.2.1 Phase 1: Pre-Construction Activities

Pre-construction activities would include further pre-design investigation, obtaining permits from other agencies, completing the final design of the remedy, and selecting a remedy implementation contractor via a bidding process. Information associated with each of these activities is described below.

- Completing pre-design investigation, final design, and bid activities, including:
 - Completion of final pre-design subsurface investigations, laboratory soil testing, engineering calculations, design drawings, specifications, and a construction quality assurance plan.
 - Bidding and selection of a construction general contractor.
- Obtaining permits from other agencies including:
 - A general stormwater permit for construction site activities through IEPA, including construction stormwater controls and other BMPs such as silt fences and other measures.
 - A modification to the site's NPDES permit to allow for the discharge of groundwater from the horizontal well.

4.2.2 Phase 2: Corrective Action Construction

Corrective action construction would be initiated after pre-construction activities are complete. It would include mobilizing construction equipment to the site, preparing the site for construction activities, installation of the horizontal well (and associated piping and mechanical elements), and performing post-construction and site restoration activities.

Information associated with each of these activities is described below.

- The contractor would mobilize equipment and materials to the site, install stormwater BMPs around the construction area, construct a staging and laydown area, and construct a level working pad and/or temporary construction access roads to navigate to the southern perimeter of AP2, to allow the horizontal well to be installed.
- Horizontal well installation would be implemented, including the following tasks:
 - A work pad would be constructed within the flume to allow drilling equipment to install the well from the south side of AP2 and drill towards the north. This would include installing

culverts in an approximately 50-foot-long portion of the flume and backfilling the flume up to surrounding grades with free-draining gravel backfill.

- Drilling would be initiated from the south end of AP2 at the base of the existing berm. The target elevation of the bottom of CCR/top of the UA is approximately 600 to 606 feet along the CCR/native soil interface. A pilot hole would be drilled from the entry point north, terminating at a length of approximately 1,300 feet.
 - Drill cuttings and drilling fluids (*e.g.*, spoils) generated during drilling would be placed into off-road dump trucks and hauled to the on-site landfill for disposal.
- The well casing would consist of slotted well screen for targeted collection areas and solid sections for areas where collection is not required. The casing would be assembled at the surface and installed through the pilot borehole.
- Following installation, the well would be developed, consisting of flushing or jetting the system as needed to fully remove any remaining drilling mud/solids.
- The entry point would be sealed with grout to reduce surface water infiltration into the well and a concrete bulkhead would be constructed at the exit points of the well.
- An approximately 1-acre settling pond for management of extracted groundwater was assumed to be constructed using conventional construction equipment. However, other groundwater treatment and management technologies may be evaluated during a later phase of design. A temporary wastewater treatment plant that is being constructed on-site to treat existing CCR-contact water within the GMF GSP and adjacent GMF RP is not expected to operate post-closure, and therefore was assumed to be unavailable for treating extracted groundwater.
 - The location of the settling pond would be selected to limit adverse impacts or conflicts with future solar redevelopment and other existing and future site infrastructure. The precise location of the pond would be evaluated during later phases of design.
 - The settling pond would be approximately 1 acre in size and 2 feet deep. Soils would be mechanically excavated from the settling pond and used to create 10-foot-wide berms around the perimeter of the settling pond to contain extracted groundwater. All excavated soils from the settling pond would be managed within the settling pond footprint.
 - A geomembrane liner system would be installed in the settling pond to reduce the potential for releases of extracted groundwater.
 - Fused HDPE piping would be used to convey groundwater from the horizontal well to the settling pond and from the settling pond to the appropriate NPDES outfall. This would include the installation of electrical, mechanical, and pneumatic infrastructure to operate the conveyance piping system.
- Site restoration would be completed following the horizontal well installation. This would include repairing site infrastructure that was relocated or damaged during construction and minor regrading and seeding of disturbed areas, including the work pad and temporary access roads.
 - Temporary BMPs would also be installed during the site restoration period, if required in accordance with site land disturbance permits. The BMPs would be removed once vegetation is established.

4.2.3 Phase 3: Corrective Action Operations, Maintenance, and Closeout

Corrective action operations, maintenance, and closure would be initiated after corrective action construction is completed. It would include performing corrective action groundwater monitoring, and, after GWPS have been met, performing corrective action closeout and completion activities. Information associated with each of these activities is described below.

- Corrective Action O&M
 - Continued operation of the horizontal well would require routine scheduled inspections and associated maintenance including maintenance of extraction and transfer pumps as well as other system components.
 - Non-routine maintenance that may occur during extended operation of the horizontal well system may include flushing or jetting of water conveyance lines in the event organic or inorganic solids accumulate on the conveyance pipe interior walls.
 - Routine monitoring and compliance activities associated with the treatment and discharge of extracted water via the site's NPDES permit would also be completed during this phase.
- Corrective Action Monitoring
 - Regular corrective action groundwater monitoring would be conducted using a corrective action groundwater monitoring well network designed in accordance with 35 I.A.C. § 845.680(c), which specified that wells must be installed within the plume of contamination that lies beyond the waste boundary.
 - Samples would be collected for major ions for evaluating groundwater chemistry and COCs. Samples would be collected on a quarterly basis initially and potentially reduced to a semiannual basis once five years of monitoring have occurred, in accordance with 35 I.A.C. § 845.650(b)(4).
 - Monitoring results would be submitted to IEPA after each monitoring event, in addition to an annual groundwater monitoring and corrective action report, in accordance with 35 I.A.C. § 845.640(e). The annual corrective action report would include an evaluation of the actual performance of the remedy relative to the remedy's expected performance.
 - Routine maintenance of the monitoring well network would be conducted during the monitoring period. This would include inspecting the wells, making repairs to the wells (as and if needed), and rehabilitation and/or replacing the wells to improve performance (as and if needed).
 - If the remedy does not achieve its expected performance, additional methods or techniques to achieve compliance with GWPS would be evaluated and, if feasible, implemented in accordance with 35 I.A.C. § 845.680(b).
- Adaptive Management during Monitoring
 - Groundwater monitoring results would be evaluated and documented in in the monitoring reports submitted to IEPA, in accordance with 35 I.A.C. § 845.610(e).
 - Remedy progress evaluation as part of adaptive site management may include additional investigation to inform updates to the conceptual site, groundwater, and geochemical models.

- If remedy progress does not correspond with expectations, additional methods or techniques to achieve compliance with GWPS would be evaluated and, if feasible, implemented in accordance with 35 I.A.C. § 845.680(b).
- Corrective Action Completion
 - After GWPS have been met for all compliance wells for a period of three years, corrective action would be considered complete, per 35 I.A.C. § 845.680(c).
 - After completion of the corrective action confirmation monitoring period, a Corrective Action Completion Report and Certification would then be submitted to IEPA, in accordance with 35 I.A.C. § 845.680(e).

4.2.4 Remedy Implementation Schedule

A feasibility-level implementation schedule for the Alternative 3 remedy, source control with horizontal GWE well, is provided in **Table C**.

Table C. Feasibility-Level Implementation Schedule – Alternative 3: Source Control with Horizontal GWE Well

Implementation Phase	Implementation Task	Timeframe (Preliminary Estimates)
1: Pre-	Agency Coordination, Approvals, and Permitting	12 to 18 months
Construction	Final Design and Bid Process	24 to 36 months
Activities	Timeframe to Complete Corrective Pre-Construction Activities	36 to 54 months after CAP Approval
2: Corrective Action Construction	Corrective Action Construction	6 to 12 months
	Timeframe to Complete Corrective Action Construction	6 to 12 months
3: Corrective Action O&M and	Corrective Action Monitoring (Time to Meet GWPS)	168 months (14 years)
Closeout	Corrective Action Monitoring (Post-GWPS Operations)	300 months (25 years)
	Corrective Action Confirmation Monitoring	36 months
	Corrective Action Completion	6 months
	Timeframe to Complete Corrective Action O&M and Closeout	510 months (43 years)
Total Time	ine to Complete Corrective Action (after approval of Construction Permit Application)	552 to 576 months (46 to 48 years)

4.2.5 Management of Extracted Groundwater

Extracted groundwater from the horizontal well was assumed to be managed and treated by a newly constructed on-site settling pond, although other treatment technologies may be evaluated at a later phase of design. The settling pond would need to be sited to avoid conflict with planned solar redevelopment, other site infrastructure, and closure activities related to AP1 and other surface impoundments at CPP. A settling pond approximately 1 acre in size was assumed to be sufficient to allow sediments to settle from extracted groundwater prior to discharge.

Groundwater collected from the extraction well network would be sent to the settling pond via the pneumatic extraction pumps and transfer piping. Treated water would be discharged via a NDPES outfall, in accordance with site-specific NPDES permit requirements [13].

4.2.6 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3) Information

As requested by Gradient, the following information required by 35 I.A.C. § 845.670(e)(1)(H) and 35 I.A.C. § 845.670(e)(3) has been developed for the remedy. The information was developed based on preliminary-level information contained within the CMA for the COF AP2 and then refined based on additional feasibility-level design activities performed as part of the development of this CAAA-SIR.

- Potential Need for Replacement of the Remedy 35 I.A.C. § 845.670(e)(1)(H)
 - No replacement of the remedy is expected to be required, although the horizontal well would require ongoing monitoring and maintenance to retain its effectiveness.
- Degree of Difficulty Associated with Constructing the Remedy 35 I.A.C. § 845.670(e)(3)(A)
 - The remedy would require mobilizing specialty equipment to the site (*i.e.*, horizontal directional drill rigs) in addition to other supporting equipment (*i.e.*, excavation and grading equipment).
 - While horizontal wells are routinely constructed to similar depths and profiles in similar geologic environments, they may encounter difficulties during construction. The difficulties could include heterogeneity in the surface of the bottom of the CCR/top of UA interface or encountering obstructions that require specialized techniques and/or equipment to advance past. Therefore, the degree of construction difficulty is expected to be moderate.
- Expected Operational Reliability of the Remedy 35 I.A.C. § 845.670(e)(3)(B)
 - The horizontal well is expected to have high operational reliability if constructed in accordance with the design and specifications.
 - While the horizontal well system is a passive drain system, the conveyance of extracted groundwater to the settling pond would constitute a mechanical system which would require routine maintenance to reliably operate, as outlined in **Section 4.2.3**.
- Need to Coordinate with and Obtain Necessary Approvals and Permits from Other Agencies -35 I.A.C. § 845.670(e)(3)(C)
 - Agency permits would need to be obtained from IEPA for construction stormwater controls and BMPs, in addition to modifications to the site's NDPES permit. These permits typically take 18 to 24 months to obtain.

- Availability of Necessary Equipment and Specialists 35 I.A.C. § 845.670(e)(3)(D)
 - Construction of the horizontal well would require a specialized contractor. The contractor would utilize specialized equipment along with conventional construction support equipment (*i.e.*, excavators, telehandlers).
 - Specialists in horizontal well design and construction would also need to be utilized during the design and construction phase of the horizontal well installation. The specialists would include design engineers, geologists, construction managers, and contractor staff experienced with horizontal well construction and equipment operation.
 - Additionally, specialists are occasionally needed for non-routine O&M which may include periodic re-development of the well (*i.e.*, flushing or jetting of conveyance lines), replacement of faulty system components, replacement of pumps or pump controllers, and replacement of faulty system instrumentation.
 - Specialists and replacement equipment are generally available in proximity (*i.e.*, 100 to 300 miles) of the site but some of the more complex and/or equipment, including the transfer pumps and transfer pump controller, may have extended lead times for replacement or servicing.
- Available Capacity and Location of Needed Treatment, Storage, and Disposal Services 35 I.A.C. § 845.670(e)(3)(E)
 - The horizontal well system would send extracted groundwater to an on-site settling pond to settle solids extracted during groundwater recovery. This settling pond would be new construction that would need to be sited, designed, constructed, and maintained.
 - Settling pond design and construction would need to consider and limit impacts to existing site infrastructure and other SI limitations at CPP.
 - Continued NPDES permit renewals may be required, depending on the timeline of corrective action implementation relative to completion of source control activities.

5. MATERIAL QUANTITY, LABOR, AND MILEAGE ESTIMATES

Estimates of material quantities, total labor hours, and mileage were prepared for Alternative 2 source control with upgradient barrier wall and GWE trench and Alternative 3 source control with horizontal GWE well, to support Gradient in preparing a CAAA. Estimates were prepared for the construction and O&M of each remedy. Estimates were not prepared for Alternative 1 source control with GWP as the alternative does not require remedial construction or O&M of a physical remedy.

Both estimates were prepared utilizing the following approach:

- Major implementation (*e.g.*, construction) components and line items were identified, in accordance with the remedy implementation narratives contained within this CAAA-SIR.
- Construction quantities were estimated based on quantity estimates for volumes, areas, and units, as obtained from the feasibility-level engineering drawings and schedules included within this CAAA-SIR.
- RS Means Heavy Construction Cost Data (RS Means) [15] was utilized to estimate the crew size, equipment description, and daily output associated with each line item.
- For line items where RS Means data was not available, the crew size, equipment description, and daily output were estimated based on Ramboll's experience, information from contractors, and/or information from material suppliers.
- For the Alternative 2 source control with upgradient barrier wall and GWE trench and Alternative 3 source control with horizontal GWE well active remedies, daily construction and O&M labor mobilization miles were estimated assuming a weekly mobilization/demobilization from Chicago (500 miles round trip) and a local commute of 40 miles round trip per day. The number of working days and hours per week were estimated from the construction schedule developed for each remedy.
- Estimates of material delivery miles were prepared based on Ramboll's experience.

The detailed material quantity, labor, and mileage estimates are provided in **Appendix C** for each alternative.

6. **REFERENCES**

- "Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, Part 845: Standards for The Disposal Of Coal Combustion Residuals In Surface Impoundments," effective April 21, 2021.
- [2] Code of Federal Regulations, "Title 40, Chapter I, Subchapter I, Part 257, Subpart D, Standards for the Disposal of Coal Combustion Residuals in Landfills and Surface Impoundments," April 17, 2015.
- [3] Luminant, "Coffeen Power Station; Ash Pond No. 2, Notification of Completion of Closure," 2020.
- [4] AECOM, "Closure and Post-Closure Care Plan for the Coffeen Ash Pond No. 2 at Illinois Powering Generating Company Coffeeen Power Station," 2017.
- [5] Illinois Environmental Protection Agency, "Coffeen Power Station W1350150004, Montgomery County, Illinois," 2018.
- [6] Golder Associates, Inc., "Construction Completion and Construction Quality Assurance Report, Coffeen Power Station Ash Pond #2 Closure," 2001.
- [7] United States Environmental Protection Agency, "Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites," OSWER Directive Number 9200.4-17P, April 21, 1999.
- [8] Ramboll Americas Engineering Solutions, "2024 35 I.A.C. S 845 Annual Groundwater Monitoring and Corrective Action Report, Ash Pond No. 2, Coffeen Power Plant, IEPA ID No. W1350150004-02," Coffeen, IL, January 2025.
- [9] Natural Resource Technology, Inc., "Groundwater Modeling Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois," 2017.
- [10] Geosyntec Consultants, Inc., "Groundwater Polishing Evaluation Report, Coffeen Power Plant - Ash Pond No. 2 Unit (IEPA ID No. 102)," Coffeen, IL, February 2025.
- [11] U.S. Fish and Wildlife Service, "National Wetlands Inventory, Surface Waters and Wetlands," [Online]. Available: https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlandsmapper/.
- [12] National Flood Insurance Program, *Flood Hazard Boundary Map, Montgomery County, Illinois, Unincorporated Areas,* Federal Emergency Management Agency, 1981.
- [13] Illinois Environmental Protection Agency, "NPDES Permit No. IL0000108," Illinois Environmental Protection Agency, Coffeen, Illinois, 2023.
- [14] AECOM, "History of Construction, USEPA Final CCR Rule, 40 CFR § 257.73 (c), Coffeen Power Station, Coffeen, Illinois," 2016.
- [15] Gordian, RS Means Data version 8.7, Springfield, IL: Gordian, 2023.

APPENDIX A FEASIBILITY-LEVEL DESIGN DRAWINGS FOR ALTERNATIVE 2 AND ALTERNATIVE 3 REMEDIES

FIGURE 1

ALTERNATIVE 2 REMEDY: UPGRADIENT BARRIER WALL AND GROUNDWATER EXTRACTION TRENCH

WETLANDS BOUNDARY (SEE NOTE 2)

BODY OF WATER

SUMP PUMP

WORK PRODUCT. PREPARED AT THE REQUEST OF COUNSEL. SUBJECT TO CHANGE AS INFORMATION IS CLARIFIED OR ADDITIONAL INFORMATION BECOMES AVAILABLE.

GROUNDWATER EXTRACTION TRENCH

ASH POND NO. 2 Coffeen Power Plant 134 CIPS Lane Coffeen, IL 62017

ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

FIGURE 2

ALTERNATIVE 3 REMEDY: HORIZONTAL GROUNDWATER EXTRACTION WELL

HORIZONTAL GROUNDWATER **EXTRACTION WELL** FEASABILITY-LEVEL DESIGN

WETLANDS BOUNDARY (SEE NOTE 2)

HORIZONTAL WELL

GRAVEL WORK PAD WITH CULVERT

DRAFT - PRIVILEGED AND CONFIDENTIAL, ATTORNEY WORK PRODUCT. PREPARED AT THE REQUEST OF COUNSEL. SUBJECT TO CHANGE AS INFORMATION IS CLARIFIED OR ADDITIONAL INFORMATION BECOMES AVAILABLE.

BODY OF WATER

MAJOR CONTOUR

MINOR CONTOUR

LIMITS OF CCR

ASH POND NO. 2 HORIZONTAL WELL CROSS SECTION

NOT TO SCALE - LOOKING EAST

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

ASH POND NO. 2 Coffeen Power Plant 134 CIPS Lane Coffeen, IL 62017

APPENDIX B1 GROUNDWATER MODELING TECHNICAL MEMORANDUM Intended for Illinois Power Generating Company 134 Cip Lane Coffeen, Illinois 62017

Date April 1, 2025

Project No. 1940110241-001

GROUNDWATER MODELING TECHNICAL MEMORANDUM COFFEEN POWER PLANT, ASH POND NO. 2, IEPA ID NO. W1350150004-02

GROUNDWATER MODELING TECHNICAL MEMORANDUM COFFEEN POWER PLANT, ASH POND NO. 2, IEPA ID NO. W1350150004-02

Project name	Coffeen Power Plant Ash Pond No. 2
Project no.	1940103584-002
Recipient	Illinois Power Generating Company
Document type	Technical Memorandum
Revision	DRAFT
Date	April 1, 2025
Prepared by	Jinjun Wang, PhD
Checked by	Katie Moran
Approved by	Brian G. Hennings, PG

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Jinjun Wang, PhD Senior Managing Consultant Brian G. Hennings, PG Project Officer, Hydrogeology

CONTENTS

Executive	Summary	3
1.	Introduction	5
1.1	Background	5
1.2	Previous Groundwater Modeling Reports	5
2.	Alternative 1 Simulation	6
2.1	NRT (2017) Model Description	6
2.2	Ramboll (2022) Model Description	6
2.3	Groundwater Model Update	7
2.4	Simulation Results of Updated Model	8
3.	Alternative 2 and Alternative 3 Simulations	9
3.1	Alternative 2 Remedy – Source Control with Upgradient Barrier	
	Wall and GWE Trench	9
3.1.1	Overview	9
3.1.2	Model Approach	9
3.1.3	Simulation Results	9
3.2	Alternative 3 Remedy – Source Control with Horizontal GWE Well	10
3.2.1	Overview	10
3.2.2	Model Approach	10
3.2.3	Simulation Results	10
4.	Conclusions	11
5.	References	12

TABLES (ATTACHED)

Table 1	Summary of Surface	Water Elevations in	Discharge Flume
---------	--------------------	---------------------	-----------------

 Table 2
 Simulated Time to Achieve Sulfate GWPS in AP2 Monitoring Wells

TABLES (IN TEXT)

 Table A
 Estimated Timeframes to Attain GWPS in Groundwater Monitoring Wells

FIGURES

Figure 1	Monitoring Well Location Map
Figure 2	Simulated Sulfate Concentrations in AP2 Monitoring Wells – Alternative 1 Remedy
Figure 3	Proposed Upgradient Barrier Wall and Groundwater Extraction Trench Location –
	Alternative 2 Remedy
Figure 4	Simulated Sulfate Concentrations in AP2 Monitoring Wells – Alternative 2 Remedy
Figure 5	Simulated Extraction Rate from the Extraction Trench – Alternative 2 Remedy
Figure 6	Proposed Horizontal Groundwater Extraction Well Location – Alternative 3 Remedy
Figure 7	Simulated Sulfate Concentrations in AP2 Monitoring Wells – Alternative 3 Remedy
Figure 8	Simulated Discharge Rate from Horizontal Groundwater Extraction Well – Alternative 3
	Remedy

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
CAAA	Corrective Action Alternatives Analysis
CAP	Corrective Action Plan
CCR	coal combustion residual(s)
CIP	closure-in-place
CPP	Coffeen Power Plant
ft	foot/feet
gpm	gallons per minute
GMF GSP	Gypsum Management Facility Gypsum Stack Pond
GMF RP	Gypsum Management Facility Recycle Pond
Golder	Golder Associates USA, Inc.
GWE	groundwater extraction
GWPS	groundwater protection standard(s)
ID	identification
IEPA	Illinois Environmental Protection Agency
LCU	lower confining unit
mg/L	milligrams per liter
NAVD88	North American Vertical Datum of 1988
NID	National Inventory of Dams
No.	number
NRT	Natural Resource Technology, Inc.
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SI	surface impoundment
UA	uppermost aquifer
UCU	upper confining unit

EXECUTIVE SUMMARY

Ramboll Americas Engineering Solutions, Inc. (Ramboll) has prepared this Groundwater Modeling Technical Memorandum on behalf of the Coffeen Power Plant (CPP), operated by Illinois Power Generating Company, in accordance with requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845. This document presents the results of predictive groundwater modeling simulations in support of potential Corrective Action Plan (CAP) remedial alternatives identified in the Corrective Action Alternatives Analysis (CAAA) required by 35 I.A.C. § 845,670(e), for Ash Pond No. 2 (AP2) in Coffeen, Illinois, identified by Illinois Environmental Protection Agency (IEPA) identification (ID) number (No.) W1350150004-02 and National Inventory of Dams (NID) No. 50723. A total of three potential remedial alternatives were evaluated, including (1) Alternative 1 remedy: source control with groundwater polishing, (2) Alternative 2 remedy: source control with upgradient barrier wall and groundwater extraction (GWE) trench, and (3) Alternative 3 remedy: source control with horizontal groundwater extraction (GWE) well. Alternative 1 remedy is the closure-in-place (CIP) scenario that was modeled in the Groundwater Modeling Report (Natural Resource Technology, Inc. [NRT], 2017), and was implemented at AP2 in 2020 (Luminant, 2020). Alternative 2 and Alternative 3 remedies were assumed to be implemented in addition to the CIP scenario.

The groundwater modeling efforts described in this Groundwater Modeling Technical Memorandum include groundwater flow modeling using MODFLOW-NWT (Niswonger et al., 2011) and contaminant fate and transport modeling using MT3DMS (Zheng and Wang, 1999) to evaluate how each corrective action will achieve compliance with the applicable groundwater protection standards (GWPSs); and describe fate and transport of contaminants in accordance with 35 I.A.C. § 845.220 (c)(2). The effectiveness of each corrective action was assessed based on the time for simulated sulfate concentrations to decrease below GWPS in twelve groundwater monitoring wells¹ in the vicinity of AP2 (**Figure 1**). Considering the potential need to coordinate groundwater corrective action at AP2 with groundwater corrective actions at adjacent coal combustion residual (CCR) surface impoundment (SI) units, including Ash Pond No. 1 (AP1), Gypsum Management Facility Gypsum Stack Pond (GMF GSP), and Gypsum Management Facility Recycle Pond (GMF RP), corrective action construction for AP2 was assumed to be implemented upon the completion of the closures of the adjacent CCR SI units, as the corrective actions at these SI units are anticipated to occur concurrently with their closures. All timeframes are assumed to start concurrent with final closures of AP1, GMF GSP, and GMF RP.

The Alternative 1 remedy includes a closure in place approach for source control, after which groundwater polishing is implemented. The closure was re-simulated using sulfate as the surrogate for any CCR impacts in groundwater to be consistent with the modeling of AP1 closure, which is an adjacent CCR SI that will be closed in the future via a 35 I.A.C. § 845 closure plan. Using sulfate for both units allows the models to incorporate the potential impact of AP1 closure on fate and transport at AP2. According to the simulation results, sulfate concentrations in all monitoring wells will decrease below the 400 milligrams per liter (mg/L) GWPS for sulfate in 135 years under Alternative 1 remedy.

¹ There are 12 groundwater monitoring wells associated with AP2 available for evaluation. Simulated concentrations at G1003 are not presented since this well is typically dry and no groundwater samples have been obtained from this location.
The Alternative 2 remedy consists of source control with installation and operation of upgradient barrier wall and GWE trench. Groundwater modeling results for the remedy indicate that sulfate concentrations in all the groundwater monitoring wells will decrease below the applicable GWPS of 400 mg/L in 59 years. No operation of the GWE trench is required after that, as no rebounding of sulfate concentrations is expected according to the simulation results.

The Alternative 3 remedy consists of source control with installation of a horizontal GWE well at the interface of CCR and underlying soil in the eastern portion of AP2. Groundwater modeling results indicate that sulfate concentrations in AP2's groundwater monitoring wells would achieve the GWPS of 400 mg/L within 14 years. The simulation results also indicate that operating the horizontal well for 39 years (*i.e.*, 25 additional years after attaining the GWPS) may be necessary to effectively prevent the sulfate concentrations from rebounding above GWPS.

1. INTRODUCTION

1.1 Background

This Groundwater Modeling Technical Memorandum is prepared to evaluate how potential CAP remedial alternatives would achieve compliance with the applicable GWPSs and to describe fate and transport of contaminants in accordance with 35 I.A.C. § 845.220 (c)(2). The groundwater modeling efforts consist of predictive groundwater modeling to assess the long-term effectiveness and time to achieve GWPS for sulfate for the following remedial alternatives: (1) Alternative 1 remedy: source control with groundwater polishing; (2) Alternative 2 remedy: source control with horizontal GWE well. Alternative 1 remedy is the CIP scenario that was modeled in the Groundwater Modeling Report (NRT, 2017), and was implemented at AP2 in 2020 (Luminant, 2020). Alternative 2 and Alternative 3 remedies were assumed to be implemented in addition to the Alternative 1 CIP scenario.

1.2 Previous Groundwater Modeling Reports

NRT developed groundwater flow and transport models for AP2 in 2017 to evaluate AP2 closure scenarios. The groundwater flow model was built using MODFLOW-2005 (Harbaugh, 2005), and the contaminant fate and transport model was built using MT3DMS. The modeling exercises and results were summarized in the Groundwater Modeling Report (NRT, 2017).

Based upon the NRT (2017) models for AP2, Ramboll developed groundwater flow and transport models in 2022 to evaluate closure scenarios for the adjacent CCR SI unit AP1, and the footprint of AP2 falls within the model domain of the AP1 model. The modeling results were summarized in the Groundwater Modeling Report (Ramboll, 2022).

The groundwater modeling efforts presented in this Groundwater Modeling Technical Memorandum are based on the NRT (2017) and Ramboll (2022) groundwater modeling exercises, as detailed in **Section 2**.

2. ALTERNATIVE 1 SIMULATION

The CIP closure of AP2 (*i.e.*, Alternative 1 remedy) was originally simulated as documented in the Groundwater Modeling Report (NRT, 2017). The AP2 closure was implemented in 2020, consisting of a CIP approach for source control with groundwater polishing. In this Groundwater Modeling Technical Memorandum, the CIP closure of AP2 was re-simulated to incorporate the potential influence of closure activities at the adjacent CCR SI units AP1, GMF GSP, and GMF RP, which will also be closed in the future (Golder Associates USA, Inc. [Golder], 2022a,2022b, and 2022c). The updated simulation of CIP closure at AP2 served as the baseline scenario for the additional CAP scenario simulations presented in **Section 3**.

Considering the potential need to coordinate groundwater corrective action at AP2 with groundwater corrective action and closure construction activities at adjacent SI units (*i.e.*, AP1, GMF GSP, and GMF RP), corrective action construction for AP2 was assumed to be implemented upon the completion of closures of adjacent SI units, as AP2 corrective action construction would also occur concurrently with closures of these SI units. Therefore, all timeframes are assumed to start concurrent with final closures of AP1, GMF GSP, and GMF RP.

2.1 NRT (2017) Model Description

The NRT (2017) groundwater modeling simulated groundwater flow and transport of boron to support closure of AP2. The groundwater modeling consisted of the following:

- A steady state groundwater flow was developed using MODFLOW-2005 to represent site conditions for 2016.
- The hydrogeologic properties from the steady state model were used in the calibration of transient MODFLOW-2005 and MT3DMS models which simulated groundwater flow and transport at AP2 from 1970 to 2017. Boron concentrations collected in August 2016 were used to calibrate the transport model.
- Predictive simulations were conducted to evaluate the CIP scenario at AP2.

2.2 Ramboll (2022) Model Description

The NRT (2017) flow and transport models were retained and revised as appropriate to evaluate closure scenarios for AP1 (Ramboll, 2022) and consisted of the following:

- A steady state groundwater flow model was constructed using MODFLOW-2005 and calibrated to match mean groundwater elevations observed between 2015 to 2021. The calibrated flow model was used to simulate the mean groundwater flow conditions at the site.
- Transient flow and transport models were constructed based off of the calibrated steady state model using MODFLOW-2005 and MT3DMS, respectively. These models simulate groundwater flow and transport for 42 years with changes in site conditions through time and match observed sulfate concentrations in groundwater.
- Prediction simulations began with a 2-year dewatering period for AP1 where heads were reduced within the CCR unit and concentrations were removed from CCR removal areas.
- Prediction simulations resumed for CIP following the 2-year dewatering period.

2.3 Groundwater Model Update

The updated simulation of CIP closure at AP2 was based on the Ramboll (2022) models so that the potential influence of the closure activities at adjacent SI units could be incorporated. For the contaminant fate and transport simulation, sulfate was selected as the constituent to evaluate the effectiveness of the closure scenario. Of the analytes which exceed GWPS in site groundwater, sulfate has been detected in AP2 groundwater at the highest concentrations relative to its GWPS and it will likely take the longest time to meet the GWPS. Sulfate has also been detected above the GWPS at more well locations adjacent to AP1 and AP2 than any other 845.600 parameter which contributed to its selection for modeling at both units. It is not necessary to model all constituents that have GWPS exceedances² or have been detected at lower concentrations relative to their GWPSs, because those constituents will likely achieve their GWPSs more quickly (Gradient, 2024).

For the purpose of evaluating the potential groundwater remedial alternatives, the groundwater flow modeling program associated with the prediction simulations, including the 2-year dewatering simulation and the 1,000-year CIP simulation, was updated from MODFLOW-2005 to MODFLOW-NWT. MODFLOW-NWT is a modeling program designed to solve nonlinear groundwater flow problems due to unconfined aquifer conditions and is superior in solving problems involving drying and rewetting of unconfined aquifers (Niswonger et al., 2011), which were expected for the selected remedial alternatives. In addition, the layer types associated with model Layers 2 through 4 in the prediction models were updated from "confined" to "unconfined (T Varies)" to accommodate the drying and rewetting conditions. MT3DMS remained as the fate and transport modeling program.

A stream gauge was installed within the discharge flume, located to the south of AP2 and formerly utilized as part of the CPP to route plant process water towards Coffeen Lake, to monitor the surface water elevation in the flume. Historical surface water elevations collected at the stream gauge are summarized in **Table 1**. As shown in the table, the surface water elevation varied from 598.34 ft³ to 599.36 ft between March 2021 and July 2024, with an average of 598.67 ft. Accordingly, in the 1,000-year CIP prediction model, the discharge flume was simulated as a drain, with a drain stage set to 598.7 ft to represent the average surface water elevation within the flume.

In addition, the drain boundaries simulating the GMF GSP and GMF RP in the 1,000-year CIP prediction model were updated to reflect the final closure design associated with these two SI units (Golder, 2022b and 2022c).

The updated simulation results for Alternative 1 remedy are discussed in **Section 2.4**. The simulated groundwater elevations and sulfate concentrations at the end of the 2-year AP1 dewatering period also served as the initial conditions for the following remedial alternative simulations⁴ described in **Section 3**.

² Throughout this document, "exceedance" or "exceedances" is intended to refer only to potential exceedances of proposed applicable background statistics or GWPSs as described in the proposed groundwater monitoring program, which was submitted to the IEPA on October 25, 2021 as part of IPGC's operating permit application for COF AP2. That operating permit application, including the proposed groundwater monitoring program, remains under review by the IEPA and, therefore, IPGC has not identified any actual exceedances.

³ All elevations in this report are referenced to North American Vertical Datum of 1988 (NAVD88) unless otherwise noted.

⁴ The remedial alternative simulations assume the remedial alternatives at AP2 will be implemented following the 2-year dewatering at AP1.

2.4 Simulation Results of Updated Model

The simulated sulfate concentrations for the Alternative 1 remedy: source control with groundwater polishing in AP2's groundwater monitoring wells versus time are shown in **Figure 2**. The simulated time to achieve sulfate GWPS in the monitoring wells is summarized in **Table 2**. With the exception of G1001, sulfate concentrations are expected to achieve the GWPS within approximately 25 years. As shown in **Figure 2**, the simulated sulfate concentration in monitoring well G1001 decreases below the 400 mg/L GWPS after about 70 years, increases above the GWPS around 123 years, and eventually decreases and remains below the GWPS after 135 years until the end of the 1,000-year simulation.

Review of the simulation results also indicates the updated groundwater model is likely to overpredict the amount of time to attain the GWPS at monitoring well G1001. As presented in the Nature and Extent Report (Ramboll, 2024a), monitoring wells G1001 and G1003 were installed in 2021 between the eastern edge of AP2 and the Unnamed Tributary. The borings did not identify the presence of either the upper confining unit or uppermost aquifer materials, indicating that the uppermost aquifer is absent east of AP2. Wells G1001 and G1003 were screened in the LCU to evaluate shallow groundwater quality east of AP2. Only G1001 contains measurable amounts of groundwater that can be collected and analyzed; G1003 is routinely dry. As of December of 2024, eight groundwater samples have been collected from G1001 with total sulfate concentrations ranging from 107 mg/L to 630 mg/L with an average concentration of 249 mg/L. The simulated sulfate concentration at G1001 at the beginning of prediction simulation is approximately 1,600 mg/L, which is consistent with the source concentrations used for AP2 in the 2022 model (Ramboll, 2022) present just west of G1001. The simulated concentration at the beginning of the prediction simulation is approximately 2.5 times higher than maximum observed concentration at G1001. Further, total sulfate has not been reported as an exceedance of the GWPS at well G1001 (Ramboll, 2024b and 2025a). Therefore, model simulated time to reach the GWPS at well G1001 is likely to be overpredicted.

3. ALTERNATIVE 2 AND ALTERNATIVE 3 SIMULATIONS

The Alternative 2 and Alternative 3 remedies were simulated to evaluate their impacts, in addition to the Alternative 1 remedy, on sulfate concentrations at Coffeen AP2. Alternative 1 remedy simulation described in **Section 2** provides a baseline scenario for comparison to the two alternative remedies. As discussed in **Section 2**, all timeframes described herein are assumed to start concurrent with closure of the adjacent SI units (*i.e.*, AP1, GMF GSP, and GMF RP).

3.1 Alternative 2 Remedy – Source Control with Upgradient Barrier Wall and GWE Trench

3.1.1 Overview

The Alternative 2 remedy consists of the installation and operation of a GWE trench and barrier wall upgradient of AP2 (**Figure 3**). The barrier wall is assumed to be installed to 616 feet in the simulation. The extraction trench is proposed to be installed between the barrier wall and AP2 to an elevation of 615 feet. According to the simulated groundwater flow pattern for the CIP, the groundwater flow direction within AP2 is to the southeast in general. The goal of Alternative 2 remedy is to prevent the flow of groundwater towards AP2 from the northwest, while providing a means to capture groundwater and reduce hydraulic head beneath AP2. Increasing the rate at which groundwater elevations decrease beneath AP2 also more rapidly decreases the amount of CCR that may come into contact with groundwater, thereby reducing the amount of sulfate potentially released to groundwater and accelerating attainment of GWPS.

3.1.2 Model Approach

The 1,000-year CIP prediction model described in **Section 2** was modified to simulate the Alternative 2 remedy. The proposed barrier wall was simulated as a horizontal flow barrier (Hsieh and Freckleton, 1993) installed within the Upper Confining Unit (UCU) in model Layer 1. The barrier wall was assumed to be 3-foot thick and constructed of cement-bentonite with a permeability of 2.8×10^{-4} ft/day. The GWE trench was simulated as a drain with stage set to 615 feet. The drain was included in model Layer 2, which simulates the lower portion of UCU at the site. The GWE trench was assumed to be 3-foot thick, and the backfill material for the trench was assumed to be sand with a hydraulic conductivity of 62.4 ft/day. Therefore, the hydraulic conductivities in model cells within and above the drain were adjusted to 10 ft/day, both vertically and horizontally, to match the permeability of fill material in the extraction trench.

3.1.3 Simulation Results

The simulated sulfate concentrations in AP2's groundwater monitoring wells versus time for Alternative 2 remedy are shown in **Figure 4**. The simulated time to attain the sulfate GWPS in the monitoring wells is summarized in **Table 2**. According to the results, monitoring well G1001 is the last to attain GWPS compliance, in 59 years under the Alternative 2 remedy followed by well G404 which attains the GWPS at 20 years. As discussed in **Section 2.4**, the model likely overpredicts the time to attain the GWPS at well G1001. According to the simulation results, operation of the GWE trench can be terminated after 59 years, after which no rebounding of sulfate concentrations is expected to occur.

The simulated extraction rate from the GWE trench versus time is plotted in **Figure 5**. As shown in the figure, the extraction rate is higher at the beginning of the operation (about 50 gallons per

minute [gpm] on day 24 of the operation) due to the higher initial groundwater elevations near the trench. The groundwater levels near the GWE trench and the extraction rate decrease over time with continued trench operation. The extraction rate decreases to about 2 gpm at the end of the 59-year operation.

3.2 Alternative 3 Remedy – Source Control with Horizontal GWE Well

3.2.1 Overview

The Alternative 3 remedy consists of groundwater removal through a horizontal well (**Figure 6**). The proposed horizontal GWE well will be installed penetrating the estimated bottom of CCR (about 602 feet) located within the historical drainage features. Groundwater removal through the horizontal GWE well will collect CCR-impacted groundwater and thereby reduce the sulfate mass potentially released to groundwater. Groundwater removal from the horizontal well will also induce groundwater flow towards the slotted portions of the well and capture the CCR-impacted groundwater plume in their vicinity.

3.2.2 Model Approach

The 1,000-year CIP prediction model described in **Section 2** was updated to simulate the groundwater removal from the horizontal well. The updated model incorporated one horizontal well as shown in **Figure 6**, with its perforated portions simulated as drains located at the bottom of the UA in model Layer 3, with drain stages set to 602. feet.

3.2.3 Simulation Results

Simulation of Alternative 3 remedy assumed operation of the horizontal well for 39 years. The simulated sulfate concentrations in AP2's groundwater monitoring wells versus time for Alternative 3 remedy are shown in **Figure 7**. The simulated time to achieve sulfate GWPS in the monitoring wells is summarized in **Table 2**. As shown, monitoring wells G1001 (screened within the LCU) and G404 are the last monitoring wells to achieve GWPS compliance. Under Alternative 3 remedy, the time for sulfate concentration in wells G1001 and G404 to decrease below the GWPS is 14 years. The simulation results also indicate that operating the horizontal well for 39 years will effectively prevent the sulfate concentrations from rebounding above GWPS.

As discussed in **Section 2.4**, the model likely overpredicts the sulfate concentrations at well G1001. Groundwater sampling results indicate there are no current exceedances at this well (Ramboll, 2024b and 2025a); therefore, the model result is very conservative. If sulfate concentration at G1001 continues to remain below the GWPS then this period of additional operation may not be necessary. Monitoring and adaptive site management practices presented in the Corrective Action Groundwater Monitoring Plan (Ramboll, 2025b) describe how stability in groundwater data will be evaluated before assessing if compliance with the GWPS has been attained to allow any transient effects of treatment on the groundwater (e.g., rebounding concentrations) to dissipate.

The simulated groundwater removal rate from the horizontal GWE well versus time is plotted on **Figure 8**. As shown in the figure, the discharge rate is higher at the beginning of the operation (about 30 gpm on day 10 of the operation). Groundwater elevations in AP2 decrease over time due to the operation of the horizontal well, and the discharge rate from the horizontal well decreases gradually to approximately 2 gpm towards the end of the 39-year operation.

4. CONCLUSIONS

The groundwater modeling efforts in this Groundwater Modeling Technical Memorandum consist of flow and transport modeling using MODFLOW-NWT and MT3DMS to assess the time to achieve GWPS for sulfate for three CAP remedy alternatives: Alternative 1 remedy (source control with groundwater polishing), Alternative 2 remedy (source control with upgradient barrier wall and GWE trench), and Alternative 3 remedy (source control with horizontal GWE well).

A summary of predicted time for sulfate concentrations to meet the GWPS at the compliance monitoring wells is provided in **Table 2**. Percentage of compliance monitoring wells predicted to attain GWPS over time is summarized below in **Table A**. According to the simulation results, under both Alternative 1 remedy and Alternative 2 remedy options, monitoring well G1001 (screened within the LCU) is the last monitoring location to achieve GWPS compliance. For Alternative 1 remedy, the time to achieve GWPS compliance is 135 years. For Alternative 2 remedy, the time to achieve GWPS compliance is 59 years. Operation of the GWE trench can be terminated once the GWPS compliance is achieved. Under Alternative 3 remedy, the time to attain the GWPS in compliance wells is 14 years, driven by sulfate concentrations in monitoring wells G1001 and G404. Operating the horizontal well for 39 years may be necessary to mitigate the potential for sulfate concentrations from rebounding above GWPS after remedy operations have ceased.

	Impacted	Percentage of Wells Predicted to Attain GWPS ⁺						
Alternative	Wells	5 Years‡	10 Years‡	14 Years‡	20 Years‡	40 Years‡	59 Years‡	135 Years‡
1	5	40%	60%	60%	60%	80%	80%	100%
2	4	50%	50%	50%	50%	75%	100%	100%
3	5	40%	60%	100%	100%	100%	100%	100%

Table A. Estimated Timeframes to Attain GWPS in Groundwater Monitoring Wells

<u>+: Estimated timeframes per the number of impacted wells (wells with estimated times to achieve the GWPS) shown in Table 2</u>

+: Years counted starting from completion of corrective action

5. REFERENCES

Golder Associates USA, Inc., 2022a. Part 845 Construction Permit Application for Ash Pond No. 1, Coffeen Power Plant.

Golder Associates USA, Inc., 2022b. Part 845 Construction Permit Application for Gypsum Management Facility Gypsum Stack Pond, Coffeen Power Plant. July 28.

Golder Associates USA, Inc., 2022c. Part 845 Construction Permit Application for Gypsum Management Facility Recycle Pond, Coffeen Power Plant. July 28.

Gradient, 2024. Closure Alternatives Analysis Groundwater Modeling Review at the Coffeen Power Plant, Edwards Power Plant, Newton Power Plant, and Hennepin Power Plant, Expert Report of Andrew Bittner, P.E.

Harbaugh, A.W., 2005, MODFLOW-2005, The U.S. Geological Survey modular ground-water model—the Ground-Water Flow Process: U.S. Geological Survey Techniques and Methods 6-A16, variously p.

Hsieh, P. and J.R. Freckleton, 1993, Documentation of a Computer Program to Simulate Horizontal-Flow Barriers Using the U.S. Geological Survey's Modular Three-Dimensional Finite-Difference Ground-Water Flow Model. U.S. Geological Survey Open-File Report 92-477.

Illinois Administrative Code, Title 35, Subtitle G, Chapter I, Subchapter J, Part 845: Standards for The Disposal of Coal Combustion Residuals In Surface Impoundments, effective April 21, 2021.

Luminant, 2020, Coffeen Power Station; Ash Pond No. 2 Notification of Completion of Closure.

Natural Resource Technology, Inc., 2017, Groundwater Modeling Report, Ash Pond 2, Coffeen Power Plant, Coffeen, Illinois. January 24, 2017.

Niswonger, R.G., Panday, Sorab, and Ibaraki, Motomu, 2011, MODFLOW-NWT, A Newton formulation for MODFLOW-2005: U.S. Geological Survey Techniques and Methods 6–A37, 44 p.

Ramboll Americas Engineering Solutions, Inc (Ramboll), 2022. Groundwater Modeling Report, Ash Pond No. 1, Coffeen Power Plant, Coffeen, Illinois.

Ramboll Americas Engineering Solutions, Inc (Ramboll), 2024a. Nature and Extent Report, Coffeen Power Plant, Ash Pond No. 2.

Ramboll Americas Engineering Solutions, Inc (Ramboll), 2024b. 2023 35 I.A.C. § 845 Annual Groundwater Monitoring and Corrective Action Report, Ash Pond No. 2, Coffeen Power Plant, Coffeen, Illinois.

Ramboll Americas Engineering Solutions, Inc (Ramboll), 2025a. 2024 35 I.A.C. § 845 Annual Groundwater Monitoring and Corrective Action Report, Ash Pond No. 2, Coffeen Power Plant, Coffeen, Illinois.

Ramboll Americas Engineering Solutions, Inc (Ramboll), 2025b. Corrective Action Groundwater Monitoring Plan, Coffeen Power Plant, Ash Pond No. 2, IEPA ID No W1350150004-02.

Zheng C., and P. Wang, 1999. MT3DMS: A Modular Three-Dimensional Multispecies Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems: Documentation and User's Guide. **TABLES**

TABLE 1. SUMMARY OF SURFACE WATER ELEVATIONS IN DISCHARGE FLUME

GROUNDWATER MODELING TECHNICAL MEMORANDUM COFFEEN POWER PLANT ASH POND NO. 2 COFFEEN, ILLINOIS

Date	Surface Water
03/29/2021	508 75
04/20/2021	598.56
05/03/2021	598.74
05/17/2021	598 56
05/17/2021	508 37
06/23/2021	508.37
07/12/2021	598.34
07/12/2021	596.75
07/26/2021	598.44
08/16/2021	598.39
10/25/2021	598.59
02/07/2022	598.52
05/09/2022	598.52
08/23/2022	598.42
02/13/2023	598.62
05/30/2023	598.40
10/24/2023	598.38
11/13/2023	598.51
12/18/2023	598.56
01/12/2024	599.17
02/12/2024	598.82
03/29/2024	599.00
04/29/2024	599.36
05/29/2024	599.18
06/29/2024	598.84
07/30/2024	598.91
Minimum	598.34
Maximum	599.36
Average	598.67

1. All surface water elevations are referenced to North American Vertical Datum of 1988 (NAVD88).

TABLE 2. SIMULATED TIME TO ACHIEVE SULFATE GWPS IN AP2 MONITORING WELLS

GROUNDWATER MODELING TECHNICAL MEMORANDUM COFFEEN POWER PLANT ASH POND NO. 2 COFFEEN, ILLINOIS

	Time to Achieve GWPS* in Monitoring Well (Year)				
Monitoring Well	Alternative 1 Remedy (Source Control with Groundwater Polishing)	Alternative 2 Remedy (Source Control with Upgradient Barrier Wall and Groundwater Extraction Trench)	Alternative 3 Remedy (Source Control with Horizontal Groundwater Extraction Well)		
G1001	135	59	14		
G1003**	-	-	-		
G270	0	0	0		
G280	0	0	0		
G281	0	0	0		
G401	3	2	2		
G402	1	1	1		
G403	0	0	0		
G404	25	20	14		
G405	8	0	8		
G406	0	0	0		
G407	0	0	0		
Minimum	0	0	0		
Maximum	135	59	14		
Average	16	7	3		
* GWPS - groundwater protect ** Simulation results at G1003	ion standard 3 are not presented since the we	ell is typically dry.			

FIGURES

MONITORING WELL LOCATION MAP

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

UA Monitoring Well LCU (Vandalia Member) Monitoring Well

🗖 SI Unit

250 500 _ Feet

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

SIMULATED SULFATE CONCENTRATIONS IN AP2 MONITORING WELLS

FIGURE 2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

- ALTERNATIVE 1 REMEDY

PROJECT: 1940103584-002 | DATED: 1/5/2025 | DESIGNER: JWANG

C:\Projects\Coffeen\GIS\COFFEEN TechMemo 202402.aprx\AP2 Figure03 ProposedLocOfExtractionTrenchAndBarrier

FIGURE 3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

PROPOSED UPGRADIENT BARRIER WALL AND GROUNDWATER EXTRACTION TRENCH LOCATION - ALTERNATIVE 2 REMEDY

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

- UA Monitoring Well
- LCU (Vandalia Member) Monitoring Well
- 🗖 SI Unit
- Proposed Extraction Trench Location
- Proposed Barrier Wall Location
- 300 600

FIGURE 4

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

SIMULATED SULFATE CONCENTRATIONS IN AP2 MONITORING WELLS - ALTERNATIVE 2 REMEDY

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

FIGURE 5

SIMULATED EXTRACTION RATE FROM THE EXTRACTION TRENCH - ALTERNATIVE 2 REMEDY

> RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

> > RAMBOLL

C:\Projects\Coffeen\TechMemo

PROJECT: 1940103584-002 | DATED: 1/5/2025 | DESIGNER: JWANG

C:\Projects\Coffeen\GIS\COFFEEN TechMemo 202402.aprx\AP2 Figure06 ProposedDewateringAreaOfCFandHW

FIGURE 6

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

PROPOSED HORIZONTAL GROUNDWATER EXTRACTION WELL LOCATION - ALTERNATIVE 3 REMEDY

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

- LCU (Vandalia Member) Monitoring Well
- 🗖 SI Unit
- Horizontal Well (Perforated)
- Horizontal Well (Non-Perforated)

0 300 600

FIGURE 7

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

SIMULATED SULFATE CONCENTRATIONS IN AP2 MONITORING WELLS - ALTERNATIVE 3 REMEDY

PROJECT: 1940103584-002 | DATED: 12/29/2024 | DESIGNER: JWANG

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

FIGURE 8

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. A RAMBOLL COMPANY

RAMBOLL

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

SIMULATED DISCHARGE RATE FROM HORIZONTAL GROUNDWATER EXTRACTION WELL - ALTERNATIVE 3 REMEDY

APPENDIX B2 GROUNDWATER MODELING REPORT (2022) Intended for Illinois Power Generating Company

Date July 28, 2022

Project No. 1940101010-008

GROUNDWATER MODELING REPORT ASH POND NO. 1 COFFEEN POWER PLANT COFFEEN, ILLINOIS

GROUNDWATER MODELING REPORT COFFEEN POWER PLANT ASH POND NO. 1

Project name	Coffeen Power Plant Ash Pond No. 1
Project no.	1940101010-008
Recipient	Illinois Power Generating Company
Document type	Groundwater Model Report
Revision	FINAL
Date	July 28, 2022

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Saskia Noorduijn, PhD Consultant

Brian G. Hennings, PG Senior Managing Hydrogeologist

CONTENTS

Executive	Summary	7
1.	Introduction	10
1.1	Overview	10
1.2	Previous Groundwater Modeling Reports	10
1.3	Site Location and Background	10
1.4	Site History and CCR Units	11
2.	Site Geology and Hydrogeology	13
2.1	Stratigraphy	13
2.2	Hydrogeology	14
2.2.1	Groundwater Flow	14
2.2.2	Hydraulic Properties	15
2.2.3	Groundwater Elevation Data	15
2.2.4	Mining Activity	16
3.	Groundwater Quality	17
3.1	Groundwater Classification	17
3.2	Potential Groundwater Exceedances	17
4.	Groundwater Model	19
4.1	Overview	19
4.2	Description of Existing Model	19
4.3	Conceptual Model	19
4.3.1	Hydrogeology	19
4.3.2	Extent and Boundaries	20
4.3.3	Ash Pond No. 1	20
4.5	Model Approach	21
4.5.1	Potential Groundwater Exceedances	21
4.5.2	Summary of Modeling Activities	22
5.	Model Setup and Calibration	23
5.1	Model Descriptions	23
5.2	Flow and Transport Model Setup	24
5.2.1	Grid and Boundary Conditions	24
5.2.2	Flow Model Input Values and Sensitivity	25
5.2.2.1	Layer Top/Bottom	25
5.2.2.2	Hydraulic Conductivity	26
5.2.2.3	Recharge	26
5.2.2.1	Storage and Specific Yield	27
5.2.2.2	River Parameters	27
5.2.2.3	Drain Parameters	28
5.2.2.4	GMF Unit Parameters	28
5.2.2.5	General Head Boundary	29
5.2.3	Transport Model	30
5.2.3.1	Time Discretization and Stress Periods	30
5.2.3.2	GMF Units	31
5.2.3.3	Initial Concentration	32
5.2.3.4	Source Concentration	32
5.2.3.5	Effective Porosity	32

5 7 7 6	Storage and Energific Viold	22
5.2.3.0	Storage and Specific field	22
5.2.3.7	Dispersivity and Diffusion	33
5.2.3.8	Retardation and Decay	33
5.3	Flow and Transport Model Assumptions and Limitations	34
5.4	Calibration Flow Model	34
5.5	Calibration Flow and Transport Model Results	35
6.	Predictive Simulations	37
6.1	Overview and Prediction Model Development	37
6.2	HELP Model Setup and Results	38
6.3	Simulation of Closure Scenarios	38
6.3.1	Closure in Place Model Results	39
6.3.2	Closure by Removal Model Results	40
7.	Conclusions	42
8.	References	43

TABLES (IN TEXT)

- Table A Flow Model Layer Description
- Table B River and Drain Information
- Table C Liner System Properties From Top to Bottom for the GMF GSP, RP, and LF
- Table D Transient Model Setup and Time Discretization

TABLES (ATTACHED)

Table 2-1	Monitoring Well Locations and Construction Details
Table 4-1	Flow and Transport Model Calibration Targets
Table 5-1	Flow Model Input and Sensitivity Analysis Results
Table 5-2	Transport Model Input Values (Calibration)
Table 5-3	Transport Model Input Sensitivity (Calibration)
Table 6-1	HELP Model Input and Output Values
Table 6-2	Prediction Model Input Values

FIGURES (IN TEXT)

Figure A	Sulfate Correlation with TDS in UA Wells
Figure B	Liner Modification Zones

FIGURES (ATTACHED)

|--|

- Figure 1-2 Site Map
- Figure 2-1 Monitoring Well Location Map
- Figure 2-2 Uppermost Aquifer Potentiometric Surface Map, April 20, 2021
- Figure 2-3 Uppermost Aquifer Potentiometric Surface Map, July 26, 2021
- Figure 4-1 Calibration and Predictive Timeline
- Figure 5-1 Model Area Map
- Figure 5-2 Boundary Conditions for Layer 1
- Figure 5-3 Boundary Conditions for Layer 2
- Figure 5-4 Boundary Conditions for Layer 3
- Figure 5-5 Boundary Conditions for Layer 4
- Figure 5-6 Boundary Conditions for Layer 5
- Figure 5-7 Base of Model Layer 1
- Figure 5-8 Base of Model Layer 2
- Figure 5-9 Base of Model Layer 3
- Figure 5-10 Base of Model Layer 4
- Figure 5-11 Base of Model Layer 5
- Figure 5-12 Hydraulic Conductivity Zones for Layer 1
- Figure 5-13 Hydraulic Conductivity Zones for Layer 2
- Figure 5-14 Hydraulic Conductivity Zones for Layer 3
- Figure 5-15 Hydraulic Conductivity Zones for Layer 4
- Figure 5-16 Hydraulic Conductivity Zones for Layer 5
- Figure 5-17 Model Recharge Distribution Steady State (SS) Model
- Figure 5-18 Model Recharge Distribution for the Transient (TR) Model TR-1 Stress Period 1
- Figure 5-19 Model Recharge Distribution for the Transient (TR) Model TR-1 Stress Period 2
- Figure 5-20 Model Recharge Distribution for the Transient (TR) Model TR-2 Stress Period 1
- Figure 5-21 Model Recharge Distribution for the Transient (TR) Model TR-3 Stress Period 1

Figure 5-22	Observed Versus Simulated Steady State Groundwater Levels from the Calibrated Model
Figure 5-23	Simulated Groundwater Level Residuals from the Calibrated Model
Figure 5-24	Simulated Steady State Groundwater Level Contours from UA (Layer 3) from the Calibrated Model
Figure 5-25	Simulated Steady State Groundwater Level Contours in Proximity to AP1 from UA (Layer 3) from the Calibrated Model
Figure 5-26	Observed Versus Simulated Sulfate Concentrations (mg/L)
Figure 5-27	Simulated Sulfate Plume in the UA from the Transient Model
Figure 6-1	CIP Recharge and Stormwater Pond Modifications
Figure 6-2	CBR Recharge and Stormwater Pond Modifications
Figure 6-3	Simulated Sulfate Plume of the UA for the CIP and CBR Scenarios After 14.8 Years
Figure 6-4	Simulated Maximum Extent of the Sulfate Plume for the CIP and CBR Scenarios After 14.8 Years
Figure 6-5	Simulated Sulfate Plume of the UA for the CIP and CBR Scenarios After 58.8 Years
Figure 6-6	Simulated Maximum Extent of the Sulfate Plume for the CIP and CBR Scenarios After 58.8 Years
Figure 6-7	Scenario 1 (CIP) – Hydraulic Steady State Reductions in Total Flux In and Out of the Fill Unit (CCR)
Figure 6-8	Scenario 1 (CIP) – Reduction in Total Flux In and Out of the Fill Unit (CCR)
Figure 6-9	Potential Ash Saturation in Simulated Scenario 1 (CIP)

APPENDICES

Appendix A	Evaluation of Potential GWPS Exceedances (Geosyntec Consultants, Inc., 202	22a)
------------	--	------

- Appendix B MODFLOW, MT3DMS, and HELP Model Files (Electronic only)
- Appendix C Evaluation of Partition Coefficient Results (Geosyntec Consultants, Inc., 2022b)
- Appendix D HELP Model Output Files
- Appendix E Flux Evaluation Data

ACRONYMS AND ABBREVIATIONS

§	Section
35 I.A.C.	Title 35 of the Illinois Administrative Code
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
bgs	below ground surface
CBR	closure by removal
CCR	coal combustion residual(s)
CIP	closure in place
cm/s	centimeter per second
CPP	Coffeen Power Plant
CSM	conceptual site model
DA	deep aquifer
DCU	deep confining unit
DEM	Digital Elevation Model
ft²	square feet
ft/d	feet per day
ft/ft	feet per foot
Geosyntec	Geosyntec Consultants, Inc.
GHB	general head boundary conditions
GMF GSP	Gypsum Management Facility Gypsum Stack Pond
GMF RP	Gypsum Management Facility Recycle Pond
GMP	Groundwater Monitoring Plan
GMR	Groundwater Modeling Report
GWPS	groundwater protection standard(s)
Hanson	Hanson Professional Services, Inc.
HCR	Hydrogeologic Site Characterization Report
HDPE	high density polyethylene
HELP	Hydrologic Evaluation of Landfill Performance
HFB	horizontal flow barrier
HUC	Hydrologic Unit Code
ID	identification
IEPA	Illinois Environmental Protection Agency
IPGC	Illinois Power Generating Company - IPGC
ISGS	Illinois State Geological Survey
K _D	linear isotherm
K _{eff}	effective hydraulic conductivity
K _F	Freundlich isotherm
KL	Langmuir isotherm
Kd	distribution coefficient
Kh/Kv	anisotropy ratio
LCU	lower confining unit
LF	Landfill
L/kg	liters per kilogram
m	meter
mg/L	milligrams per liter

mil	one thousandth of an inch
mL/g	milliliters per gram
NAVD88	North American Vertical Datum of 1988
NID	National Inventory of Dams
No.	number
NPDES	National Pollutant Discharge Elimination System
NRT	Natural Resources Technology, Inc.
Part 845	35 I.A.C. § 845: Standards for the Disposal of Coal Combustion Residuals in Surface
	Impoundments
R2	correlation coefficient
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SI	surface impoundment(s)
SSR	sum of squared residuals
TDS	total dissolved solids
TR	transient model
TVD	total-variation-diminishing
UA	uppermost aquifer
UCU	upper confining unit
USDA/NRCS	United States Department of Agriculture/Natural Resources Conservation
	Service
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

EXECUTIVE SUMMARY

Ramboll Americas Engineering Solutions, Inc. (Ramboll) has prepared this Groundwater Modeling Report (GMR) on behalf of the Coffeen Power Plant (CPP), operated by Illinois Power Generating Company - IPGC (IPGC), in accordance with requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) Section (§) 845: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments (Part 845) (Illinois Environmental Protection Agency [IEPA], 2021). This document presents the results of predictive groundwater modeling simulations for proposed closure scenarios for the coal combustion residuals (CCR) management unit Ash Pond Number (No.) 1 (AP1 [(Vistra Identification [ID] No. 101, IEPA ID No. W1350150004-01, and National Inventory of Dams [NID] No. IL50722]). AP1 is a 23-acre, unlined surface impoundment (SI) used to manage CCR and non-CCR waste streams at the CPP. Its total storage capacity is approximately 300 acre-feet.

The CPP is located in Montgomery County, in central Illinois between the two lobes of Coffeen Lake (**Figure 1-1**), which was formed in 1963 by damming the McDavid Branch of the East Fork of Shoal Creek. Coffeen Lake encompasses approximately 1,100 acres and was created to provide a source of cooling water for the CPP. Coffeen Lake borders the CPP to the west, east, and south, and agricultural land is located to the north. Historically coal mines were operated at depth below the site. Mine shafts, processing facilities, and historic coal storage were located on the southern extent of the CPP, south of AP1. The CPP operated as a coal-fired power plant from 1964 until November 2019 and has five CCR management units, with AP1 being the subject of this GMR. Unlithified material present above the bedrock in the vicinity of the CPP was categorized into hydrostratigraphic units as part of the 2021 Hydrogeologic Site Characterization Reports (HCR; Ramboll, 2021a). In addition to the CCR, the hydrostratigraphic units occur in the following order (from ground surface downward) and include:

- **Upper Confining Unit (UCU):** Consists of the Loess Unit and the upper clayey portion of the Hagarstown Member which has generally lower vertical permeability. The UCU has been eroded east of AP1, near the Unnamed Tributary.
- **Uppermost Aquifer (UA):** The UA is the sandy portion of the Hagarstown Member which is classified as primarily sandy to gravelly silts and clays with thin beds of sands. Similar to the Loess Unit, the Hagarstown is absent in some locations near the Unnamed Tributary.
- Lower Confining Unit (LCU): Comprised of the Vandalia Member, Mulberry Grove Member, and Smithboro Member. These units include a sandy to silty till with thin, discontinuous sand lenses, a discontinuous and limited extent sandy silt which has infilled prior erosional features, and silty to clayey diamicton, respectively.
- **Deep Aquifer (DA):** Sand and sandy silt/clay units of the Yarmouth Soil, which include accretionary deposits of fine sediment and organic materials, typically less than five feet thick and discontinuous across the CPP.
- **Deep Confining Unit (DCU):** Comprised of the Banner Formation and generally clays, silts, and sands. The Lierle Clay Member is the upper layer of the Banner Formation which was encountered at the CPP.

Flow of groundwater from central portions of the CPP to Coffeen Lake or the Unnamed Tributary through the UA are the primary pathways for contaminant migration. Groundwater elevations are

primarily controlled by surface topography, geologic unit topography, and water levels within Coffeen Lake and the Unnamed Tributary. A groundwater divide trending north-south is observed running through the approximate center of the CPP. Phreatic surfaces or water elevations within the SI are generally consistent and have not been observed to fluctuate with groundwater elevations, indicating limited hydraulic connection with the SI.

The conceptual site model (CSM) for modeling the groundwater at the CPP is as follows:

- Most hydrostratigraphic layers are laterally continuous across the area. The flat to gently rolling uplands are dissected by deeply incised streams (into the materials of the UCU, UA, and LCU) that are tributaries to river systems in the area. Coffeen Lake was created by damming one of these tributary streams for use by the CPP.
- The UA is separated from the bottom of the AP1 by a minimum of 10 feet of low-permeability glacial till that comprises the UCU. Erosion caused by incised streams has occurred along the northeast corner of AP1 which likely results in ash being in contact with the UA.
- Surface recharge and groundwater migrate vertically through the low permeability sediments of the UCU. Groundwater migrates horizontally through the higher permeability sediments of the UA.
- Groundwater elevations and lake elevations indicates groundwater flows into Coffeen Lake from the UA.
- AP1 is constructed such that the earthen berm and base are in contact with the UCU with exception of limited areas in the northeast of the SI where the UCU and UA have been eroded and the berm and base are in contact with the LCU.
- The stage within AP1 is managed with minimal (less than 3 feet) variability throughout the year.

A review and summary of data collected from 2015 through 2021 for parameters with groundwater protection standards (GWPS) listed in 35 I.A.C. § 845.600 is provided in the HCR (Ramboll, 2021a). Concentration results presented in the HCR and summarized in the History of Potential Exceedances (Ramboll, 2021b) are considered potential exceedances because the methodology used to determine them is proposed in the Statistical Analysis Plan (Appendix A to the Groundwater Monitoring Plant [GMP], Ramboll 2021c), which has not been reviewed or approved by IEPA at the time of submittal of the Part 845 operating permit application. The following constituents with potential exceedances of the GWPS listed in 35 I.A.C. § 845.600 were identified: boron, cobalt, pH, sulfate, and total dissolved solids (TDS) (Ramboll, 2021b) at AP1.

A Technical Memorandum (**Attachment A**) was prepared by Geosyntec Consultants, Inc. (Geosyntec, 2022a), *Evaluation of Potential Groundwater Protection Standard Exceedances, Coffeen Ash Pond No.1, Coffeen Illinois*, to further evaluate potential GWPS exceedances. The results of the evaluation demonstrated that the potential GWPS exceedances of cobalt in well G314 and pH in well G312 are not related to AP1 based on several lines of evidence presented in the Technical Memorandum.

Statistically significant correlations between sulfate concentrations and concentrations of TDS identified as potential exceedances of the GWPS indicate sulfate is an acceptable surrogate for TDS in the groundwater model. Concentrations of TDS are expected to change along with model predicted sulfate concentrations. A potential exceedance of boron was observed at one

monitoring well, G313, which also has potential exceedances of both sulfate and TDS. Similar source and behavior in the groundwater system would be expected among boron, sulfate, and TDS at UA monitoring well G313, and boron concentrations are expected to change along with model predicted sulfate concentrations.

It was assumed that sulfate would not significantly sorb or chemically react with aquifer solids (distribution coefficient [Kd] was set to 0 milliliters per gram [mL/g]) which is a conservative estimate for predicting contaminant transport times in the model. Boron, sulfate, and TDS transport is likely to be affected by both chemical and physical attenuation mechanisms (*i.e.*, adsorption and/or precipitation reactions as well as dilution and dispersion).

All available hydrological information were used to construct a CSM and numerical model of the CPP. A steady state, 5-layer numerical model, based on a previous groundwater model of the area, was constructed to characterize the long-term groundwater flow conditions at the site. The hydrostratigraphic units included in the model were the UCU, UA, and LCU. The DA and DCU were not included in the model. Calibration of the model focused on simulating mean groundwater elevations for 95 wells at the site by modifying hydraulic parameters for the different hydrostratigraphic units, alongside river and general head boundary conductance. The calibrated model represents a reasonable match to the observed head and sulfate concentration data.

The calibrated model was used to predict the sulfate concentration for two closure scenarios using information provided in the Final Closure Plan for AP1 (Golder Associates [Golder], 2022a) including:

- Scenario 1: closure in place (CIP) including removal of CCR from the eastern portion of AP1, consolidation into the western portion of AP1, and construction of a cover system over the remaining CCR, and;
- Scenario 2: closure by removal (CBR) including removal of all CCR and regrading of the removal area.

Prior to the simulation of these scenarios, a dewatering simulation was included, which simulated the removal of free liquids from AP1 prior to the implementation of the two closure scenarios.

Scenario 1 (CIP) was predicted to reduce total flux in and out of the Fill Unit (CCR) by approximately 99.9%, when simulated post-construction heads in the groundwater monitoring wells are predicted to stabilize. Additionally, the base of consolidated CCR was compared to the simulated steady-state groundwater elevations which indicate between 3.2 and 10 feet of separation will be present between the base of CCR and groundwater.

Differences exist in the timeframes to reach the GWPS for most monitoring wells between CIP and CBR. In general, the simulated groundwater concentrations in the monitoring wells within the UA will achieve the GWPS in 15 years and 18 years respectively for the CIP and CBR closure scenarios, with the exception of well G301 in the CIP scenario. The predicted delayed reduction in concentration at well G301, 59 years to reach the GWPS, is a result of the well being located along the flow path of the residual sulfate concentrations released into native geologic materials prior to closure. Reduced percolation rates through the consolidation area at the northwest corner of AP1 in the CIP scenario means that the residual sulfate concentrations in this limited area require a longer time period to migrate through native geologic materials.

1. INTRODUCTION

1.1 Overview

In accordance with the requirements of Part 845 (IEPA, 2021), Ramboll has prepared this GMR on behalf of the CPP, operated by IPGC. This report will apply specifically to the CCR unit referred to as AP1 (**Figure 1-1**). However, information gathered to evaluate other CCR units at the CPP regarding geology, hydrogeology, and groundwater quality is included, where appropriate. AP1 is a 23-acre, unlined SI used to manage CCR and non-CCR waste streams at the CPP. Its total storage capacity is approximately 300 acre-feet. This GMR presents and evaluates the results of predictive groundwater modeling simulations for two proposed closure scenarios, including CCR consolidation and CIP, and CBR scenarios summarized below.

- **Scenario 1:** CIP including removal of CCR from the eastern portion of AP1, consolidation into the western portion of AP1, and construction of a cover system over the remaining CCR.
- Scenario 2: CBR including removal of all CCR and regrading of the removal area.

1.2 Previous Groundwater Modeling Reports

Several reports containing groundwater modeling have been completed at the CPP. The information presented in this GMR includes data collected in support of the previous groundwater models as well as data collected as part of a 2021 field investigation to support development of a HCR (Ramboll, 2021a). The HCR was provided as an attachment to the initial operating permit application required by 35 I.A.C. § 845.230. Previous groundwater modeling reports completed for the various CCR units located at the CPP include, but are not limited to, the following (recent to oldest):

• Natural Resources Technology, Inc. (NRT), January 24, 2017. Hydrostatic Modeling Report. Coffeen Power Station, Coffeen, Illinois.

Utilized the Hydrologic Evaluation of Landfill Performance (HELP) model to predict percolation from Ash Pond No. 2 (AP2) and evaluate AP2 hydrostatic conditions in response to the proposed cover system as described in the Revised 30% Closure Design Package.

• NRT, January 24, 2017. Groundwater Modeling Report. Coffeen Power Station, Coffeen, Illinois.

Included simulations of the site hydrology, the extent of CCR leachate impacts on groundwater, and the effect of pond closure on groundwater quality.

1.3 Site Location and Background

The CPP is located in Montgomery County, in central Illinois, within Section 11 Township 7 North and Range 7 East (**Figure 1-1**). The CPP is approximately two miles south of the city of Coffeen and about eight miles southeast of the city of Hillsboro, Illinois. AP1 is located between the two lobes of Coffeen Lake (identified as "Coffeen Lake" and "Unnamed Tributary" on **Figure 1-1** and **Figure 1-2**) to the west, east, and south, and is bordered by agricultural land to the north. The approximately 1,100-acre Coffeen Lake was built by damming the McDavid Branch of the East Fork of Shoal Creek in 1963 for use as an artificial cooling lake for the CPP. Historically, several coal mines were operated at depth in the vicinity of the CPP as well as the US Minerals processing facility located to the north. **Figure 1-2** is a site map showing the location of AP1 (Part 845 regulated CCR unit and subject of this GMR), AP2, Gypsum Management Facility Recycle Pond (GMF RP), Gypsum Management Facility Gypsum Stack Pond (GMF GSP), and Landfill (LF). A surface water pond southwest of the LF collects overflow from the LF, this feature does not contain CCR. The area near AP1 will hereinafter be referred to as the Site.

1.4 Site History and CCR Units

The CPP was a coal-fired electrical generating plant that began operation in 1964. The plant initially burned bituminous coal from Illinois and CCR from the coal fired units was disposed of in AP1. AP2 was also utilized in the early 1970's and AP1 was reconstructed in 1978. Both of these units were used until the mid-1980's. Beginning in 2010, CCR material was placed in the LF and GMF units (*i.e.*, GMF RP and GMF GSP). All approximate dates of construction of each successive stage of the CCR units at the CPP are included in the groundwater model and described here.

AP1: This SI (also known as the Bottom Ash/Recycle Pond) is a reclaimed ash pond that was reconstructed utilizing the existing earthen berms with reinforcement, as provided by Water Pollution Control Permit 1978-EA-389 issued by the IEPA on May 26, 1978. AP1 (existing unlined SI) covers an area of approximately 23 acres, has berms up to 41 feet above the surrounding land surface, and a volume of 300 acre-feet. It primarily received bottom ash and low volume wastes from floor drains in the main power block building. Several years ago, air heater wash and boiler chemical cleaning wastes were directed to AP1, but this practice was discontinued. The bottom ash was periodically removed for beneficial uses by a third-party contractor. Sluicing of waste to AP1 ceased prior to November 4, 2019.

AP2: AP2 is a closed (IEPA approved) SI with a surface area of approximately 60 acres and berms 47 feet higher than the surrounding land surface. AP2 was originally removed from service and capped in the mid 1980's. A clay and soil cap was placed on the surface of the pond with contouring and drainage provided to direct storm water to four engineered revetment down drain structures. Prior to capping, this pond was identified as Outfall 004 in the facility National Pollutant Discharge Elimination System (NPDES) operating permit, IL0000108. Additional closure activities include the construction of a geomembrane cover system that began in July 2019 and was completed on November 17, 2020. The construction was completed in accordance with the Closure and Post Closure Care Plan approved by the IEPA on January 30, 2018.

GMF GSP: The 77-acre GMF GSP received blowdown from the air emission scrubbers and was put into operation in 2010. Construction of the GMF GSP was in accordance with Water Pollution Control Permit 2008-EA-4661 and features a composite 60- one thousandth of an inch (mil) high-density polyethylene (HDPE) liner with 3 feet of recompacted soil with a hydraulic conductivity of 1×10^{-7} centimeters per second (cm/s) with internal piping and drains to collect contact water. Construction of the unit required excavation to approximately 603 feet North American Vertical Datum of 1988 (NAVD88), removal of the sands and silts of the UA prior to construction of the liner, and installation of a groundwater underdrain system to eliminate inward pressure on the liner prior to placement of CCR. The GMF GSP underdrain was actively pumped during construction but is no longer actively pumped. IPGC ceased receipt of waste to the GMF GSP prior to April 11, 2021.

GMF RP: The 17-acre GMF RP received blowdown from the air emission scrubbers and was put into operation in 2010. Construction of the GMF RP was in accordance with Water Pollution Control Permit 2008-EA-4661 and features a composite 60-mil HDPE liner with 3 feet of recompacted soil with a hydraulic conductivity of 1×10^{-7} cm/s with internal piping and drains to collect contact water. Construction of the unit required excavation to approximately 601 feet

NAVD88, removal of the sands and silts of the UA prior to construction of the liner, and installation of a groundwater underdrain system to eliminate inward pressure on the liner prior to placement of CCR. The GMF RP underdrain is a passive, gravity drained system. IPGC ceased receipt of waste to the GMF RP prior to April 11, 2021.

LF: Fly ash was managed in a permitted composite lined landfill constructed in 2010. The LF has an active groundwater underdrain system that is currently being pumped. Additionally, the ash landfill leachate collection system is restricted by rule to no more than one foot of leachate on the composite liner. An IEPA groundwater monitoring program is in effect for the GMF GSP and GMF RP (under Bureau of Water), and LF (under Bureau of Land).
2. SITE GEOLOGY AND HYDROGEOLOGY

2.1 Stratigraphy

The geology and hydrogeology of AP1 are described in detail in the HCR (Ramboll, 2021a) and summarized below.

The unlithified stratigraphy within and immediately surrounding AP1 consists of the following in descending order: fill material and CCR; clays and silts (Loess Unit); gravelly clay till and sandy materials, absent in some locations (Hagarstown Member); a weathered till zone and sandy, silt, or clay till (Vandalia Member); silt and sandy silt/clay unit (Mulberry Grove Member); silty clay diamicton (Smithboro Member); sand and sandy silt/clay, absent in some locations (Yarmouth Soil); and clay and silt with some sand (Lierle Clay Member). The unlithified units overlay Pennsylvanian-age limestone, sandstone, and minor coal beds (Bond Formation). The Bond Formation bedrock was not encountered in any borings advanced at the CPP, so site-specific information is not available.

CCR consisting of bottom ash and other non-CCR waste is present within AP1 at a thickness of up to 18 feet, as estimated from borings advanced within AP1, and an average thickness of 10 feet. However, CCR materials may be thicker near former drainage features in localized areas eroded through the loess and clay (Ramboll, 2021a). One such former drainage feature is located in the northeast corner of AP1 and ash fill may be in contact with the sandy portion of the Hagarstown Member similar to features observed at AP2. Non-CCR fill material consisting of silty clay, sandy lean clay, or lean clay with sand, with trace amounts of fine gravel comprises the berms surrounding AP1.

The Loess Unit is the uppermost unlithified unit identified at the CPP. This unit is comprised of the combined Roxana and Peoria Silt and extends from beneath the topsoil, derived from the loess, to the top of the Hagarstown Member. The loess has been classified as silt or clayey silt, with minor amounts of sand. The Loess Unit ranges in thickness from 0 feet (absent) to 16 feet, and was generally 8 to 14 feet thick, where present near AP1. The Loess Unit is generally considered unsaturated, and the UA is recharged by precipitation that percolates through this unit.

The Hagarstown Member (also referred to as Hagarstown Beds) exhibits two units: the first unit consisting of the gravelly clay till and the second consisting of sandy material overlying the Vandalia Member. The clay till portion had varying thicknesses ranging from approximately 2 to 6 feet as observed adjacent to AP1 (Ramboll, 2021a). The sandy portion of the Hagarstown, where present, was typically encountered between 9 and 34 feet below ground surface (bgs) near AP1, and is generally 1 to 5 feet thick, although thicknesses up to 7 feet have been observed north of the LF (Ramboll, 2021d; Ramboll, 2021e). The composition of the sandy portion of the Hagarstown unit varies across the CPP and has been classified as gravelly till, poorly sorted gravel, well sorted gravel, sand, and silty sand. Based on historic topography, the Hagarstown Member is not present in former drainage features present along the banks of Coffeen Lake and the Unnamed Tributary. During construction of the LF, GMF GSP, and the GMF RP, the Loess Unit and portions of the Hagarstown Member were excavated to facilitate construction.

The Vandalia (*i.e.*, till) Member is a sandy/silty till with thin, discontinuous lenses of silt, sand, and gravel. The Vandalia Member was encountered between 1.5 and 34 feet bgs in all borings

advanced at the CPP. The Vandalia Member typically ranged in thickness from 11.7 feet in the northern portion of the CPP, to 31.0 feet between the GMF GSP and the GMF RP. Similar to the observed top elevation of the Hagarstown Member, the top of the Vandalia Member declines in elevation near Coffeen Lake and topographic drainage features. This unit is relatively thick throughout the CPP, with an average thickness of over 15 feet (Hanson Professional Services, Inc. [Hanson], 2009).

The Mulberry Grove (*i.e.*, silt) Member typically consists of a thin, lenticular unit of gray sandy silt (Willman et al., 1975). It represents the interval between the retreat of the glacier that deposited the Smithboro Member and the advance of the glacier that deposited the Vandalia Member. At the CPP, the Mulberry Grove Member is represented by gray sandy silt layers deposited in depressions found in the surface of the underlying Smithboro Member. This unit was absent in many borings through the central portion of the CPP from south to north, and is generally less than 2 feet thick, but was measured at up to 4.9 feet thick near the GMF GSP (Hanson, 2009).

The Smithboro (*i.e.*, till) Member is described as a gray, compact, silty, clayey diamicton that ranges in thickness from 6.7 to 21.2 feet northwest of the LF.

The Yarmouth Soil is described as the weathered zone on the Kansan drift, but in some places, it consists of accretionary deposits of fine sediment and organic material that accumulated in poorly drained areas on the surface of the Kansan deposits. Historical borings in the northern portion of the CPP which encountered the Yarmouth were summarized previously by Hanson (2009) as ranging in thickness from 0 feet (absent) to 5.1 feet.

The Lierle Clay Member is the uppermost member of the Kansan Stage Banner Formation. It is described as an accretion gley with clay, silt, and some sand. It was encountered by Hanson (2009) in all but a few borings on site. During the 2021 investigation, the top of the Lierle Clay was observed between 54 and 57 feet bgs. No borings advanced at the CPP penetrated the full thickness of the Banner Formation.

Pennsylvanian-age Bond Formation bedrock was not encountered in any borings advanced at the CPP, so site-specific information is not available.

2.2 Hydrogeology

Regionally, the water table conforms to the topographic features of the land surface. Recharge occurs in the uplands and flows towards drainage features. Moderate thicknesses of unconsolidated materials fill shallow valleys or are present on the uplands bordering the main valleys. These materials contain thin and discontinuous deposits of sand and gravel.

2.2.1 Groundwater Flow

Monitoring well locations are illustrated in **Figure 2-1**. Monitoring well locations and construction details are summarized in **Table 2-1**. Overall groundwater flow within the UA is divided towards the two lobes of Coffeen Lake. Groundwater generally flows from the center of the CPP west towards Coffeen Lake, and east towards the Unnamed Tributary, the eastern lobe of Coffeen Lake, and the discharge flume, resulting in a groundwater divide (high) running through the middle of the CPP (**Figure 2-2** and **Figure 2-3**). Groundwater flows north to northeast across AP1 toward the former discharge structure and Unnamed Tributary. Although elevations vary

seasonally, the groundwater flow direction in the UA is consistent and likely controlled by the proximity and hydraulic connection to Coffeen Lake.

2.2.2 Hydraulic Properties

Over 100 monitoring wells have been installed since 2006 to monitor groundwater conditions around the five CCR units at the CPP for both State and Federal groundwater compliance programs. Six hydrostratigraphic units were described in detail in the HCR (Ramboll, 2021a) and are summarized as follows:

- CCR: This unit is composed of CCR, consisting primarily of bottom ash. This also includes earthen fill deposits of predominantly silt and clay materials from on-site excavations that were used to construct berms and roads surrounding the various impoundments across the CPP. Laboratory testing of one CCR (ash) sample from AP1 had a vertical hydraulic conductivity of 8.8 x 10⁻⁵ cm/s.
- **UCU**: Consists of the Loess Unit and the upper clayey portion of the Hagarstown Member which has generally lower vertical permeability and generally greater than 60 percent fines (Ramboll, 2021a). This unit was encountered across most of the CPP, with the exception of the eastern edges of AP1 near the Unnamed Tributary where the unit was eroded following deposition or locations where it has been excavated for construction. Vertical hydraulic conductivities based on laboratory testing ranged from 1.3 x 10⁻⁸ to 5.0 x 10⁻⁷ cm/s.
- **UA** This unit consists primarily of sand and sandy silts and clays at the base of the Hagarstown Member and, in some locations, the uppermost weathered sandy clay portion of the Vandalia Member. This unit is absent in several locations due to weathering and in others due to excavation during construction of CCR Units. Field hydraulic conductivity tests indicated hydraulic conductivities ranged from 1.7×10^{-5} to 9.1×10^{-3} cm/s near AP1. Laboratory testing of one UA sample, collected near the GMF RP, had a vertical hydraulic conductivity of 1.6×10^{-4} cm/s (Ramboll, 2021a).
- **LCU**: This unit is composed of the sandy clay till of the Vandalia Member, the silt of the Mulberry Grove Formation, and the compacted clay till of the Smithboro Member. The unit underlies the UA and was encountered in all boring locations on the CPP. Results from laboratory tests completed for vertical hydraulic conductivity indicate the Vandalia Member has a very low vertical hydraulic conductivity. Field hydraulic conductivity tests indicated hydraulic conductivities from 4.0×10^{-8} to 3.4×10^{-5} cm/s; however, these likely reflect the isolated and discontinuous sandy lenses. Vertical hydraulic conductivities based on laboratory testing were from 1.3×10^{-8} to 5.0×10^{-7} cm/s.
- **DA**: This unit consists primarily of sandy silt and sands of the Yarmouth Soil, which are thin (less than 5 feet) and discontinuous across the CPP. Field hydraulic conductivity tests indicated hydraulic conductivities from 8.7×10^{-5} to 1.7×10^{-3} cm/s within the DA.
- **DCU**: This unit underlies the DA and is composed of the Banner Formation, of which the thick Lierle Clay is the first encountered unit. No boring penetrated the full thickness of this formation.

2.2.3 Groundwater Elevation Data

During the 2021 Part 845 investigation, groundwater elevations in the UA ranged from approximately 591 to 625 feet NAVD88 across the CPP. Groundwater elevations were typically

highest towards the northern extent of the CPP, near the GMF GSP and GMF RP, except monitoring well G307 south of AP1, which consistently had the highest groundwater elevation. Groundwater elevations were lowest near the Unnamed Tributary and east of AP1 towards Coffeen Lake. Groundwater elevations in the vicinity of AP1 were typically from 591 to 621 feet NAVD88, with the exception of G307 as noted above, which was typically around 624 feet NAVD88 (**Figure 2-2** and **Figure 2-3**).

No seasonal variation has been observed in the UA monitoring wells, and any seasonal responses may be muted by the proximity and hydraulic connection to Coffeen Lake.

2.2.4 Mining Activity

Several coal mines, both strip and underground types, previously operated in Montgomery County, Illinois. Three mines - the Hillsboro Mine (Illinois State Geological Survey [ISGS] Mine No. 871), the Clover Leaf No. 4 Mine (ISGS Mine No. 442), and the Clover Leaf No. 1 Mine (ISGS Mine No. 3001) – were operated as room and pillar mines in the vicinity of the site beginning as early as 1889. The mines extracted coal from the Herrin (No. 6) Coal at depths of approximately 500 to 535 feet bgs (ISGS, 2019). All nearby mining operations ceased in 1983.

The Hillsboro Mine showed indications of small-scale faulting, roof stability issues, and floor heaving. Mine shafts, processing facilities, and some historic coal storage associated with these historic mines were located south of AP1. AP1 directly overlies the Hillsboro Mine. AP1 is outside of the buffer zone of the Clover Leaf No. 4 and Clover Leaf No. 1 mines (Ramboll, 2021a).

3. GROUNDWATER QUALITY

3.1 Groundwater Classification

Per 35 I.A.C. § 620.210, groundwater within the UA at AP1 meets the definition of Class I - Potable Resource Groundwater based on the following criteria:

- Groundwater in the UA is located 10 feet or more below the land surface and
- Within a geologic material which is capable of a hydraulic conductivity of 1 x 10^{-4} cm/s or greater using a slug test.

Field hydraulic conductivity tests performed in the UA near AP1 in 2021 had a geometric mean of 2.0×10^{-3} cm/s (Ramboll, 2021a). Based on this information, groundwater is classified as Class I – Potable Resource Groundwater.

However, background (upgradient) groundwater originates from areas southwest of AP1 that have historically been used for coal storage and present a potential alternate source for groundwater impacts.

3.2 Potential Groundwater Exceedances

A review and summary of data collected from 2015 through 2021 for parameters with GWPSs listed in 35 I.A.C. § 845.600 is provided in the HCR (Ramboll, 2021a). Concentration results presented in the HCR were compared directly to 35 I.A.C. § 845.600 GWPSs to determine potential exceedances. The results are considered potential exceedances because the results were compared directly to the standard and did not include an evaluation of background groundwater quality or utilize the statistical methodologies proposed in the GMP (Ramboll, 2021c) attached to the operating permit application.

Groundwater concentrations from 2015 to 2021 are summarized in the History of Potential Exceedances (Ramboll, 2021b) (attached to the operating permit application) and are considered potential exceedances because the methodology used to determine them is proposed in the Statistical Analysis Plan (Appendix A to the GMP, Ramboll 2021c), which has not been reviewed or approved by IEPA at the time of submittal of the Part 845 operating permit application.

The History of Potential Exceedances attached to the operating permit application summarizes all potential groundwater exceedances following the proposed Statistical Analysis Plan. The following potential exceedances were identified:

- Boron determined at well G313.
- Cobalt determined at well G314.
- pH (lower limit) determined at well G312.
- Sulfate determined at wells G301, G303, G304/G307, G305, G307D, G308, G309, G310, G311, G312, G313, G314, G314D, G315, and G317.
- TDS determined at wells G303, G304/G307, G305, G307D, G308, G309, G310, G311, G312, G313, G314, G315, and G317.

A Technical Memorandum (**Attachment A**) was prepared by Geosyntec Consultants, Inc. (Geosyntec, 2022a), *Evaluation of Potential Groundwater Protection Standard Exceedances, Coffeen Ash Pond No.1, Coffeen Illinois*, to further evaluate potential GWPS exceedances. The

results of the evaluation demonstrated that the potential GWPS exceedances of cobalt in well G314 and pH in well G312 are not related to AP1 based on several lines of evidence presented in the Technical Memorandum. Since potential GWPS exceedances for cobalt and pH are not related to AP1, these parameters will not be discussed further in this GMR.

4. GROUNDWATER MODEL

4.1 Overview

Data collected at the Site from 2015 to the 2021 field investigation were used to update an existing groundwater model of the CPP (NRT, 2017b). The updated model was then used to evaluate the results of predictive groundwater modeling simulations for two proposed closure scenarios, including CCR consolidation and CIP, and CBR. The modeling results are summarized and evaluated in this GMR. The associated model files are included as **Appendix B**.

4.2 Description of Existing Model

The NRT (2017b) contaminant fate and transport model simulated boron and was performed to support closure of AP2 using MODFLOW and MT3DMS. AP1, GMF GSP, GMF RP, and LF were present within the previous model domain.

The NRT (2017b) modeling consisted of the following:

- Steady-state MODFLOW model was developed to represent site conditions for 2016. This model was calibrated to a set of groundwater elevation data collected during November 2016.
- The hydraulic properties from the steady-state model were used in the calibration of the transient MODFLOW and MT3DMS models which simulated groundwater flow and transport at the AP2 from 1970 to 2017. Boron concentrations collected in August 2016 were used to calibrate the transport model.
- Predictive simulations to estimate future boron concentrations for a baseline (no action) and capping closure scenario for AP2 were completed. Closure action was modeled over a period of 1,500 years, beginning in January 2018.
- Predicted boron concentrations were simulated to reach compliance for CIP at AP2 after 101 years (NRT, 2017b). These modeling results were part of the closure plan approved by IEPA on January 30, 2018.

4.3 Conceptual Model

The HCR (Ramboll, 2021a) forms the foundation of the AP1 hydrogeological setting. The AP1 overlies the recharge area for the underlying transmissive geologic media, which are composed of unlithified deposits.

4.3.1 Hydrogeology

As discussed in **Section 2.2**, groundwater flow in the UA at the CPP is divided towards the two lobes of Coffeen Lake. The loess of the UCU and sands of the UA are hydraulically connected. The groundwater flow in the silts and clays of the UCU and LCU are expected to be primarily vertical. The Hagarstown member is where the majority of the horizontal migration is expected to occur. The hydrogeological CSM consists of the following layers:

- Hagarstown Loess Unit (*i.e.*, UCU) Loess Unit and the upper clayey portion of the Hagarstown Member.
- Hagarstown Member (*i.e.*, UA) sand and sandy silts and clays at the base of the Hagarstown Member and, in some locations, the uppermost weathered sandy clay portion of the Vandalia Member.

- Vandalia Member/Mulberry Grove Member (*i.e.*, LCU) unweathered sandy clay till and discontinuous silts.
- Smithboro Till (*i.e.*, LCU) compacted clay till of the Smithboro Member.

The hydrostratigraphic units included in the model were the UCU, UA, and LCU. The DA and DCU were not included in the model, which includes consistency with the original model (NRT, 2017b). No potential GWPS exceedances have been observed in the DA. This, coupled with the limited groundwater data available for the DA and DCU, meant that these layers were not included in the model. Therefore, the Smithboro Till (*i.e.*, LCU) represents the lower boundary of the CSM.

Surfaces for each of the three major geological units (Loess Unit, Hagarstown Member, Vandalia/Mulberry Grove Member and Smithboro Till Member) were taken from the NRT model (2017b). The NRT model (2017b) used available information from well logs to interpolate the top and base of the UA.

4.3.2 Extent and Boundaries

The United States Geological Survey (USGS) National Map places the CPP within the East Fork Shoal Creek watershed subbasin (Hydrologic Unit Code [HUC] 071402030303).

The CPP CSM extent is bounded by a hydrological catchment (watershed) divide to the east based on watershed data from USGS. Along the north, south, and east, the model boundary has been placed along known waterbodies as much as possible. As such, it is assumed groundwater inflow from adjacent watersheds is negligible through both the UA and LCU.

The Coffeen Lake water levels are managed an average elevation 591.0 feet NAVD88. Coffeen Lake and Unnamed Tributary are the receiving body of water for surface water in the area encompassed by the CSM.

Infiltration of precipitation to the groundwater table is applied as recharge at the site. Groundwater in the UCU migrates downward into the Hagarstown Formation. As discussed in **Section 2.2.1**, the Hagarstown Formation is considered the UA for groundwater adjacent to AP1.

4.3.3 Ash Pond No. 1

AP1 is constructed such that the earthen berm and base are in contact with the UCU with exception of limited areas in the northeast of the SI where the UCU and UA have been eroded and the berm and base of CCR are in contact with the LCU. Findings from the HCR (Ramboll, 2021a) indicate that AP1 does influence the UA flow system, where there is a component of radial flow from AP1. However, this radial flow system appears to be centered around the southwest corner of AP1 resulting in a northerly and easterly component of groundwater flow within the UA.

Sulfate was selected for transport modeling. Sulfate is commonly used as an indicator parameter for contaminant transport modeling for CCR because: (i) it is commonly present in coal ash leachate; and (ii) it is mobile and typically not very reactive but conservative (*i.e.*, low rates of sorption or degradation) in groundwater.

4.5 Model Approach

4.5.1 Potential Groundwater Exceedances

A comparison of observed TDS concentrations to sulfate (**Figure A** below) indicates a statistically significant correlation between these parameters in UA wells where these potential exceedances were observed. Observed concentrations were transformed into Log10 concentrations for evaluation. The correlation coefficient (R²) and p values (indicator of statistical significance) are also provided on **Figure A**. Higher R² values (*i.e.*, closer to 1) indicate stronger correlation between parameters. A correlation is considered statistically significant when the p value is lower than 0.05. The correlation has a p value less than the target of 0.05, indicating the correlation is statistically significant. The statistically significant correlation associated with sulfate concentrations indicate sulfate is an acceptable surrogate for TDS in the groundwater model, and concentrations of this parameter are expected to change along with model predicted sulfate concentrations.

Figure A. Sulfate Correlation with TDS in UA Wells

A potential exceedance of boron was also observed at one monitoring well, G313, in the vicinity of AP1, based on the History of Potential Exceedances (Ramboll, 2021b). Correlations between sulfate and boron for the same AP1 UA wells did not indicate a statistically significant correlation between these constituents. However, UA monitoring well G313 has potential exceedances of both sulfate and TDS along with the potential exceedance of boron (**Section 3.2**). Boron, like sulfate, is a common indicator parameter used for contaminant transport modeling of CCR; and boron is less likely than other constituents to be present in background groundwater from natural or other anthropogenic sources. The only significant source of boron is AP1. With potential

exceedances of boron, sulfate, and TDS present in the same well (G313) and having the same source (AP1), boron concentrations are expected to change along with model predicted sulfate concentrations.

4.5.2 Summary of Modeling Activities

A three-dimensional groundwater flow model was calibrated to represent the conceptual flow system described above. Prediction simulations were performed to evaluate the effects of closure (source control) measures (CCR consolidation and CIP and CBR scenarios) for the CCR units on groundwater quality following initial corrective action measures, which includes removal of free liquids (dewatering). **Figure 4-1** illustrates the calibration and predictive modeling timelines.

Three model codes were used to simulate groundwater flow and contaminant transport:

- Groundwater flow was modeled in three dimensions using MODFLOW 2005.
- Contaminant transport was modeled in three dimensions using MT3DMS.
- Percolation (recharge) was modeled using the results of HELP model.

Modeling steps are a summarized below:

- A steady state model was created in MODFLOW 2005 and used to simulate the mean groundwater flow conditions at the site. The model was calibrated to match mean groundwater elevations observed between 2015 to 2021 (**Table 4-1**).
- Transient flow models based off of the calibrated steady state model were used to simulate groundwater flow and transport for 42 years using MODFLOW 2005 and MT3DMS to simulate changes in site conditions through time and match currently observed concentrations of sulfate in groundwater (**Table 4-1**).
- Prediction simulations began with a 2-year dewatering period simulated in MODFLOW 2005 and MT3DMS where heads were reduced within the CCR unit and concentrations were removed from CCR removal areas.
- Prediction simulations resumed for CIP and CBR following the 2-year dewatering period using the results of HELP modeling as input values for recharge rates in the construction areas.
- The prediction simulations were run using MODFLOW 2005 and MT3DMS to estimate the time for sulfate concentrations to meet the GWPS in the compliance wells and to evaluate the differences between the two closure scenarios.

5. MODEL SETUP AND CALIBRATION

5.1 Model Descriptions

For the construction and calibration of the numerical groundwater flow model for the site, Ramboll selected the model code MODFLOW, a publicly-available groundwater flow simulation program developed by the USGS (McDonald and Harbaugh, 1988). MODFLOW is thoroughly documented, widely used by consultants, government agencies and researchers, and is consistently accepted in regulatory and litigation proceedings. MODFLOW uses a finite difference approximation to solve a three-dimensional head distribution in a transient, multi-layer, heterogeneous, anisotropic, variable-gradient, variable-thickness, confined or unconfined flow system—given user-supplied inputs of hydraulic conductivity, aquifer/layer thickness, recharge, wells, and boundary conditions. The program also calculates water balance at wells, rivers, and drains.

MODFLOW was developed by USGS (McDonald and Harbaugh, 1988) and has been updated several times since. Major assumptions of the code are: (i) groundwater flow is governed by Darcy's law; (ii) the formation behaves as a continuous porous medium; (iii) flow is not affected by chemical, temperature, or density gradients; and (iv) hydraulic properties are constant within a grid cell. Other assumptions concerning the finite difference equation can be found in McDonald and Harbaugh (1988). MODFLOW 2005 was used for these simulations with Groundwater Vistas 7 software for model pre- and post- processing tasks (Environmental Simulations, Inc., 2017).

MT3DMS (Zheng and Wang, 1998) is an update of MT3D. It calculates concentration distribution for a single dissolved solute as a function of time and space. Concentration is distributed over a three-dimensional, non-uniform, transient flow field. Solute mass may be input at discrete points (wells, drains, river nodes, constant head cells), or distributed evenly or unevenly over the land surface (recharge).

MT3DMS accounts for advection, dispersion, diffusion, first-order decay, and sorption. Sorption can be calculated using linear, Freundlich, or Langmuir isotherms. First-order decay terms may be differentiated for the adsorbed and dissolved phases.

The program uses the standard finite difference method, the particle-tracking-based Eulerian-Lagrangian methods and the higher-order finite-volume total-variation-diminishing (TVD) method for the solution schemes. The finite difference solution has numerical dispersion for low-dispersivity transport scenarios but conserves good mass balance. The particle-tracking method avoids numerical dispersion but was not accurate in conserving mass. The TVD solution is not subject to significant numerical distribution and adequately conserves mass, but is numerically intensive, particularly for long-term models such as developed for this model. The finite difference solution was used for this simulation.

Major assumptions of MT3DMS are: (i) changes in the concentration field do not affect the flow field; (ii) changes in the concentration of one solute do not affect the concentration of another solute; (iii) chemical and hydraulic properties are constant within a grid cell; and (iv) sorption is instantaneous and fully reversible, while decay is not reversible.

The HELP model was developed by the United States Environmental Protection Agency (USEPA). HELP is a one-dimensional hydrologic model of water movement across, into, through, and out of a landfill or soil column based on precipitation, evapotranspiration, runoff, and the geometry and hydrogeologic properties of a layered soil and waste profile. For this modeling, results of the HELP model, HELP Version 4.0 (Tolaymat and Krause, 2020) completed for the groundwater model were used to estimate the hydraulic flux from closure construction.

5.2 Flow and Transport Model Setup

The 2017 flow and transport models were retained and revised as appropriate to perform simulations for the AP1.

The modeled area was approximately 10,000 feet by 15,025 feet (150,250,000 square feet [ft²]) centered on the CPP (**Figure 5-1**). The model boundaries along the northern and eastern edges of the model were selected to maintain sufficient distance from the CPP to reduce boundary interference with model calculations, while not extending too far past the extent of available calibration data. The eastern edge of the model also approximates topographic highs, surface water divides, and watershed boundaries.

The steady state MODFLOW model was calibrated to mean groundwater elevation collected from 2015 to 2021 as presented in **Table 4-1**. MT3DMS was run on the transient flow model and model-simulated concentrations were calibrated to observed sulfate concentration values at the monitoring wells from January 2015 to July 2021 as presented in **Table 4-1**. Multiple iterations of MODFLOW and MT3DMS calibration were performed to achieve an acceptable match to observed flow and transport data. For AP1, the calibrated flow and transport models were used in predictive modeling to evaluate the CIP and CBR closure scenarios. Prior to simulation of CIP and CBR, a dewatering phase, which simulated the removal of free liquid from the CCR material in the AP1 was completed. Closure scenarios were simulated by removing saturated ash cells from removal areas and using HELP modeled recharge values to simulate changes proposed in the closure scenarios.

5.2.1 Grid and Boundary Conditions

A five-layer, 326 x 211 node grid was established with a variable grid spacing between 25 and 100 feet (**Figures 5-2 through 5-6**), with a total number of 284,575 active cells.

The main body of Coffeen Lake is immediately adjacent to CPP on the west and south and the Unnamed Tributary borders CPP to the east. These surface water features form the southern, eastern, and western boundaries of the model. The northern boundary of the model domain is a general head boundary. Vertically, the model domain extends from the top of the saturated zone to the base of the Smithboro Member. The thick clays of the Banner Formation are relatively impermeable compared to the overlying unconsolidated sediments and provides a base for the model.

The northern boundaries for layers 3, 4, and 5 are general head boundaries placed to simulate flow in the sandier soils of the Hagarstown Member, Vandalia/Mulberry Grove Member and Smithboro Till composing the UA (layer 3), and LCU (layer 4 and 5). The northern boundary represents the regional flow conditions within these units. The eastern edge is no-flow boundary in all model layers.

Coffeen Lake is represented as a constant head boundary based on an average surface water elevation of 591.0 feet NAVD88. The constant head boundary was simulated with an elevation equal to 591.0 feet. The lake is in hydraulic connection with multiple layers within the model.

The bottom of the model was also a no-flow boundary. The top of the model was a timedependent specified flux boundary, with specified flux rates equal to the recharge rate. A specified mass flux boundary was used to simulate downward percolation of solute mass from the AP1. This boundary condition assigns a specified concentration to recharge water entering the cells within AP1, and the resulting concentration in the AP1 cells is a function of the relative rate and concentration of recharge water (water percolating from the impoundment) compared to the rate and concentration of other water entering the node.

5.2.2 Flow Model Input Values and Sensitivity

Evaluation of monitoring well data for the CPP has not identified statistically significant seasonal trends in groundwater flow or quality which could affect model applicability for prediction of transport. The MODFLOW model was calibrated to mean groundwater elevations from 2015 to 2021. Multiple iterations of MODFLOW calibration were performed to achieve an acceptable match to observed flow data.

Sensitivity analysis was conducted by changing input values and observing changes in the sum of squared residuals (SSR). Horizontal conductivity, vertical conductivity, and river and general head conductance terms were all varied by one order of magnitude (*i.e.*, between one-tenth and ten times) of the calibrated values. Recharge terms were varied between one-half and two times calibrated values. River stage was obtained from the 10 meter (m) Digital Elevation Model (DEM) from the United States Department of Agriculture/Natural Resources Conservation Service (USDA/NRCS) National Geospatial Center of Excellence (USDA/NRCS, 2022). The vertical error of the 10 m DEM is 0.82 m (2.7 feet); therefore, the stream stage was varied by adding and subtracting 2.7 feet. Where appropriate, drain stage was modified based on the DEM error. Where this was inappropriate, drain stage increased and decreased by 2 feet. General head boundary head terms were varied between 90 and 110 percent of calibrated values. The HFB was varied by increasing the hydraulic conductivity by a factor of 100 and 1,000. When the calibrated model was tested, the SSR was 351. Sensitivity test results were categorized into negligible, low, moderate, moderately high, and high sensitivity based on the change in the SSR as summarized in the notes in **Table 5-1**.

5.2.2.1 Layer Top/Bottom

The top of the saturated zone was used as the top of the model. The elevations for the base of each hydrostratigraphic layer were obtained from the NRT model (2017b) and were imported as grid data into MODFLOW. The upper Loess Unit of the Hagarstown Member (UCU) was divided into two layers to accommodate the explicit inclusion of the CCR in AP1 and AP2. The sand and silts of the Hagarstown Member which form the UA were represented using a single layer. The LCU was represented by two layers, the upper LCU (layer 4) represents the unweathered Vandalia/Mulberry Grove Member and the lower LCU (layer 5) represents the Smithboro Member.

The UCU layer was split into two layers (layers 1 and 2) to simulate the construction of AP1 and AP2. Within AP1 and AP2, layer 1 represents ash fill and layer 2 represents the UCU present below the ash and above the UA. Outside of AP1 and AP2, both layers 1 and 2 represent the UCU. Layer 3 represents the UA and the LCU is present in layers 4 and 5. **Figures 5-7 through 5-11** show the bottom elevations of the five model layers. The resulting model layers represent the distribution and change in thickness of each water-bearing unit across the model domain. **Table A** below provides elevation and thickness information for the model layers and hydrostratigraphic units used in the model.

Lavor	Hydrostratigraphic	Hydrostratigraphic Unit Used to	Top Elevation ¹	Bottom Elevation ¹	Thickness (feet)	
Layer	Unit Name	Determine Layer Thickness	(Mi	Mean inimum – Maximu	m)	
1&2	UCU and CCR	Loess Unit of Hagarstown Member and CCR	640 (-)	607.73 (604.0-614.15)	27.1 (26.0-29.85)	
3	UA	Hagarstown Member	607.73 (604.0-614.15)	600.9 (580.0-612.0)	5.2 (2.0-34.0)	
4	LCU	Vandalia/Mulberry Grove Member	600.9 (580.0-612.0)	588.5 (578.0-594.0)	18.83 (2.0-30.0)	
5	LCU	Base of Coffeen Lake	588.5 (578.0-594.0)	540.0 (-)	48.4 (38.0-51.1)	

Table A. Flow Model Layer Descriptions

Notes:

¹ Elevation is measured in feet, referenced to NAVD88.

5.2.2.2 Hydraulic Conductivity

Hydraulic conductivity values and sensitivity results are summarized in **Table 5-1**. The spatial distribution of the hydraulic conductivities within the UCU, UA and LCU were considered homogenous. **Figures 5-12 through 5-16** show the spatial distribution of the hydraulic conductivity zones, AP1 and other units on site for each of the five model layers. Construction of the GMF units removed the sands and silts of the UA prior to construction of the liner, therefore the UA is absent beneath these units and liner hydraulic properties are assigned. Conductivity zones that did not have representative site data (*i.e.*, zones 19 and 21, representing the cells above the river cells and the disturbed sediments between the LF and GMF GSP, respectively) were determined through model calibration.

Where available, hydraulic conductivity values were derived from field measured or laboratory tested values reported in the HCR (Ramboll, 2021a) (**Section 2.2.2**). No horizontal anisotropy was assumed. Vertical anisotropy was applied to conductivity zones to simulate preferential flow in the horizontal direction in these materials, and are presented as anisotropy ratio (Kh/Kv) in **Table 5-1**.

The model was highly sensitive to changes in horizontal and vertical hydraulic conductivity in zones 1 (UCU), 2 (UA), and 3 (LCU - unweathered Vandalia), and moderately sensitive to changes in horizontal and vertical hydraulic conductivity in zones 10 (CCR fill-AP1) and 19 (UCU-fill). The model exhibited a negligible to low sensitivity in the remaining zones for both horizontal and vertical conductivity.

5.2.2.3 Recharge

Recharge rates were determined through calibration of the model to observed groundwater elevations. For the calibration model, recharge was applied to the uppermost active layer and the rates varied based on different units, namely the AP1, AP2, GMF GSP, GMF RP, LF, Surface Water Pond, and Cooling Pond. Model inputs are summarized in **Table 5-1**. The distribution of recharge is shown in **Figure 5-17**. Changes in operational history, such as the addition of AP1 to the site in 1977 and the GMF units in 2010 as illustrated in **Figures 5-18 through 5-21**, have been

incorporated into the transient model simulation (**Table 5-2**). See **Section 5.2.3.1** for additional discussion of time discretization.

The model had a high sensitivity to changes in recharge in zones 1 (UCU) and 7 (CCR fill - AP1). The model had negligible to low sensitivity to changes in recharge in the remaining zones, with the exception of zone 6 (CCR fill - AP2), where the sensitivity was moderate.

5.2.2.1 Storage and Specific Yield

The flow calibration model did not use these terms because it was run at steady state. For the transport model, which was run as a transient simulation, no field data defining these terms were available so published values were used consistent with Fetter (1988). Specific yield was set to equal effective porosity values described in **Section 5.2.3.5**. The spatial distribution of the storage and specific yield zones were consistent with those of the hydraulic conductivity zones. The sensitivity of these parameters was tested by evaluating their effect on the transport model as described in **Section 5.2.3.6**.

5.2.2.2 River Parameters

Five river reaches were included in the model as head dependent flux boundaries that required inputs for elevation of the surface water, bottom of the stream, width, bed thickness, and bed hydraulic conductivity (**Table 5-1**). The five river reaches were the Unnamed Tributary east of the CPP (reach 0 and reach 5), the Unnamed Tributary west of the CPP (reach 1), ponded surface water west of the LF (reach 2), and the condenser cooling water discharge flume (reach 3). The river and drain information is summarized in **Table B** below.

Name	Boundary Type	Length (feet)	Slope (ft/ft)
Unnamed Tributary East	River	8959.0	-0.0031
Unnamed Tributary East – downstream reach	River	1438.3	-0.0026
Unnamed Tributary West	River	3436.5	-0.0098
Ponded Surface Water West	River	-	-
Condenser Cooling Flume	River	-	-
Active Landfill Underdrain	Drain	2147.0	-
Gravity Drain Recycle Pond	Drain	2181.8	-
North Drain	Drain	3032.0	-

Table B. River and Drain Information

Notes:

ft/ft = feet per foot

In the absence of river geometry information, the DEM was used to estimate stream stage at the upstream and downstream limits of the Unnamed Tributary east of the CPP and the Unnamed Tributary west of the CPP. The surface water stages for the ponded surface water west of the LF and the Condenser Cooling Flume were constant (not sloped) and were also obtained from the DEM. For both Unnamed Tributaries (east and west), the slope of the river was then linearly interpolated along the reaches, providing an estimation of stream stage along the length of each reach for each model grid cell though which the river flows. Bed thickness was set at 2 foot and river width was set at 10 feet. The river bottom is set 3 feet below the stage for both the

Unnamed Tributaries. The downstream reach (reach 5) of the Unnamed Tributary is located in layer 5 of the model adjacent to the SI unit AP2, this layer represents the LCU-Smithboro till and has a low hydraulic conductivity. To increase connectivity of the tributary to the overlying layers, the hydraulic conductivity of the streambed was modified during calibration.

The Condenser Cooling flume stage is maintained at 604.0 feet and the ponded surface water west of the LF was maintained at 617.5 feet, and bed thicknesses for these reaches were set to 1 foot. The width of the Cooling Flume (approximately 52 feet) and ponded surface water west of the LF are larger than the grid cell dimensions (25 feet by 25 feet); therefore, the conductance term for both were based on the area of the cells which coincide with the flume and ponded water.

The model had low to moderate sensitivity to changes in river stage. The model had low to moderately high sensitivity to changes in river conductance, with the exceptions of reach 0 (Unnamed Tributary East) and reach 3 (Condenser Cooling Flume) which had high sensitivity.

5.2.2.3 Drain Parameters

The LF has an active underdrain, which is actively pumped to prevent more than 1-foot of groundwater head above the liner. This was estimated to be 603.5 feet. The GMF RP has a passive drain beneath the liner which discharges water towards the Unnamed Tributary east of the unit. This was estimated to be 600.5 feet. Both the active LF drain and passive GMF RP drain were placed in layer 4 (LCU) below the low hydraulic conductivity zones which represent the base of the lined units. A surface water drain in the north of the model was also included; the placement of this northern drain was determined using google earth imagery. The Northern drain appears to be a man-made feature and no hydrological data are available as to its flow conditions. Therefore, its implementation in the model as a drain makes the fewest assumptions of its interaction with the aquifer. This surface water drain is located in layer 1 and has an elevation of 622.0 feet.

The model had low sensitivity to changes in drain stage. The model had negligible to moderate sensitivity to changes in drain conductance, with the exception of reach 0 (Active LF Underdrain) where the model had moderately high sensitivity to changes in drain conductance.

5.2.2.4 GMF Unit Parameters

All GMF units (GMF GSP, GMF RP, and LF) have a similar liner construction (**Table C** below); they were all implemented into the model using horizontal flow barrier (HFB) package to represent the liner system on the sides of the units. The bottom of the liner is implemented by assigning the liner system hydraulic conductance to model layer 3 within the footprint of the pond. The base elevation of layer 3 within the footprint of the GMF units simulates the base elevation of the liner. The thickness of model layer 3 within the footprint of the pond was set to three feet. Removal of the sands and silts below the GMF units (as described in **Sections 1.4** and **2.1**) means that the liner is in direct contact with the Vandalia Member. The groundwater flow dynamics beneath/around the Ash Landfill and GMF Units is affected by several factors, including: removal of the Hagarstown Member from beneath the Units; presence of the construction dewatering systems around the units; and the lateral variability of lithology within the Hagarstown Member (Hanson, 2016). Drains discussed above were used to represent the underdrains associated with the GMF units. The hydraulic properties within the GMF units were set to represent the CCR.

Estimates of the hydraulic properties of each of the components within the liner system were derived using values from the HELP model; see **Section 5-1** for more information about HELP. For flow perpendicular to the layer orientation, as is the case in the liner where the hydraulic gradient is vertical for the base and horizontal for the sides of the pond, the harmonic mean was used to obtain the effective hydraulic conductivity (K_{eff}) (Fetter, 1988). The harmonic mean was determined by:

$$K_{eff} = \frac{\sum b}{\sum \frac{b}{K}}$$

where b is the layer thickness and K is the horizontal hydraulic conductivity.

HFB input parameters are presented in **Table 5-1**. The model had low to moderate sensitivity to changes in the hydraulic conductivity in the HFB.

i ner Component DPE geomembrane (60 mil) ecompacted Soil ertical Harmonic Mean of liner system	Thickness (feet)	Hydraulic Conductivity (cm/s)	Hydraulic Conductivity (ft/d)
HDPE geomembrane (60 mil)	0.06	2.0 x 10 ⁻¹³	5.7 x 10 ⁻¹⁰
Recompacted Soil	3.0	1.0 x 10 ⁻⁷	2.8 x 10 ⁻⁴
Vertical Harmonic Mean of liner system	NA	NA	2.89 x 10 ⁻⁸

Table C. Liner System Properties From Top to Bottom for the GMF GSP, GMF RP, and LF

* Estimated based on available information ft/d = feet per day

NA = not applicable

5.2.2.5 General Head Boundary

General head boundary conditions (GHB) were used along the northern boundary of the model for layer 3 through 5 (**Figures 5-4 through 5-6**). The GHB at the northern limit of the model represents groundwater entering the model domain from upgradient areas. The GHB is present in layers 3 through 5 and was used to simulate groundwater flow into the model via the UA and LCU. The groundwater levels used for the northern boundary of the model in layers 3 through 5 were estimated using the Dupuit equation for steady state flow in an unconfined aquifer with recharge.

The DEM of the site provided estimates of the surface water levels for Coffeen Lake on the west of the model (591 feet), and Rocky Ford Sportsman Club North Lake (604 feet) on the east of the model domain (refer to **Figure 5-1**). The calibrated ambient recharge to the UCU was used in the calculation of the groundwater level distribution at the northern boundary. The hydraulic conductivity value used in the Dupuit equation was estimated during model calibration.

This GHB was only applied to cells along the northern boundary where the base of the cell was below the calculated groundwater head for a given distance from the constant head boundaries, the head was determined by the Dupuit equation. Cell conductance was then calculated using the cells' saturated thickness and cell width, and hydraulic conductivity were based on cell hydraulic conductivities and adjusted if appropriate during calibration.

The GHB elevation for northern boundary in the UA was established during calibration (**Table 5-1**). The distance to the GHB head was set to 1, and the GHB conductivity was

calculated using the cell width, cell thickness, and calibrated hydraulic conductivity from the model.

The sensitivity to changes in specified head was low to moderate, with the exception of reach 3 (Northern Model Boundary in LCU Layer 4) where the model sensitivity was high. The flow calibration model had a negligible sensitivity to changes in conductance.

5.2.3 Transport Model

MT3DMS input values are listed in **Table 5-2** and described below. Sensitivity of the transport model is summarized in **Table 5-3**.

Groundwater transport was calibrated to groundwater sulfate concentration ranges at each well as measured from the monitoring wells between 2015 (where available) and 2021. The transport model calibration targets are summarized in **Table 4-1**.

Sensitivity analysis was conducted by changing input values and observing percent change in sulfate concentration at each well from the calibrated model sulfate concentration. Effective porosity was varied by decreasing and increasing calibrated model values by 0.05. Storage values were multiplied and divided by a factor of 10, and specific yield by a factor of 2. The dispersivity values in the calibrated model were increased by a factor of 5 and 10. The sensitivity of the transport model to changes in the liner conductance was also investigated by increasing and decreasing the hydraulic conductivity of the liner by one order of magnitude (*i.e.*, between one-tenth and ten times).

The transport model had a negligible to moderate sensitivity to changes in storage and specific yield (**Table 5-3**) as discussed in **Section 5.2.3.6**. The transport model ranged from negligible to moderate sensitivity to effective porosity and dispersivity as discussed in **Sections 5.2.3.5** and **5.2.3.7**, respectively. The sensitivity to the liner conductivity was negligible to low as discussed in **Section 5.2.3.2**.

5.2.3.1 Time Discretization and Stress Periods

The evolution of the CPP required changes to the hydraulic properties within the model; this is not possible in a single model where hydraulic properties as assumed to remain constant. As a result, the changes in the site (*e.g.*, inclusion of the GMF units) are simulated in three consecutive numerical models, as summarized in **Table D** below. The simulation length was revised from the existing model to extend to the current time (2022).

Date	Model	Stress Period	Operational Change	Previous model
Pre-1970	Steady-State	NA	No CCR units present	Not applicable
1970-2010	Transient (TR-1)	1:1970-1985	AP2 only	Steady State Pre-1970 flow
		2:1985-2010	AP2 and AP1 in operation	
2010-2018	Transient (TR-2)	1:2010-2018.	AP1, GMF GSP and GMF RP in operation.	TR-1 as initial flow and concentrations

Table D.	Transient	Model Setup	o and Time	Discretization

2018-2022	Transient (TR-3)	1:2018-2022	Modification to lined	TR-2 as initial flow and
			units GMF GSP and	concentrations
			GMF RP, AP2 capped	
Notes:				

TR = transient model

5.2.3.2 GMF Units

Groundwater chemistry data from wells G215 (located adjacent to the GMF GSP), and wells G275 and G279 (located adjacent to the GMF RP), indicate an increase in sulfate concentrations post 2018 when compared with sulfate concentrations in adjacent wells. Sulfate concentrations in G215 have experienced further increases since 2021. Sulfate concentrations around the GMF RP tend to be higher than those around the GMF GSP, with elevated sulfate concentrations observed since 2015 (the earliest sampling date). Elevated sulfate concentrations along the southern boundary of the GMF RP are associated with historic groundwater impacts from AP2. However, wells G275 and G279 are located along the eastern boundary of the pond and have elevated sulfate concentrations. To simulate observed sulfate concentrations at these isolated wells (GMF GSP well G215, and GMF RP wells G275 and G279), the hydraulic conductivity of the liner (simulated using HFB) was increased to allow sulfate migration from the CCR unit in the transient model TR-3, as shown in **Figure B** below and **Table D** above.

Figure B. Liner Modification Zones

As part of the transport calibration process, the hydraulic conductivity of HFB reaches 11, 16, and 21 were modified to simulate the observed rises in sulfate. The changes are summarized in **Table 5-2**. Model sensitivity near the GMF ponds is discussed in the Groundwater Modeling

Report, *GMF Gypsum Stack Pond and GMF Recycle Pond, Coffeen Power Plant, Coffeen Illinois* (Ramboll, 2022).

The monitoring wells associated with AP1 show negligible to low sensitivity to changes in the GMF liner conductivity (**Table 5-3**). AP1 Is located approximately 2,500 foot south of the GMF SIs, any changes in groundwater flow and transport will be minimal in proximity to AP1.

5.2.3.3 Initial Concentration

No initial concentrations were placed in the steady state flow calibration model. The flow model was run as transient and concentration was added to the model through recharge starting at the same time as the transient flow simulation. Modeling was performed for a sufficient period (42 years) to allow modeled concentrations in the primary transport layer (*i.e.*, UA) to reach recently observed levels.

Modeling was performed over three numerical models which mirror the operational developments at the CPP. **Table 5-2** provides an overview of how the source concentrations and recharge rates change through time.

5.2.3.4 Source Concentration

Five sources in the form of vertical percolation (recharge) and constant concentration cells were simulated in the CCR material for calibration (Table 5-2) (in chronological order): (i) percolation through CCR in AP2 (1970-2022), (ii) percolation through CCR in AP1 (1978-2022), (iii) percolation through CCR in GMF RP (2010-2022), (iv) percolation through CCR in GMF GSP (2010-2022), and (v) percolation through CCR in GMF LF (2010-2022). All five sources were simulated by assigning concentration to the recharge input. The CCR sources were also simulated with constant concentration cells placed where CCR was present (Figures 5-18 through 5-21) to simulate saturated CCR conditions. From the model perspective, this means that when the simulated water level is above the base of these cells, water that passes through the cell will take on the assigned concentration. All source concentrations were calibrated in the transport model to the sulfate concentration data collected from November 2015 to August 2021. The source concentrations applied to the recharge zones and saturated ash cells immediately below the recharge zones have the same concentration values. Table 4-1 indicates that the background sulfate concentrations (identified with a "B" for background in the "CCR unit" column) at CPP show considerable variability across the site, from 11 mg/L (G286) to 770.0 mg/L (G288). No background sulfate concentration was applied to recharge beyond the source areas in the model.

Because these are the sources of concentration in the model, the model will be highly sensitive to changes in the input values. For that reason, sensitivity testing was not completed for the source values.

5.2.3.5 Effective Porosity

Effective porosity for each modeled hydraulic conductivity zones were based on the NRT model (2017b), data from the HCR (Ramboll, 2021a), and literature values (Fetter, 2001) and are presented in **Table 5-2**.

The model had a negligible to moderate sensitivity to changes in porosity values (**Table 5-3**). The greatest sensitivity for porosity was moderate for the high porosity sensitivity test at

monitoring locations G305, G306, and G317. Moderate sensitivity at monitoring well G317 was also observed for the low porosity sensitivity test.

5.2.3.6 Storage and Specific Yield

The transport model had a negligible to low sensitivity to changes in storage and specific yield, with the exception of sensitivity at monitoring wells G306, G307, and G317, where sensitivity was moderate (**Table 5-3**).

5.2.3.7 Dispersivity and Diffusion

Physical attenuation (dilution and dispersion) of contaminants is simulated in MT3DMS. Dispersion in porous media refers to the spreading of contaminants over a greater region than would be predicted solely from the average groundwater velocity vectors (Anderson, 1979; Anderson, 1984). Dispersion is caused by both mechanical dispersion, a result of deviations of actual velocity at a microscale from the average groundwater velocity, and molecular diffusion driven by concentration gradients. Molecular diffusion is generally secondary and negligible compared to the effects of mechanical dispersion and only becomes important when groundwater velocity is very low. The sum of mechanical dispersion and molecular diffusion is termed hydrodynamic dispersion, or simply dispersion (Zheng and Wang, 1998).

Longitudinal dispersivity was 10 feet in the UA and 1 foot in the UCU and LCU, with transverse and vertical dispersion coefficients assuming a ratio of 1/10 and 1/100.

The model had a negligible to moderate sensitivity to changes in dispersivity values (**Table 5-3**). The greatest sensitivity for dispersivity was moderate for the highest dispersivity sensitivity test at monitoring well locations G313, G314, G316, and G317. Sensitivity was also moderate for the lower dispersivity sensitivity test at monitoring well locations G313 and G317.

5.2.3.8 Retardation and Decay

It was assumed that sulfate would not significantly sorb or chemically react with aquifer solids (Kd was set to 0 mL/g) which is a conservative estimate for estimating contaminant transport times. Boron, sulfate, and TDS transport is likely to be affected by both chemical and physical attenuation mechanisms (*i.e.*, adsorption and/or precipitation reactions as well as dilution and dispersion). Batch adsorption testing was conducted to generate site specific partition coefficient results for boron and sulfate (Geosyntec, 2022b; **Appendix C**) for locations G311 and G313. Results of the testing are summarized below:

- Boron: The Freundlich isotherm (K_F) fit the data best for G313/SB306 and G313/SB313, yielding K_F values of 0.65 liters per kilogram (L/kg) and 2.03 L/kg, respectively. Though slightly higher at G313/SB313, these values are comparable to boron partition coefficients reported in literature, which range from 0.19 to 1.3 L/kg depending on pH conditions and the amount of sorbent present (EPRI, 2005; Strenge & Peterson, 1989). No partition coefficient was calculated for G311.
- Sulfate: The G311 partition coefficient for sulfate ranged from -624 L/kg for the Langmuir isotherm (K_L) to 10.11 L/kg for the linear isotherm (K_D), but the best-fitting Freundlich isotherm yielded a low K_F value of 9.2 × 10⁻¹² L/kg. None of the isotherms showed a high goodness-of-fit (*i.e.*, R²) for either G313/SB306 or G313/SB313, with the highest correlation being 0.05, and were associated with erroneously high (1,700 L/kg) and low (-690 L/kg) partition coefficients. An accurate sulfate partition coefficient could therefore not be calculated from any of the data. These results are consistent with the findings of Strenge and Peterson

(1989), who found that partition coefficients for sulfate are 0.0 L/kg, regardless of pH conditions and the amount of sorbent present.

The results from site samples are variable with poor goodness of fit which supports modeling sulfate without retardation. The potential exceedances identified in groundwater (boron, sulfate, and TDS) are affected by natural attenuation processes in multiple ways and to varying degrees. Further assessment of these processes and how they may be applied as a potential groundwater remedy will be completed as part of future remedy selection evaluations, as necessary. For the purposes of this GMR, and as mentioned at the beginning of this section, no retardation was applied to sulfate transport in the model (*i.e.*, Kd was set to 0 mL/g). Sensitivity tests were not run for retardation.

5.3 Flow and Transport Model Assumptions and Limitations

Simplifying assumptions were made while developing this model:

- Leading up to 2022, the groundwater flow system cannot be simulated as steady state.
- Natural recharge is constant over the long term.
- Fluctuations in lake stage do not affect groundwater flow and transport over the long term.
- Hydraulic conductivity is consistent within hydrostratigraphic units.
- The approximate base of ash surface in the AP1, GMF GSP, GMF RP, and LF were developed with Golder using soil borings and historic topographic maps.
- Source concentrations are assumed to remain constant over time.
- Sulfate is not adsorbed and does not decay and mixing and dispersion are the only attenuation mechanisms.

The model is limited by the data used for calibration, which adequately define the local groundwater flow system and the source and extent of the plume. Since data used for calibration are located near the units on site, model predictions of transport distant spatially and temporally from the calibrated conditions at the CCR units will not be as reliable as predictions closer to the CCR units and concentrations observed in 2021.

5.4 Calibration Flow Model

The groundwater model was manually calibrated to best approximate the mean groundwater elevations in 95 wells at the site. The mean elevations used for calibration and locations of wells within the flow model are summarized in **Table 4-1** Well locations are shown in **Figure 2-1**. This involved modifying the hydraulic conductivities of the different hydrostratigraphic units, recharge rate, and conductance of the drains, rivers, and general head boundaries within the model to minimize the difference between the mean observed groundwater elevation and simulated groundwater elevation. Where possible, the range of the parameter values used during calibration were based on observed values (*i.e.*, for the range in hydraulic conductivity estimates from the HCR). Where this was not possible, such as for the drain and general head boundary conductance, the range of parameter values were based on other site information or inferred from knowledge from similar sites. Where data were limited, the parameter values were less constrained during calibration (*e.g.*, parameter values had wider ranges). The SSR was used as a metric to identify the optimal values for the different parameters.

5.5 Calibration Flow and Transport Model Results

Results of the MODFLOW modeling are presented below. The model files accompany this report (**Appendix B**). **Table 5-1** shows the calibrated hydraulic conductivity for the different units shown in **Figures 5-12 through 5-16**.

Groundwater model calibration results are presented in **Figure 5-22** and **Figure 5-23**, which shows the observed and simulated groundwater elevations and the observed groundwater elevations versus residuals. The near-linear relationship between observed and simulated values presented on **Figure 5-22** indicates that the model adequately represents the calibration dataset. The root mean squared error of the groundwater elevation across all wells was 1.92 feet. The mass balance error for the flow model was 0.00 percent and the ratio of the residual standard deviation to the range of heads was 9.0 percent, which is below the desired target value of 10 percent. Another flow model calibration goal is that residuals are evenly distributed such that there is no bias affecting modeled flow. The observed heads are plotted versus the simulated heads in **Figure 5-23** and simulated values are evenly distributed above and below observed values. The residual mean was also near zero with a value of 0.10 feet, indicating a small bias towards underestimating the groundwater elevations in the calibrated model; this is also illustrated in the observed versus residuals plot in **Figure 5-23**.

The simulated groundwater elevations within the UA (layer 3) for the entire site are shown in **Figure 5-24**. **Figure 5-25** shows the simulated groundwater elevations in proximity to AP1. In general, the model is able to simulate the groundwater flow patterns for the UA (**Figure 2-2** and **Figure 2-3**) at AP1 as interpreted from the site well data for April and July 2021, respectively. The simulated groundwater flow pattern also captures the radial flow pattern centered on the southwest area of AP1. Fourteen wells provided calibration targets for the simulated groundwater level around AP1. The simulated groundwater levels for five of these wells are within 1 foot; six wells are within 2 feet. G303 and G312 are underestimated by 2.14 feet and 3.06 feet respectively, and G309 is overestimated by 2.24 feet.

The range of observed sulfate concentrations for transport calibration locations are summarized in **Table 4-1**. The goals of the transport model calibration were to have predicted concentrations fall within the range of observed concentrations, and to have predicted concentrations above and below the GWPS for sulfate (400 mg/L) match observed concentrations above or below the standard at each well. One or both of these goals were achieved at all of the transport calibration location wells, except G317, where concentrations were underpredicted (**Figure 5-26**). Deviations from the observed ranges are discussed below.

The model underpredicts concentrations at G305 and G317. The observed sulfate concentrations range from 710 to 930 mg/L and 780 to 1100 mg/L for G305 and G317, respectively. The predicted concentrations are 424.8 mg/L and 146.8 mg/L for G305 and G317, respectively. G305 is located south of AP1 (**Figure 2-1**) in close proximity to the mine entrance discussed in **Section 2.2.4** and shown in **Figure 1-2**. The disturbance associated with the former mining activity may be associated with the elevated sulfate concentrations in this well. G317 is located southeast of AP1, downgradient of G303 (whose predicted sulfate concentration is within the observed range). Groundwater flow in this area is predominantly towards Coffeen Lake (west to east). There is aerial and topographic evidence supporting the presence of a soil pile related to the mining activities in the area west (upgradient) of G317 (see **Section 2.2.4**). One soil boring completed through the soil pile documents the presence of coal in the boring log, indicating the

soil pile may be another source of sulfate. This soil pile may potentially leach sulfate into the groundwater thereby increasing the sulfate concentration at G317 above that which would be attributed to AP1 alone.

The remaining calibration locations had predicted concentrations that fall within the range of observed concentrations and/or have predicted concentrations above and below the GWPS for sulfate (400 mg/L) matching observed concentrations above or below the standard at each well. In other words, there was a very good match between predicted and observed sulfate concentrations relative to wells with concentrations above and below the GWPS. The transport model has achieved a very good calibration using a sulfate source concentration of 1,000 mg/L, even though some wells have observed concentrations that are greater than the source concentration used. The distribution of sulfate concentrations in the calibrated model are presented on **Figure 5-27**.

6. PREDICTIVE SIMULATIONS

6.1 Overview and Prediction Model Development

Prediction simulations were performed to evaluate the effects of closure (source control measures) for AP1 on groundwater quality. The prediction simulations evaluated changes in groundwater sulfate concentrations from Scenario 1: CIP (removal of CCR from the eastern portion of AP1 and consolidation into the western portion of the AP1) and Scenario 2: CBR (removal of all CCR material from AP1). As discussed in **Section 5.2.3.7** physical attenuation (dilution and dispersion) of contaminants in groundwater is simulated in MT3DMS, which captures the physical process of natural attenuation as part of corrective actions for both closure scenarios simulated. No retardation was applied to sulfate transport in the model (*i.e.*, Kd was set to 0 mL/g) as discussed in **Section 5.2.3.8**.

Closure scenarios were simulated by initially removing free liquids from the CCR material over the course of 2 years by placing drain cells within AP1 with an elevation of 618 feet and applying zero recharge to simulate dewatering of the CCR units.

HELP-calculated percolation rates, based on removal and final soil backfill grading designs provided in the Final Closure Plans for AP1 (Golder, 2022a), GMF GSP (Golder, 2022b), and GMF RP (Golder, 2022c), were applied for the different closure scenarios. HELP modeling input and output values are summarized in **Table 6-1** and described in detail below.

The CIP and CBR scenarios were simulated for a 100-year period. The following simplifying assumptions were made during the simulations:

- Removal of free liquids from CCR takes place prior to the CIP and CBR closure scenarios. Drain cells were placed within the units to simulate the removal of free water within the ponds; and recharge was set to zero.
- In the CIP and CBR closure scenarios, HELP-calculated average annual percolation rates were developed from a 30-year HELP model run. This 30-year HELP-calculated percolation rate remained constant over duration of the closure scenario prediction model runs following CCR dewatering period.
- Changes in recharge resulting from removal of free liquids (decrease calibration model recharge rates to zero) and CCR fill removal/final soil backfill grading (recharge rates are based on HELP-calculated average annual percolation rates) have an instantaneous effect on recharge and percolation through surface materials.
- Sulfate source concentrations were assumed to be negligible (0 mg/L) in CCR removal areas in both the CIP and CBR scenarios. The spatial distribution of CCR concentrations within the consolidation area for the CIP scenario were maintained from the initial transport simulation.
- Cap construction in CIP scenario was assumed to be completed with a cover system consisting of the following (listed from ground surface down): a vegetative cover (6 inches thick), rooting zone (18 inches thick), a 200-mil geocomposite drainage layer and a 40-mil linear HDPE geomembrane.
- The start of each closure prediction simulation was initiated at the end of the calibration model period of 42 years plus 2 years to complete removal of free liquids. For example, the

simulation of Scenario 1: CIP begins at 44 years (42 years for calibration plus 2 years). The prediction modeling timeline for each scenario is illustrated in **Figure 4-1**.

- CCR consolidation/removal areas were assumed to be graded and include proper drainage controls to remove excess water from the surface using the design drawings provided (Golder, 2022a).
- The CIP scenario includes the placement of a stormwater pond within the removal area. The outflow elevation of this stormwater pond is 625 feet, which will discharge into Coffeen Lake adjacent to the AP2. This is represented as a drain in the model whose elevation is equal to the stormwater pond outflow elevation.
- Local fill materials applied to the prediction models have similar hydraulic properties as the UCU materials used in the transport calibration models. However, the local fill materials were assumed to have reduced vertical anisotropy ratios, approaching isotropic, due to reworking of the material as it is placed as backfill (Kh/Kv decreased from measured values of 10 to 1 for reworked material).

6.2 HELP Model Setup and Results

HELP (Version 4.0; Tolaymat and Krause, 2020) was used to estimate percolation through AP1 in areas of CCR removal with soil backfill, and areas of CCR consolidation with final cover system. HELP input and output files are included electronically and attached to this report.

HELP input data and results are provided in **Table 6-1**. All scenarios were modeled for a period of 30 years. Climatic inputs were synthetically generated using default equations developed for Belleville Scott Air Force Base in Belleville, Illinois (the closest weather station included in the HELP database). Precipitation, temperature, and solar radiation was simulated based on the latitude of CPP. Thickness of soil backfill and soil runoff input parameters were developed for the ash fill removal scenarios using data provided in the Final Closure Plans for AP1 (Golder, 2022a), GMF GSP (Golder, 2022b), and GMF RP (Golder, 2022c).

HELP model results (**Table 6-1**) indicated 7.85 inches of percolation per year for AP1 CCR removal and soil backfill area in the CIP scenario and 0.00027 inches of percolation per year through the CCR and final cover system for the CIP scenario. Results indicated 7.85 inches and 6.28 inches of percolation per year for AP1 eastern and western CCR removal and soil backfill area in the CBR scenario, respectively. The differences in HELP model runs for each area included the following parameters: area, soil backfill thickness, slopes, and soil runoff slope length; all other HELP model input parameters were the same for each simulated area. HELP input data and results are provided in **Appendix B**.

Two additional HELP model simulations were completed to support the *Proposed Alternative Final Protective Layer Equivalency Demonstration*, (Geosyntec, 2022c) which is an appendix to the Construction Permit Application to which this report is also attached. Results of these two HELP simulations were not incorporated in the MODFLOW simulations for closure. Simulation inputs and output results are presented in **Appendix D**.

6.3 Simulation of Closure Scenarios

The calibrated model was used to evaluate the effectiveness of the two closure scenarios by defining CCR removal and consolidation areas, reducing head to simulate removal of free liquids, removing source concentrations from the removal areas, adding drain cells and removing

recharge to simulate stormwater management within the removal areas, and applying reduced recharge in the CCR consolidation areas to simulate the effects of the cover system on flow and transport. Removal of source inputs from the ash removal areas was simulated by reducing the sulfate concentrations associated with recharge in the areas to 0 mg/L and removing constant concentration cells.

Each prediction scenario was simulated as a continuation of the AP1 dewatering simulation which followed the transient calibrated model. The prediction model input values are summarized in **Table 6-2**, and the modifications to the recharge zones and drain placement for the CIP scenario are illustrated in **Figure 6-1**. **Figure 6-2** illustrates the CCR removal area for the CBR at the AP1. The two closure scenarios are discussed in this report based on predicted changes in sulfate concentrations as described below and results are presented in **Figure 6-3 to Figure 6-6**.

6.3.1 Closure in Place Model Results

The design for Scenario 1: CIP includes an initial 2-year dewatering period to remove free liquids followed by CCR removal from AP1, consolidation in the western area of AP1, and construction of a cover system over the remaining CCR (**Figure 6-1**). Stormwater drainage will be present within the eastern area of AP1 with an outflow elevation of 625 feet.

Predicted concentrations start to decline at all monitoring wells with observations above the GWPS for sulfate (400 mg/L) once closure actions are initiated within the prediction model. These declines occur first in the eastern area where CCR is removed and saturated ash cells (constant concentration cells) are reduced in the area of the highest modeled source concentrations. Following removal of CCR in the eastern area, sulfate concentrations are no longer entering the model domain from recharge or from saturated ash cells (constant concentration cells). Dewatering also reduces the head within AP1. These low heads are maintained following completion of closure by the drain cells that simulate storm water management designs within the removal area to the east, and by the greatly reduced infiltration rates (recharge) that result from placement of the cover system over the consolidated CCR in the western end of AP1. As a result of the reduced heads and recharge, downward percolation of solute mass from AP1 is reduced, which decreases the sulfate concentration entering the model domain.

The predictive model indicates that most wells will reach the GWPS (400 mg/L) in under 14.8 years following closure, with one exception. **Figure 6-3** and **Figure 6-4** show the extent of the plume in the UA after 14.8 years and the maximum extent of the plume in the model after 14.8 years, respectively. The predicted delayed reduction in concentration at well G301, 58.8 years, is a result of the well's location along the flow path of the residual sulfate concentrations released into native geologic materials prior to closure. All UA groundwater monitoring wells are below the GWPS within 58.8 years (**Figure 6-5** and **Figure 6-6**). The residual sulfate plume in the UA from the calibrated model remains in close proximity to AP1 as it recedes over time. The predicted footprint of the sulfate plume in the UA after 58.8 years shown in **Figure 6-5** is considerably reduced from that at the end of the transient model simulation (**Figure 5-27**).

The predicted delayed reduction in concentration at well G301 is a result of the well's location along the flow path of the residual sulfate concentrations released into native geologic materials prior to closure. Reduced percolation rates through the consolidation area within AP1 in the CIP scenario means that the residual sulfate concentrations require a longer time period to migrate through native geologic materials. Evaluations of post-construction water flux through the consolidated and covered Fill Unit (CCR) were completed using data obtained from the Scenario 1 (CIP) prediction model when simulated post-construction heads in the groundwater monitoring wells are predicted to stabilize (once heads stabilized in the model, the post-construction movement of water in and out of the Fill Unit [CCR] were compared to pre-construction conditions). The pre-construction (calibration model) and post-construction Scenario 1 (CIP) prediction model simulated water flux values are summarized in **Appendix E** and discussed below. Data export files used for flux evaluations are found along with model files in **Appendix B**.

Scenario 1 (CIP) was predicted to reduce total flux in and out of the Fill Unit (CCR) by approximately 99.9%, when simulated post-construction heads in the groundwater monitoring wells are predicted to stabilize (approximate hydraulic steady state) as illustrated in **Figure 6-7**. **Figure 6-8** is a plot showing the changes in flux reduction (shown as negative percentage) over time starting from implementation of Scenario 1 (CIP) through approximate hydraulic steady state conditions. Following implementation of Scenario 1 (CIP), influx into the CCR unit decreases rapidly as illustrated in **Figure 6-8**. Following removal of free-liquids, the consolidated CCR is no longer in contact with groundwater. Thus, the modeling indicates consolidation and closure with the proposed cover system result in 99.9% reduction in outflux after 10 days (**Figure 6-8**). The outflux from the CCR unit remains relatively constant throughout the CIP simulation.

Further, the base of consolidated CCR was compared to the simulated steady-state groundwater elevations which indicate between 3.2 and 10 feet of separation will be present between the base of CCR and groundwater (**Figure 6-9**).

6.3.2 Closure by Removal Model Results

The design for Scenario 2: CBR includes an initial 2-year dewatering period followed by CCR removal from AP1 (**Figure 6-2**). Stormwater drainage is present within AP1 with an outflow elevation of 625 feet.

For most wells, predicted concentrations for CBR start to decline at monitoring wells with observations above the standard GWPS for sulfate (400 mg/L) once the closure actions are initiated within the prediction model. The concentration of sulfate in some wells (most notably G315, G307 and G308) show short term fluctuations (less than 5 years) following the removal of concentration during the dewatering phase, such that sulfate concentrations decline and are followed by a short rise before the impacts of the CBR are clearly observed. The general decline in sulfate concentration occur as the CCR is removed from AP1 and saturated ash cells (constant concentration cells) are removed. Following removal of CCR, sulfate concentrations are no longer entering the model domain from recharge or from saturated ash cells (constant concentration cells); all source concentrations are removed. Dewatering through removal of free liquids also reduces the head within AP1. These low heads are maintained following completion of closure by the drain cells that simulate storm water management designs within AP1. The removal of the CCR sources leads to the gradual reduction the residual sulfate concentrations released into native geologic materials prior to closure. All monitoring wells with observations above the standard GWPS for sulfate (400 mg/L) are predicted to be below the GWPS 18.1 years after closure implementation (Figure 6-3).

The sulfate plume in the CBR prediction model differs from that in the CIP prediction model. Higher recharge rates are present in the western portion of the pond because there is no cover system. The relatively higher recharge rates maintain components of the radial flow pattern described in **Section 2.2** at AP1. However, the stormwater drainage within the pond does constrain the groundwater elevation beneath AP1. As a result of the radial flow pattern, the prediction model indicates that a portion of the historic plume will remain along the western edge of AP1 as the plume recedes over time. The maximum extent of the plume at 14.8 years is illustrated in **Figure 6-4**. The maximum extent of the plume remains in close proximity to AP1 and is no longer present above the GWPS (400 mg/L) at 58.8 years as illustrated in **Figure 6-6**.

7. CONCLUSIONS

This GMR has been prepared to evaluate how proposed CIP and CBR scenarios will achieve compliance with the applicable groundwater standards at the CPP for AP1. An existing groundwater model was updated to include data collected from the recent 2021 field investigations and used to predict the impacts of the closure scenarios on groundwater quality at the CPP. Statistically significant correlations between sulfate concentrations and concentrations of TDS identified as potential exceedances of the GWPS indicate sulfate is an acceptable surrogate for TDS in the groundwater model. Concentrations of TDS are expected to change along with model predicted sulfate concentrations. A potential exceedance of boron was observed at one monitoring well, G313, which also has potential exceedances of both sulfate and TDS. Similar source and behavior in the groundwater system would be expected among boron, sulfate, and TDS at UA monitoring well G313, and boron concentrations are expected to change along with model predicted sulfate concentrations. It was assumed that sulfate would not significantly sorb or chemically react with aquifer solids (Kd was set to 0 mL/q) which is a conservative estimate for predicting contaminant transport times in the model. The MODFLOW and MT3DMS models were used to evaluate two scenarios using information provided in the Final Closure Plan for AP1 (Golder, 2022a):

- **Scenario 1:** CIP including removal of CCR from the eastern portion of AP1, consolidation into the western portion of AP1, and construction of a cover system over the remaining CCR.
- Scenario 2: CBR including removal of all CCR and regrading of the removal area.

Scenario 1 (CIP) was predicted to reduce total flux in and out of the Fill Unit (CCR) by approximately 99.9%, when simulated post-construction heads in the groundwater monitoring wells are predicted to stabilize. Additionally, the base of consolidated CCR was compared to the simulated steady-state groundwater elevations which indicate between 3.2 and 10 feet of separation will be present between the base of CCR and groundwater.

Differences exist in the timeframes to reach the GWPS for most monitoring wells between CIP and CBR. In general, the simulated groundwater concentrations in the monitoring wells within the UA will achieve the GWPS in 15 years and 18 years respectively for the CIP and CBR closure scenarios, with the exception of well G301 in the CIP scenario. The predicted delayed reduction in concentration at well G301, 59 years to reach the GWPS, is a result of the well's location along the flow path of the residual sulfate concentrations released into native geologic materials prior to closure. Reduced percolation rates through the consolidation area at the northwest corner of AP1 in the CIP scenario means that the residual sulfate concentrations in this limited area require a longer time period to migrate through native geologic materials.

8. **REFERENCES**

Anderson, M.P. 1979. *Using models to simulate the movement of contaminants through groundwater flow systems*. CRC Critical Rev. Environ. Control., 9(2), p. 97-156.

Anderson, M.P. 1984. *Movement of contaminants in groundwater: groundwater transport -- advection and dispersion*. Groundwater Contamination. National Academy Press, Washington, D.C. p. 37-45.

Environmental Simulations, Inc., 2017. Groundwater Vistas 7 Software.

Electric Power Research Institute (EPRI), 2005. *Chemical constituents in coal combustion product leachate: boron. Final Report 1005258.*

EPRI, 2005. *Chemical constituents in coal combustion product leachate: boron*. Final Report 1005258.

Fetter, C.W., 1988. Applied Hydrogeology. Merrill Publishing Company, Columbus, Ohio.

Fetter, C.W., 2001. Applied Hydrogeology. 4th Edition, Prentice Hall, Upper Saddle River, p. 79.

Geosyntec Consultants, Inc. (Geosyntec), 2022a. *Technical Memorandum: Evaluation of Potential GWPS Exceedances, Coffeen Ash Pond 1, Coffeen Power Plant*.

Geosyntec Consultants, Inc. (Geosyntec), 2022b. *Technical Memorandum: Evaluation of Partition Coefficient Results, Coffeen Ash Pond No. 1, CCR Unit 101, Coffeen Power Plant, Coffeen Illinois.*

Geosyntec Consultants, Inc. (Geosyntec), 2022c. *Technical Memorandum: Proposed Alternative Final Protective Layer Equivalency Demonstration, Ash Pond No. 1, Coffeen Power Plant, Coffeen, Illinois*.

Golder Associates (Golder), 2022a. *Final Closure Plan for Ash Pond No. 1*, attached to the Construction Permit Application to which this report is also attached, July 2022.

Golder Associates (Golder), 2022b. *Final Closure Plan for the Gypsum Management Facility Gypsum Stack Pond, Coffeen Power Plant, Coffeen, Illinois*, July 2022.

Golder Associates (Golder), 2022c. *Final Closure Plan for the Gypsum Management Facility Recycle Pond, Coffeen Power Plant, Coffeen*, July 2022.

Haley & Aldrich, Inc., October 1, 2018. *Hazardous and Solid Waste Management System; Disposal of Coal Combustion Residuals from Electric Utilities*.

Hanson Professional Services, Inc. (Hanson), 2009. *Section 3: Hydrogeologic Investigation. Initial Facility Report*. Hanson Professional Services, Inc. August 2009.

Hanson Professional Services, Inc. (Hanson), 2016. 40 CFR 257.60 *Uppermost Aquifer Considerations, Gypsum Pond*, Illinois Power Holdings LLC, Coffeen Energy Center, Montgomery County, Illinois, April 2016.

Illinois Environmental Protection Agency (IEPA), 2021. *In the Matter of: Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments: Title 35 Illinois Administration Code 845, Addendum*. April 15, 2021.

Illinois State Geological Survey (ISGS), 2019. *Directory of Coal Mines in Illinois, Christian County*. Accessed from URL: <u>https://wikiimage.isgs.illinois.edu/ilmines/webfiles/mines-series/mines-directories/pdf-files/mines-directory-christian.pdf</u>. August 2019.

McDonald, M.G., and A.W. Harbaugh, 1988. *A Modular Three-Dimensional Finite-Difference Ground-Water Flow Model: Techniques of Water-Resources Investigations, Techniques of Water-Resources of the United States Geological Survey*. Book 6, Chapter A1.

Natural Resource Technology, Inc. (NRT), 2017a. *Hydrogeologic Site Characterization Report. Ash Pond 2, Coffeen Power Station, Coffeen, Illinois*. Illinois Power Generating Company. January 24, 2017.

Natural Resource Technology, Inc. (NRT), 2017b. *Groundwater Model Report. Ash Pond 2, Coffeen Power Station, Coffeen, Illinois*. Illinois Power Generating Company. January 24, 2017.

Nelson, W. John, 1995. *Structural Features in Illinois*. Illinois State Geological Survey, Bulletin 100, 144 p.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021a. *Hydrogeologic Site Characterization Report, Ash Pond No. 1, Coffeen, Illinois*. Illinois Power Generating Company. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021b. *History of Potential Exceedances, Ash Pond No. 1, Coffeen, Illinois*. Illinois Power Generating Company. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021c. *Groundwater Monitoring Plan. Coffeen Power Plant, Ash Pond No. 1, Coffeen, Illinois*. Illinois Power Generating Company. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021d. *Hydrogeologic Site Characterization Report, GMF Recycle Pond, Coffeen, Illinois*. Illinois Power Generating Company. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021e. *Hydrogeologic Site Characterization Report, GMF Gypsum Stack Pond, Coffeen, Illinois*. Illinois Power Generating Company. October 25, 2021.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2022. *Groundwater Modeling Report, GMF Gypsum Stack Pond and GMF Recycle Pond, Coffeen Power Plant, Coffeen Illinois*.

Strenge, D. and Peterson, S. 1989. *Chemical Data Bases for the Multimedia Environmental Pollutant Assessment System (MEPAS) (No. PNL-7145)*. Pacific Northwest Lab., Richland, WA (USA).

Tolaymat, T. and Krause, M, 2020. *Hydrologic Evaluation of Landfill Performance: HELP 4.0 User Manual*. United States Environmental Protection Agency, Washington, DC, EPA/600/B 20/219.

United States Department of Agriculture/Natural Resources Conservation Service (USDA/NRCS), 2022. National Geospatial Center of Excellence, Digital Elevation Model.

United States Geological Survey (USGS), 2021. *National Map*. Accessed from URL: <u>https://apps.nationalmap.gov/viewer/</u>

Willman, H.B., E. Atherton, T.C. Buschbach, C. Collinson, J.C. Frye, M.E. Hopkins, J.A. Lineback, and J.A. Simon, 1975. *Handbook of Illinois Stratigraphy*. Illinois State Geological Survey, Bulletin 95, 261 p.

Zheng, Z., and P.P. Wang, 1998. MT3DMS, a Modular Three-Dimensional Multispecies Transport Model, Model documentation and user's guide prepared by the University of Alabama Hydrogeology Group for the US Army Corps of Engineers.

TABLES

TABLE 2-1. MONITORING WELL LOCATIONS AND CONSTRUCTION DETAILS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

				Measuring						Screen						
		_	Top of PVC	Point		Ground	Screen Top	Screen	Screen Top	Bottom		Bottom of	Screen	Screen	Latitude	Longitude
Well		Date	Elevation	Elevation	Measuring Point	Elevation	Depth (feet here)	Bottom Depth	Elevation	Elevation	Well Depth	Boring	Length	Diameter	(Decimal	(Decimal
Number	HSU	Constructed	(feet)	(feet)	Description	(feet)	(reet bgs)	(reet bgs)	(feet)	(feet)	(reet bgs)	Elevation (feet)	(feet)	(Inches)	Degrees)	Degrees)
G045D	LCU	08/17/2016	623.81	623.81		620.94	31.88	41.52	589.06	579.42	41.92	578.90	9.6	2	39.064349	-89.396281
G046D	LCU	08/19/2017	625.24	625.24	Top of PVC	621.91	41.61	51.26	580.30	570.65	51.65	569.90	9.7	2	39.060305	-89.398524
G101	UA	02/02/2010		627.60	Top of Disk	625.27	15.68	20.32	609.59	604.95	20.89	603.40	4.6	2	39.071386	-89.400107
G102	UA	04/28/2006		629.04	Top of Disk	626.18	12.02	16.78	614.16	609.40	17.15	609.00	4.8	2	39.071387	-89.398991
G103	UA	02/15/2010		633.80	Top of Disk	627.94	15.88	20.67	612.06	607.27	21.09	606.90	4.8	2	39.070412	-89.399107
G104	UA	02/15/2010		632.94	Top of Disk	627.96	14.91	19.61	613.05	608.35	20.08	605.80	4.7	2	39.069451	-89.399104
G105	UA	02/16/2010		632.08	Top of Disk	626.86	16.11	20.90	610.75	605.96	21.37	604.40	4.8	2	39.068491	-89.3991
G106	UA	02/16/2010		631.15	Top of Disk	625.96	14.37	18.96	611.59	607.00	19.44	605.50	4.6	2	39.06/53	-89.399097
G107	UA	02/17/2010	630.22	630.22	Top of Disk	628.20	13.87	18.50	614.33	609.70	19.00	607.50	4.6	2	39.067106	-89.399646
G108	UA	02/12/2010		630.22	Top of Disk	625.58	16.82	21.50	608.76	604.08	22.00	603.60	4.7	2	39.066984	-89.400035
G109	UA	02/11/2010		629.76	Top of Disk	624.79	15.39	19.93	609.40	604.86	20.50	604.30	4.5	2	39.067045	-89.400423
G110	UA	02/11/2010		629.65	Top of Disk	624.81	15.05	19.59	609.76	605.22	20.16	604.70	4.5	2	39.067172	-89.400704
G111	UA	02/11/2010		629.90	Top of Disk	625.28	14.61	19.15	610.67	606.13	19.72	605.60	4.5	2	39.067292	-89.40097
G119	UA	02/09/2010		631.55	Top of Disk	626.57	17.29	21.83	609.28	604.74	22.38	604.20	4.5	2	39.068986	-89.401213
G120	UA	02/08/2010		631.87	Top of Disk	627.21	15.10	19.62	612.11	607.59	20.21	605.10	4.5	2	39.069479	-89.401214
G121	UA	02/04/2010		632.83	Top of Disk	627.94	16.79	21.47	611.15	606.47	21.95	603.80	4.7	2	39.069781	-89.401216
G122	UA	02/04/2010		632.69	Top of Disk	628.05	16.51	21.05	611.54	607.00	21.66	606.20	4.5	2	39.070098	-89.401218
G123	UA	02/04/2010		632.96	Top of Disk	628.12	20.94	25.46	607.18	602.66	26.07	602.10	4.5	2	39.070399	-89.401219
G124	UA	02/03/2010		633.39	Top of Disk	628.70	15.98	20.51	612.72	608.19	21.06	606.70	4.5	2	39.070715	-89.40122
G125	UA	02/03/2010		633.51	Top of Disk	628.85	17.03	21.56	611.82	607.29	22.04	606.80	4.5	2	39.071003	-89.401221
G126	UA	02/10/2010		625.39	Top of Disk	622.96	12.89	17.43	610.07	605.53	18.00	605.00	4.5	2	39.067304	-89.401274
G151	UA	12/19/2011		625.93	Top of Disk	622.82	15.34	19.84	607.48	602.98	20.46	602.40	4.5	2	39.0672	-89.40159
G152	UA	12/20/2011		626.52	Top of Disk	623.06	13.59	18.09	609.47	604.97	18.57	604.50	4.5	2	39.066275	-89.401289
G153	UA	12/15/2011	626.35	626.40	Top of Disk	623.23	15.90	20.34	607.33	602.89	20.80	602.50	4.4	2	39.065857	-89.402567
G154	UA	12/16/2011		626.35	Top of Disk	623.52	14.26	18.76	609.26	604.76	19.10	603.50	4.5	2	39.067089	-89.403574
G155	UA	12/19/2011		625.86	Top of Disk	622.89	15.09	19.58	607.80	603.31	23.23	599.70	4.5	2	39.067493	-89.402659
G200	UA	02/25/2008		625.94	Top of Disk	623.27	12.19	16.98	611.08	606.29	17.36	605.30	4.8	2	39.075139	-89.395009
G201	UA	02/25/2008	627.15	627.15	Top of Riser	624.19	13.01	17.80	611.18	606.39	18.15	606.00	4.8	2	39.075141	-89.397829
G205	UA	02/21/2008		624.34	Top of Disk	622.10	10.04	14.53	612.06	607.57	15.07	606.10	4.5	2	39.068596	-89.394147
G206	UA	10/14/2010		632.82	Top of Disk	630.53	17.51	21.92	613.02	608.61	22.42	606.50	4.4	2	39.067399	-89.398548
G206D	DA	01/25/2021	634.14	634.14	Top of PVC	631.41	49.20	59.00	582.21	572.41	59.39	571.41	9.8	2	39.067428	-89.398493
G207	UA	10/08/2010		633.21	Top of Disk	630.61	18.24	22.77	612.37	607.84	23.30	606.60	4.5	2	39.067568	-89.397952
G208	UA	10/07/2010		633.16	Top of Disk	630.57	17.53	22.06	613.04	608.51	22.60	606.60	4.5	2	39.067743	-89.397402
G209	UA	10/07/2010		632.91	Top of Disk	630.57	17.74	22.28	612.83	608.29	22.81	606.60	4.5	2	39.067923	-89.39685
G210	UA	10/06/2010		632.99	Top of Disk	630.48	19.39	23.93	611.09	606.55	24.46	605.50	4.5	2	39.068088	-89.396322
G211	UA	10/11/2010		632.64	Top of Disk	630.31	17.34	21.88	612.97	608.43	22.41	606.30	4.5	2	39.068263	-89.395792
G212	UA	10/11/2010		632.89	Top of Disk	630.59	16.74	21.29	613.85	609.30	21.81	606.60	4.6	2	39.06843	-89.395318
G213	UA	10/12/2010		632.81	Top of Disk	630.34	16.75	21.29	613.59	609.05	21.82	606.30	4.5	2	39.068585	-89.394822
G214	UA	10/14/2010		632.85	Top of Disk	630.39	17.75	22.14	612.64	608.25	22.65	606.40	4.4	2	39.068919	-89.393982
G215	UA	10/13/2010		633.06	Top of Disk	630.48	19.41	23.80	611.07	606.68	24.31	606.20	4.4	2	39.069309	-89.39394

RAMBOLL

TABLE 2-1. MONITORING WELL LOCATIONS AND CONSTRUCTION DETAILS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1 COFFEEN, ILLINOIS

CONTLEN, ILLINOIS

				Measuring						Screen						
			Top of PVC	Point		Ground	Screen Top	Screen	Screen Top	Bottom		Bottom of	Screen	Screen	Latitude	Longitude
Well		Date	Elevation	Elevation	Measuring Point	Elevation	Depth	Bottom Depth	Elevation	Elevation	Well Depth	Boring	Length	Diameter	(Decimal	(Decimal
	50	Constructed	(feet)	(feet)	Description	(feet)	(reet bgs)	(reet bgs)	(feet)	(reet)	(reet bgs)	Elevation (feet)	(reet)	(inches)	Degrees)	Degrees)
G216 UA	JA	10/13/2010		632.76	Top of Disk	630.28	20.04	24.42	610.24	605.86	24.93	604.30	4.4	2	39.069765	-89.393946
G217 UA	JA	10/12/2010		633.10	Top of Disk	630.67	20.49	24.88	610.18	605.79	25.38	604.70	4.4	2	39.07034	-89.393959
G218 UA	JA	10/12/2010		633.11	Top of Disk	630.64	20.33	24.77	610.31	605.87	25.27	604.60	4.4	2	39.070876	-89.393956
G270 UA	JA	02/26/2008		625.86	Top of Disk	623.73	13.13	17.92	610.60	605.81	18.27	605.50	4.8	2	39.066564	-89.397403
G271 UA	JA	09/10/2009		625.57	Top of Disk	622.89	9.96	14.31	612.93	608.58	14.79	606.90	4.4	2	39.065007	-89.395587
G272 UA	JA	09/10/2009		623.81	Top of Disk	620.72	9.11	13.98	611.61	606.74	14.32	606.40	4.9	2	39.064989	-89.394785
G273 UA	JA	09/10/2009		623.02	Top of Disk	620.17	9.08	14.56	611.09	605.61	15.10	604.20	5.5	2	39.064985	-89.393973
G274 UA	JA	09/16/2009		624.04	Top of Disk	621.67	12.90	17.67	608.77	604.00	18.06	603.60	4.8	2	39.064991	-89.393198
G275 UA	JA	09/16/2009		618.26	Top of Disk	616.14	8.22	12.62	607.92	603.52	13.19	603.00	4.4	2	39.065151	-89.392561
G275D DA	DA	01/14/2021	620.31	620.31	Top of PVC	617.52	49.76	59.55	567.76	557.97	59.89	517.80	9.8	2	39.065121	-89.392595
G276 UA	JA	09/16/2009		632.00	Top of Disk	629.14	22.41	27.22	606.73	601.92	27.65	601.10	4.8	2	39.065534	-89.392617
G277 UA	JA	09/14/2009		623.08	Top of Disk	620.79	14.29	18.77	606.50	602.02	19.24	600.80	4.5	2	39.065927	-89.392572
G278 UA	JA	09/11/2009	631.19	631.17	Top of Disk	628.85	18.93	23.70	609.92	605.15	24.06	604.80	4.8	2	39.066737	-89.393161
G279 UA	JA	09/10/2009		632.04	Top of Disk	629.19	22.40	26.79	606.79	602.40	27.30	601.20	4.4	2	39.067156	-89.392998
G280 UA	JA	02/26/2008	625.35	625.35	Top of Riser	623.11	12.79	17.63	610.32	605.48	17.98	605.10	4.8	2	39.067216	-89.394992
G281 UA	JA	09/08/2015		626.36	Top of Disk	623.82	15.51	20.16	608.31	603.66	20.30	603.50	4.7	2	39.065405	-89.399322
G283 LCU	CU	01/14/2021	610.75	610.75	Top of PVC	608.30	8.39	18.17	599.91	590.13	18.36	589.90	9.8	2	39.064645	-89.392119
G284 UA	JA	02/03/2021	618.42	618.42	Top of PVC	615.33	8.08	12.85	607.25	602.48	13.23	601.30	4.8	2	39.065487	-89.390631
G285 LCU	CU	01/25/2021	613.52	613.52	Top of PVC	610.54	13.68	23.45	596.86	587.09	23.83	584.50	9.8	2	39.066513	-89.391474
G286 UA	JA	01/18/2021	613.13	613.13	Top of PVC	609.97	3.37	8.16	606.60	601.81	8.50	600.00	4.8	2	39.067277	-89.391883
G287 UA	JA	01/20/2021	617.45	617.45	Top of PVC	614.34	5.43	10.25	608.91	604.09	10.59	602.50	4.8	2	39.068297	-89.392388
G288 UA	JA	01/19/2021	620.07	620.07	Top of PVC	617.08	7.59	12.26	609.49	604.82	12.75	603.10	4.7	2	39.067834	-89.390082
G301 UA	JA	09/04/2015		622.65	Top of Disk	620.88	11.31	15.96	608.96	604.31	16.21	604.10	4.7	2	39.05951	-89.395415
G302 UA	JA	09/04/2015		620.04	Top of Disk	618.52	13.21	17.86	604.74	600.09	18.39	599.60	4.7	2	39.059544	-89.393192
G303 UA	JA	08/26/2010		622.02	Top of Disk	619.33	10.00	20.00	609.07	599.07	20.40	598.70	10	2	39.057144	-89.391721
G304 UA	JA	08/26/2010		626.72	Top of Disk	623.32	10.00	20.00	613.32	603.32	20.40	602.90	10	2	39.057205	-89.395663
G305 UA	JA	05/03/2016	625.67	625.67	Top of PVC	623.23	13.44	18.27	609.10	604.27	18.50	604.10	4.8	2	39.056558	-89.396798
G306 UA	JA	05/03/2016	625.91	625.91	Top of PVC	623.57	13.07	17.68	609.77	605.16	17.90	604.80	4.6	2	39.056494	-89.393556
G307 UA	JA	07/27/2016	624.60	624.60	Top of PVC	624.73	12.96	17.80	609.12	604.28	18.22	603.90	4.8	2	39.057214	-89.395545
G307D LCU	CU	01/19/2021	624.88	624.88	Top of PVC	622.51	48.98	58.75	573.53	563.76	59.60	562.50	9.8	2	39.05721	-89.39552
G308 UA	JA	01/18/2021	624.59	624.59	Top of PVC	621.59	10.10	14.89	611.49	606.70	15.24	605.80	4.8	2	39.057379	-89.397134
G309 UA	JA	01/21/2021	625.88	625.88	Top of PVC	622.77	12.97	17.75	609.80	605.02	18.10	604.70	4.8	2	39.058508	-89.397243
G310 UA	JA	02/09/2021	622.87	622.87	Top of PVC	619.89	10.24	15.03	609.65	604.86	15.38	604.00	4.8	2	39.059532	-89.396907
G311 UA	JA	01/13/2021	621.04	621.04	Top of PVC	618.32	9.27	14.04	609.05	604.28	14.40	603.90	4.8	2	39.059513	-89.394363
G311D LCl	CU	01/12/2021	621.24	621.24	Top of PVC	618.39	50.16	60.10	568.23	558.29	60.58	557.80	9.9	2	39.059513	-89.394312
G312 UA	JA	01/15/2021	619.78	619.78	Top of PVC	616.92	9.79	14.58	607.13	602.34	14.93	601.70	4.8	2	39.059558	-89.391983
G313 UA	JA	02/05/2021	614.30	614.30	Top of PVC	611.51	6.30	11.11	605.21	600.40	11.46	599.50	4.8	2	39.058773	-89.391124
G314 LCl	CU	02/05/2021	613.88	613.88	Top of PVC	611.11	14.56	19.58	596.55	591.53	20.02	591.10	5	2	39.05782	-89.390964
G314D DA	DA	02/04/2021	613.70	613.70	Top of PVC	610.87	39.34	49.11	571.53	561.76	49.47	510.60	9.8	2	39.057852	-89.390958
G315 UA	JA	01/14/2021	623.52	623.52	Top of PVC	620.94	9.69	14.48	611.25	606.46	14.85	605.00	4.8	2	39.057165	-89.393667

RAMBOLL

TABLE 2-1. MONITORING WELL LOCATIONS AND CONSTRUCTION DETAILS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

				Measuring				_		Screen			_	_		
M/all		Data	Top of PVC	Point	Monouring Doint	Ground	Screen Top	Screen	Screen Top	Bottom	Wall Danth	Bottom of	Screen	Screen	Latitude	Longitude
Number	HSU	Constructed	(feet)	(feet)	Description	(feet)	(feet bas)	(feet bas)	(feet)	(feet)	(feet bas)	Elevation (feet)	(feet)	(inches)	(Decimai Degrees)	(Decimai Degrees)
G316		02/26/2021	602 59	602 59	Top of PVC	599.64	10.02	14.82	589.62	584.82	15 16	583.90	4.8	2	39 057847	-89 389698
G317	UA	02/12/2021	641.93	641.93		638.85	30.14	34.93	608.71	603.92	35.28	602.90	4.8	2	39.056727	-89.390148
G401	UA	09/14/2015		625.57	Top of Disk	623.03	14.36	18.79	608.67	604.24	19.29	603.70	4.4	2	39.060259	-89.395295
G402	UA	08/27/2010		613.37	Top of Disk	610.36	10.00	20.00	600.36	590.36	20.40	590.00	10	2	39.060207	-89.391712
G403	UA	09/11/2015		626.47	Top of Disk	623.81	13.11	17.78	610.70	606.03	18.15	605.70	4.7	2	39.063167	-89.398779
G404	UA	05/01/2007		615.67	Top of Disk	613.57	6.42	11.17	607.15	602.40	11.62	601.60	4.8	2	39.064329	-89.392493
G405	UA	05/01/2007		623.63	Top of Disk	621.40	9.01	13.76	612.39	607.64	14.21	607.20	4.8	2	39.064345	-89.396234
G406	UA	08/19/2016	625.36	625.36	Top of PVC	621.86	13.56	18.37	608.30	603.49	18.75	603.10	4.8	2	39.060309	-89.398508
G407	UA	08/16/2016	621.32	621.32	Top of PVC	618.35	13.78	18.61	604.57	599.74	19.04	598.40	4.8	2	39.061574	-89.402004
G410	UA	02/23/2018		619.79	Top of Disk	617.21	8.89	13.68	608.32	603.53	14.09	603.10	4.8	2	39.061572	-89.403763
G411	UA	02/22/2018		623.25	Top of Disk	620.49	11.21	16.07	609.28	604.42	16.47	604.00	4.9	2	39.063979	-89.404033
MW01D	DA	05/03/2006	609.02	609.02	Top of PVC	607.08	33.29	38.05	573.79	569.03	38.41	567.10	4.8	2	39.067068	-89.402747
MW02S	UA	05/05/2006	627.12	627.12	Top of PVC	624.16	10.34	15.12	613.82	609.04	15.51	608.70	4.8	2	39.071017	-89.403648
MW02D	LCU	05/05/2006	626.99	626.99	Top of PVC	624.14	22.03	26.83	602.11	597.31	27.22	596.90	4.8	2	39.071031	-89.403649
MW03D	DA	04/27/2006	629.01	629.01	Top of PVC	625.86	52.29	57.06	573.57	568.80	57.40	567.90	4.8	2	39.071386	-89.398976
MW04S	UA	05/11/2006	625.89	625.89	Top of PVC	622.63	9.83	14.26	612.80	608.37	14.77	607.90	4.4	2	39.075356	-89.399232
MW05S	UA	05/17/2006	625.95	625.95	Top of PVC	622.65	12.66	17.41	609.99	605.24	17.71	604.90	4.8	2	39.075866	-89.40333
MW05D	DA	05/17/2006	625.91	625.91	Top of PVC	622.65	45.57	50.33	577.08	572.32	50.72	568.70	4.8	2	39.075863	-89.403313
MW06S	UA	05/04/2006	626.15	626.15	Top of PVC	623.37	11.04	15.62	612.33	607.75	16.08	607.30	4.6	2	39.078189	-89.403644
MW07S	UA	05/09/2006	627.60	627.60	Top of PVC	624.90	9.91	13.79	614.99	611.11	14.39	610.50	3.9	2	39.0786	-89.399383
MW08S	UA	05/10/2006	628.01	628.01	Top of PVC	625.09	11.51	16.00	613.58	609.09	16.60	608.00	4.5	2	39.080234	-89.399079
MW09S	UA	05/03/2006	627.62	627.62	Top of PVC	624.70	11.21	15.62	613.49	609.08	16.20	608.50	4.4	2	39.079954	-89.394899
MW09D	LCU	05/03/2006	627.61	627.61	Top of PVC	624.68	45.81	50.57	578.87	574.11	51.00	570.70	4.8	2	39.07994	-89.394899
MW10S	UA	05/02/2006	624.45	624.45	Top of PVC	621.43	11.28	15.76	610.15	605.67	16.30	605.10	4.5	2	39.07601	-89.394068
MW10D	LCU	05/01/2006	624.47	624.47	Top of PVC	621.33	41.74	46.57	579.59	574.76	47.02	572.60	4.8	2	39.075995	-89.39407
MW11S	UA	04/28/2006	625.27	625.27	Top of PVC	622.04	8.89	13.63	613.15	608.41	14.08	608.00	4.7	2	39.071888	-89.393913
MW11D	LCU	04/28/2006	625.52	625.52	Top of PVC	622.19	28.31	33.04	593.88	589.15	33.50	585.90	4.7	2	39.071888	-89.393894
MW12S	UA	05/10/2006	625.31	625.31	Top of PVC	622.24	10.61	15.18	611.63	607.06	15.61	606.60	4.6	2	39.068514	-89.394199
MW12D	DA	05/10/2006	625.21	625.21	Top of PVC	622.24	42.46	46.99	579.78	575.25	47.47	572.20	4.5	2	39.068501	-89.394199
MW13S	UA	05/09/2006	625.96	625.96	Top of PVC	622.80	11.43	16.23	611.37	606.57	16.62	606.20	4.8	2	39.066297	-89.40118
MW13D	DA	05/09/2006	625.86	625.86	Top of PVC	622.85	49.81	54.60	573.04	568.25	55.00	567.90	4.8	2	39.066293	-89.401163
MW14S	UA	05/02/2006	626.88	626.88	Top of PVC	624.62	12.26	17.02	612.36	607.60	17.38	607.20	4.8	2	39.069153	-89.400442
MW15S	UA	04/25/2006	626.66	626.66	Top of PVC	623.83	14.41	19.16	609.42	604.67	19.62	604.20	4.8	2	39.069772	-89.397088
MW15D	LCU	04/25/2006	626.44	626.44	Top of PVC	623.83	33.68	38.45	590.15	585.38	38.80	585.00	4.8	2	39.06977	-89.397073
MW16S	UA	04/25/2006	629.47	629.47	Top of PVC	626.32	14.59	19.41	611.73	606.91	19.76	606.40	4.8	2	39.073571	-89.397006
MW16D	DA	04/25/2006	629.38	629.38	Top of PVC	626.37	45.90	50.34	580.47	576.03	50.78	575.40	4.4	2	39.073571	-89.397036
MW17S	UA	05/04/2006	630.56	630.56	Top of PVC	627.28	14.02	23.56	613.26	603.72	24.11	603.20	9.5	2	39.07715	-89.396978
MW17D	DA	05/04/2006	630.29	630.29	Top of PVC	627.47	48.82	53.32	578.65	574.15	53.87	573.60	4.5	2	39.077151	-89.396958
MW18S	UA	05/11/2006	628.66	628.66	Top of PVC	625.69	11.31	15.79	614.38	609.90	16.40	609.30	4.5	2	39.077033	-89.401698
MW20S	UA	05/01/2007	622.90	622.90	Top of PVC	620.26	8.41	13.22	611.85	607.04	13.67	604.30	4.8	2	39.064968	-89.394322

RAMBOLL
TABLE 2-1. MONITORING WELL LOCATIONS AND CONSTRUCTION DETAILS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

Wall		Data	Top of PVC	Measuring Point Elevation	Moosuring Point	Ground	Screen Top	Screen	Screen Top	Screen Bottom	Well Donth	Bottom of	Screen	Screen	Latitude (Docimal	Longitude
Number	HSU	Constructed	(feet)	(feet)	Description	(feet)	(feet bgs)	(feet bgs)	(feet)	(feet)	(feet bgs)	Elevation (feet)	(feet)	(inches)	(Decimal Degrees)	Degrees)
R104	UA	10/08/2010		632.84	Top of Disk	629.03	14.59	19.32	614.44	609.71	19.85	609.20	4.7	2	39.069474	-89.399109
R201	UA	10/08/2010		626.34	Top of Disk	624.02	14.59	19.32	609.43	604.70	19.85	604.20	4.7	2	39.075142	-89.397855
R205	UA	03/20/2017		624.52	Top of Disk	621.91	11.32	16.01	610.59	605.90	16.42	605.50	4.7	2	39.068593	-89.394164
T127	UA	02/10/2010		630.96	Top of Disk	625.53	17.53	22.07	608.00	603.46	22.64	602.90	4.5	2	39.068119	-89.40121
T128	UA	02/09/2010	631.03	630.93	Top of Disk	626.27	16.53	21.04	609.74	605.23	21.64	602.20	4.5	2	39.068532	-89.401211
T202	UA	10/15/2010		628.63	Top of Disk	626.22	12.27	16.65	613.95	609.57	17.21	608.20	4.4	2	39.071776	-89.397705
T408	LCU	08/17/2016	624.08	624.08	Top of PVC	621.09	20.66	25.49	600.43	595.60	25.92	595.20	4.8	2	39.064353	-89.396307
T409	LCU	08/19/2016	625.01	625.01	Top of PVC	621.85	21.79	26.59	600.06	595.26	26.99	594.90	4.8	2	39.0603	-89.398538
TA31	UA	10/28/2014	626.55	626.55	Top of PVC	623.89	15.09	19.57	608.80	604.32	20.19	603.70	4.5	2	39.071368	-89.401366
TA32	UA	10/27/2014	621.42	621.42	Top of PVC	618.93	11.31	15.68	607.62	603.25	16.47	602.50	4.4	2	39.074093	-89.402223
TA33	UA	06/02/2015	625.27	625.27	Top of PVC	622.51	12.23	16.89	610.28	605.62	17.44	605.10	4.7	2	39.071556	-89.403506
TA34	UA	06/03/2015	626.52	626.52	Top of PVC	624.10	10.92	15.41	613.18	608.69	16.10	608.00	4.5	2	39.069631	-89.402759
TR32	UA	07/02/2021	621.68	621.68	Top of PVC	619.28	11.00	15.68	608.28	603.60	16.17	603.11	4.68	2	39.074064	-89.397758
X201	S			618.47											39.065278	-89.3925
SG-02	SW			605.87	Top of Prot Casing	605.87									39.059695	-89.391429
SG-03	SW			594.94	Top of Prot Casing	594.94									39.059092	-89.390342
SG-04	SW			599.52	Top of Prot Casing	599.52									39.064146	-89.390504

Notes:

All elevation data are presented relative to the North American Vertical Datum 1988 (NAVD88), GEOID 12A

-- = data not available

bgs = below ground surface

DA = deep aquifer

ft = foot or feet

HSU = hydrostratigraphic Unit LCU = lower confining unit

PVC = polyvinyl chloride

S = source water

SW = surface water

UA = uppermost aquifer

generated 10/05/2021, 2:15:37 PM CDT

TABLE 4-1. FLOW AND TRANSPORT MODEL CALIBRATION TARGETS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1 COFFEEN, ILLINOIS

						Flow Targets										Transp	ort Targe	ts		
					Number			min	max			Flow	Number	mean	std	min	max	Earliest	Latest	Transport
Well				CCR	of	mean GWL ¹	std GWL ¹	GWL ¹	GWL ¹	Earliest	Latest	Calibration	of	Sulfate	Sulfate	Sulfate	Sulfate	Sample	Sample	Calibraiton
Name	Easting	Northing	HSU	Unit	Samples	(feet)	(feet)	(feet)	(feet)	Sample Date	Sample Date	Wells	Samples	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Date	Date	Well
G101	2514214.26	876551.76	UA	LF	20	617.989	2.504194166	612.95	623.65	15/01/2019	16/11/2015	Yes	-	-	-	-	-	-	-	-
G102	2514531.1	876554.8	UA	GSP	25	622.8612	1.751842649	618.96	627.12	15/01/2019	16/11/2015	Yes	19	90.6	29.7	49	140	04/08/2015	01/26/2021	Yes
G103	2514501.17	876199.41	UA	GSP	19	622.0884211	1.754825927	617.95	624.93	15/01/2019	11/12/2016	Yes	3	66.3	11.2	54	76	04/08/2015	10/06/2015	Yes
G105	2514509.06	875499.78	UA	GSP	19	622.0884211	2.178504235	613.96	624	15/01/2019	11/12/2016	Yes	3	116.7	11.5	110	130	04/08/2015	10/06/2015	Yes
G106	2514512.87	875149.77	UA	GSP	20	620.763	1.194844628	617.46	622.6	15/01/2019	16/11/2015	Yes	19	66.1	23.3	36	140	04/08/2015	01/26/2021	Yes
G107	2514358.3	874994.03	UA	LF	19	619.1036842	1.658802147	615.46	622.33	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G108	2514248.22	874948.67	UA	LF	19	619.4994737	1.31911786	616.24	622.22	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G109	2514137.87	874969.96	UA	LF	19	618.7294737	1.25543031	615.7	620.84	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G110	2514057.7	875015.54	UA	LF	20	618.104	1.590105591	613.27	620.65	15/01/2019	16/11/2015	Yes	-	-	-	-	-	-	-	-
G111	2513981.81	875058.61	UA	LF	19	616.9310526	1.267626368	613.16	618.53	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G119	2513907.62	875675	UA	LF	19	615.9689474	1.16332328	612.24	617.45	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G120	2513905.82	875854.56	UA	LF	19	614.3242105	1.834418817	612.13	617.69	15/01/2019	16/11/2015	Yes	-	-	-	-	-	-	-	-
G121	2513904.33	875964.54	UA	LF	18	614.6861111	2.034979806	611.93	618.73	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G122	2513902.79	876080	UA	LF	18	615.3283333	2.095957594	612.94	620.41	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G123	2513901.58	876189.62	UA	LF	18	614.5494444	3.842648401	610.31	622.79	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G124	2513900.33	876304.71	UA	LF	19	617.8857895	2.128430083	615.09	622.86	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G125	2513899.16	876409.6	UA	LF	20	619.676	2.365809976	614.6	622.96	15/01/2019	16/11/2015	Yes	-	-	-	-	-	-	-	-
G126	2513895.46	875062.25	UA	LF	19	614.87	1.340053896	612.28	616.87	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G151	2513806.06	875023.62	UA	LF	16	614.468125	0.894980214	612.13	615.49	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G152	2513894.35	874687.44	UA	SW	16	615.421875	1.122949799	612.77	617.44	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G153	2513532.77	874532.15	UA	SW	16	614.5425	1.204416871	612.37	616.3	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G154	2513243.08	874978.46	UA	SW	16	614.16	1.731546515	610.33	618.28	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G155	2513501.64	875127.78	UA	SW	16	613.686875	1.278998143	609.91	615.99	15/01/2019	11/12/2016	Yes	-	-	-	-	-	-	-	-
G200	2515650.03	877930.9	UA	В	26	621.4965385	1.461968378	618.16	623.29	15/01/2019	16/11/2015	Yes	25	101.2	8.3	87	120	01/20/2015	07/28/2021	-
G205	2515915	875549.93	UA	GSP	8	619.71	1.482912193	616.33	621.45	02/04/2017	11/12/2016	Yes	-	-	-	-	-	-	-	-
G206	2514669.15	875103.38	UA	GSP	25	621.286	1.444036588	616.61	622.76	15/01/2019	16/11/2015	Yes	20	119.4	24.7	32	150	01/21/2015	01/27/2021	Yes
G207	2514837.85	875166.36	UA	GSP	19	621.9526316	1.135658605	619.41	623.39	15/01/2019	11/12/2016	Yes	4	44.5	30.1	16	72	01/21/2015	10/07/2015	Yes
G208	2514993.46	875231.42	UA	GSP	19	622.0989474	1.175154339	618.97	624.07	15/01/2019	11/12/2016	Yes	4	53.5	37.7	33	110	01/21/2015	10/07/2015	Yes
G209	2515149.64	875298.3	UA	GSP	25	621.6212	1.211081885	617.76	623.18	15/01/2019	16/11/2015	Yes	20	248.8	51.6	95	310	01/21/2015	01/27/2021	Yes
G210	2515299.04	875359.67	UA	GSP	19	620.8747368	1.372254303	616.82	622.5	15/01/2019	11/12/2016	Yes	4	90.3	6.5	84	99	01/21/2015	10/07/2015	Yes
G211	2515448.98	875424.68	UA	GSP	19	621.1094737	1.148145721	618.14	622.45	15/01/2019	11/12/2016	Yes	4	79.8	5.4	74	87	01/21/2015	10/07/2015	Yes
G212	2515583.04	875486.65	UA	GSP	25	620.7644	1.197814259	617.19	622.12	15/01/2019	16/11/2015	Yes	20	55.9	4.2	49	66	01/21/2015	01/26/2021	Yes
G213	2515723.38	875544.3	UA	GSP	19	620.6210526	0.889262458	618.62	621.72	15/01/2019	11/12/2016	Yes	4	53.3	3.3	50	57	01/21/2015	10/07/2015	Yes
G214	2515960.85	875667.97	UA	GSP	19	617.8473684	1.193332598	614.52	619.39	15/01/2019	11/12/2016	Yes	4	71.3	3.9	68	76	01/21/2015	10/07/2015	Yes
G215	2515971.56	875810.11	UA	GSP	25	617.9504	1.033285537	615.48	619.51	15/01/2019	16/11/2015	Yes	21	167.1	109.9	100	490	01/21/2015	06/29/2021	Yes
G216	2515968.45	875976.18	UA	GSP	19	617.8368421	1.365349172	614.37	619.86	15/01/2019	11/12/2016	Yes	4	217.5	9.6	210	230	01/21/2015	10/07/2015	Yes
G217	2515962.98	876185.57	UA	GSP	19	617.5063158	1.127668246	614.32	619.13	15/01/2019	11/12/2016	Yes	4	132.5	5.0	130	140	01/21/2015	10/07/2015	Yes
G218	2515962.17	876380.8	UA	GSP	25	618.3172	1.25211328	614.46	620.1	01/15/2019	11/16/2015	Yes	20	135.8	34.0	94	220	01/21/2015	01/26/2021	Yes
G270	2514996.81	874802.01	UA	RP	26	620.3503846	2.547542315	614.45	623.38	01/15/2019	11/16/2015	Yes	21	69.8	25.8	49	140	01/20/2015	03/30/2021	Yes
G271	2515517.24	874239.3	UA	RP	25	615.7952	1.212807075	613.31	617.95	01/15/2019	11/16/2015	Yes	6	455.0	89.6	340	610	08/10/2018	02/01/2021	Yes
G272	2515745.01	874234.68	UA	RP	19	614.3836842	1.271854335	611.45	616.88	01/15/2019	12/11/2016	Yes	4	332.5	45.7	270	380	01/21/2015	10/08/2015	Yes

RAMBOLL

TABLE 4-1. FLOW AND TRANSPORT MODEL CALIBRATION TARGETS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

					Flow Targets											Transp	ort Targe	ts		
					Number			min	max			Flow	Number	mean	std	min	max	Earliest	Latest	Transport
Well	F acting	N a which is a		CCR	of	mean GWL ¹	std GWL ¹	GWL ¹	GWL ¹	Earliest	Latest	Calibration	of	Sulfate	Sulfate	Sulfate	Sulfate	Sample	Sample	Calibraiton
Name	Easting	Northing	пзо	Unit	Samples	(feet)	(feet)	(reet)	(feet)	Sample Date	Sample Date	Weils	Samples	(mg/L)	(mg/L)	(mg/L)	(mg/L)	Date	Date	Wei
G273	25159/5.58	8/4235.18	UA	RP	25	610 4069421	1.000540144	607.70	612	01/15/2019	12/11/2016	Yes	20	4/5.0	69.5 52.2	360	200	01/21/2015	10/08/2015	Yes
G274	2516195.61	8/4239.23	UA	RP	19	604 7021053	0.833210517	602.07	605.07	01/15/2019	12/11/2010	Yes	4	780.0	1/7 3	650	940	01/21/2015	07/23/2015	Yes
G275	2516375.98	874299.05		RP DD	24	604.7021033	0.781508667	603.11	606.6	01/15/2019	11/16/2015	Yes	10	223.6	59.6	19	310	01/21/2015	07/23/2013	Yes
G270	2516358.89	074501 65			15	602 6546667	0.949126415	601.23	603.79	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
G277	2516370.45	8/4581.05 074075 24			19	605 7357895	1 268819731	604.29	608.15	01/15/2019	12/11/2016	Yes	_		_		_			
G278	2516200.7	075020 24			24	607 4420833	2 205378759	599.69	611.08	01/15/2019	11/16/2015	Yes	20	569.0	336.3	170	1600	01/21/2015	01/28/2021	Yes
G279 G280	2515670 35	875045.24			26	618,8873077	1.884508546	614.47	622.33	01/15/2019	11/16/2015	Yes	20	78.1	12.2	52	94	01/21/2015	07/27/2021	Yes
G200	2513079.55	87/375 28		R	27	619,6537037	1,162395233	616.41	621.68	01/15/2019	11/16/2015	Yes	24	296.3	34.2	250	380	11/20/2015	07/27/2021	-
G201 G283	2516503.05	874115.82			9	605.86	1.027898341	604.56	607.8	03/29/2021	08/16/2021	Yes	8	242.5	7.1	230	250	03/31/2021	07/27/2021	Yes
G205 G284	2516922 93	874426 1		B	9	607.9777778	1.492646792	606.17	611.14	03/29/2021	08/16/2021	Yes	8	69.5	10.8	60	95	03/30/2021	07/27/2021	-
G285	2516680 39	874797 74		B	9	606.5866667	1.509014579	604.33	608.62	03/29/2021	08/16/2021	Yes	8	570.0	40.0	490	620	03/30/2021	07/27/2021	_
G286	2516561 89	875075		B	6	606.6166667	1,448346183	604.68	609.08	03/29/2021	12/07/2021	Yes	8	13.5	2.1	11	16	03/31/2021	07/27/2021	-
G287	2516415.34	875445.28	UA	B	7	608.9657143	1.217249045	607.59	610.83	03/29/2021	08/16/2021	Yes	8	44.4	2.7	41	50	03/29/2021	07/27/2021	-
G288	2517071.51	875282.23	UA	B	9	613.6466667	1.259801572	611.9	616.32	03/29/2021	08/16/2021	Yes	8	200.5	302.5	29	770	03/30/2021	07/27/2021	-
G301	2515583.06	872237.64	UA	AP1	25	615.0272	1.602722995	610.39	618.07	01/15/2019	11/16/2015	Yes	16	742.5	79.8	570	860	11/20/2015	01/27/2021	Yes
G302	2516214.19	872255.38	UA	AP1	25	609.8508	2.621329052	604.64	615.41	01/15/2019	11/16/2015	Yes	16	414.4	86.0	260	530	11/20/2015	01/27/2021	Yes
G303	2516639.34	871384.83	UA	AP1	25	615.7748	1.750197894	611.18	618.05	01/15/2019	11/16/2015	Yes	16	770.0	76.2	600	870	11/20/2015	01/26/2021	Yes
G304	2515519.76	871397.53	UA	AP1	2	623.99	0.113137085	623.91	624.07	08/02/2016	09/05/2016	Yes	3	1033.3	57.7	1000	1100	11/20/2015	05/20/2016	-
G305	2515199.45	871159.15	UA	AP1	23	618.0413043	1.084004798	615.3	620.49	01/15/2019	12/11/2016	Yes	5	864.0	87.6	710	930	05/19/2016	11/17/2016	Yes
G306	2516120.28	871143.66	UA	AP1	26	618.9373077	1.290400117	616.12	621.73	01/15/2019	12/11/2016	Yes	24	284.0	113.3	5.9	700	05/19/2016	07/27/2021	Yes
G307	2515553.24	871401.09	UA	AP1	17	624.0317647	1.239890294	619.33	624.6	01/15/2019	12/11/2016	Yes	13	1029.2	113.1	850	1300	08/16/2016	01/27/2021	Yes
G308	2515101.51	871457.36	UA	AP1	11	619.7218182	0.671190259	618.54	621.03	03/29/2021	08/16/2021	Yes	8	1125.0	46.3	1100	1200	03/29/2021	07/27/2021	Yes
G309	2515067.07	871868.3	UA	AP1	11	618.9445455	0.814350829	617.89	621.09	03/29/2021	08/16/2021	Yes	8	787.5	38.8	740	840	03/29/2021	07/27/2021	Yes
G310	2515159.33	872242.06	UA	AP1	11	614.4509091	1.049528032	613.2	617.27	03/29/2021	08/16/2021	Yes	8	990.0	552.5	420	2300	03/29/2021	07/28/2021	Yes
G311	2515881.77	872241.27	UA	AP1	11	613.6636364	1.07212194	612.45	616.54	03/29/2021	08/16/2021	Yes	8	811.3	35.6	750	860	03/30/2021	07/27/2021	Yes
G312	2516557.45	872263.4	UA	AP1	11	608.9363636	1.307511168	606.99	612.19	03/29/2021	08/16/2021	Yes	8	838.8	143.6	600	1000	03/30/2021	07/27/2021	Yes
G314	2516852.2	871632.87	UA	AP1	10	605.13	3.49532386	596.4	608.6	03/29/2021	08/16/2021	Yes	8	1953.8	473.9	830	2400	03/30/2021	07/27/2021	Yes
G315	2516086.68	871387.77	UA	AP1	10	620.529	0.69468538	619.17	621.24	03/29/2021	08/16/2021	Yes	8	908.8	81.1	850	1100	03/30/2021	07/28/2021	Yes
G316	2517211.619	871645.77	UA	AP1	10	590.022	3.016792999	581.54	591.63	03/29/2021	08/16/2021	-	8	691.3	156.1	330	840	03/30/2021	07/27/2021	Yes
G317	2517087.319	871236.76	UA	AP1	10	609.619	1.740890258	606.57	611.75	03/29/2021	08/16/2021	-	8	952.5	93.6	780	1100	03/30/2021	07/28/2021	Yes
G401	2515614.82	872510.72	UA	AP2	18	607.6811111	1.846264556	603.94	609.8	01/15/2019	11/16/2015	Yes	-	-	-	-	-	-	-	-
G402	2516632.39	872500.43	UA	AP2	20	603.743	1.213286533	600.77	605.36	01/15/2019	11/16/2015	Yes	-	-	-	-	-	-	-	-
G403	2514616.58	873561.48	UA	AP2	20	621.055	1.263622612	618.36	622.45	01/15/2019	11/16/2015	Yes	-	-	-	-	-	-	-	-
G404	2516397.84	873999.83	UA	AP2	20	610.838	1.183783408	607.58	612.14	01/15/2019	11/16/2015	Yes	-	-	-	-	-	-	-	-
G405	2515335.58	873996.63	UA	AP2	20	617.8585	1.158348529	614.47	619.28	01/15/2019	11/16/2015	Yes	-	-	-	-	-	-	-	-
G406	2514702.32	872521.21	UA	AP2	16	615.141875	1.675395351	611.27	617.52	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
G407	2513705.74	872973.57	UA	В	16	613.60625	0.84114109	612.11	614.86	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
MW04S	2514450.47	877999.78	UA	В	19	618.2110526	2.142835335	613.88	621.62	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
MW05S	2513285.52	878175.73	UA	В	19	617.8810526	1.843543975	613.32	620.92	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
MW10S	2515914.48	878250.4	UA	В	18	617.255	1.690963004	614.36	620.43	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-

RAMBOLL

TABLE 4-1. FLOW AND TRANSPORT MODEL CALIBRATION TARGETS

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

								Flow 1	Fargets							Transp	ort Targe	ts		
Well Name	Easting	Northing	HSU	CCR Unit	Number of Samples	mean GWL ¹ (feet)	std GWL ¹ (feet)	min GWL ¹ (feet)	max GWL ¹ (feet)	Earliest Sample Date	Latest Sample Date	Flow Calibration Wells	Number of Samples	mean Sulfate (mg/L)	std Sulfate (mg/L)	min Sulfate (mg/L)	max Sulfate (mg/L)	Earliest Sample Date	Latest Sample Date	Transport Calibraiton Well
MW11S	2515971.24	876749.49	UA	GSP	24	620.7020833	1.218373753	617.19	622.19	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
MW12S	2515900.49	875519.94	UA	GSP	24	617.9708333	2.049907562	611.42	620.48	01/15/2019	12/11/2016	Yes	-	-	-	-	-	_	-	-
MW16S	2515087.93	877355.01	UA	В	24	622.0208333	2.003932908	618.34	625.59	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
MW20S	2515876.54	874228.14	UA	В	19	612.0194737	1.76501959	607.74	615.4	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
R104	2514503.48	875857.78	UA	В	20	623.479	1.640654234	619.38	625.92	01/15/2019	11/16/2015	Yes	7	74.4	2.2	72	77	04/08/2015	08/03/2016	-
R201	2514842.05	877925.14	UA	В	26	621.8242308	1.348306117	618.3	623.52	01/15/2019	11/16/2015	Yes	28	211.0	55.8	89	370	01/20/2015	07/28/2021	-
T127	2513911.13	875359.24	UA	В	20	615.954	1.042297058	612.33	617.05	01/15/2019	11/16/2015	Yes	-	-	-	-	-	-	-	-
T128	2513909.58	875509.65	UA	В	19	615.1989474	1.45420805	611.33	617.25	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
T202	2514895.01	876699.56	UA	GSP	19	620.5410526	2.211231167	615.31	624.22	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
T408	2515314.82	873999.37	UA	В	16	617.25875	1.507615667	614.45	619.46	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
T409	2514693.83	872517.86	UA	В	16	615.403125	1.232908316	612.16	617.16	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
TA31	2513856.87	876542.19	UA	В	19	619.7289474	2.10867756	614.89	622.93	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
TA32	2513605.22	877532.63	UA	В	10	615.309	1.097172629	612.42	616.3	01/20/2020	12/11/2016	Yes	-	-	-	-	-	-	-	-
TA33	2513248.73	876605.56	UA	В	19	617.2257895	1.90237663	612.91	620.35	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
TA34	2513466.7	875906.23	UA	В	19	617.0926316	1.535020239	613.48	619.58	01/15/2019	12/11/2016	Yes	-	-	-	-	-	-	-	-
Notes:																		[0: 5	SLN 04/20/22; C	C: EGP 4/29/22]

¹ GWL = Groundwater Elevation

AP1 = Ash Pond No. 1

AP2 = Ash Pond No. 2

B = Background

GSP = Gypsum Management Facility Gypsum Stack Pond

LF = Landfill

max=maximum

mg/l = milligrams per liter

min=minimum

RP = Gypsum Management Facility Recycle Pond

std=standard deviation from the mean

HSU = Hydrostratigraphic Unit

CCR = coal combustion residuals UA = uppermost aquifer LCU = lower confining unit

Zone	Hydrostratigraphic Unit	Materials	ft/d	cm/s	Kh/Kv	Value Source	Sensitivity ¹
Horizontal Hyd	raulic Conductivity			•		Calibration Model	•
1	UCU	loess and clay	0.51	1.80E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	High
2	UA	sand and sandy silt	4.04	1.43E-03	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	High
3	LCU (unweathered Vandalia)	sand clay till	0.83	2.93E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	High
4	LCU (Smithboro Formation)	sand clay till	0.0014	4.94E-07	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Low
5	SW Pond	NA	2.89E-09	1.02E-12	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
6	LF-CCR	CCR	13.6	4.80E-03	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
7	GSP-CCR	CCR	13.6	4.80E-03	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
8	RP-CCR	CCR	13.6	4.80E-03	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
9	AP2	CCR	13.6	4.80E-03	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
10	AP1	CCR	13.6	4.80E-03	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Moderate
11	Cooling Pond	clay and silt	0.51	1.80E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Low
12	GSP-RP connector	lined channel within UCU	0.51	1.80E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
13	AP2 -berm	loess and clay	0.51	1.80E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
14	AP1-berm	loess and clay	0.51	1.80E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
15	Pond (west)	loess and clay	0.51	1.80E-04	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
16	GSP-liner	liner	2.89E-08	1.02E-11	NA	Harmonic mean of liner layers	Negligible
17	RP-liner	liner	2.89E-08	1.02E-11	NA	Harmonic mean of liner layers	Negligible
18	LF-liner	liner	2.89E-08	1.02E-11	NA	Harmonic mean of liner layers	Negligible
19	UCU- fill (drain/river)	NA	10	3.53E-03	NA	Calibrated - Conductivity Value to Allow Groundwater Flow from UCU to River and Drain Boundary Conditions	Moderate
21	LF-GSP shared embankment	reworked silts and clays	0.01	3.53E-06	NA	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
Vertical Hydrau	lic Conductivity					Calibration Model	
1	UCU	loess and clay	0.0510	1.80E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	High
2	UA	sand and sandy silt	0.4040	1.43E-04	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	High
3	LCU (unweathered Vandalia)	sand clay till	0.0830	2.93E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	High
4	LCU (Smithboro Formation)	sand clay till	0.0001	4.94E-08	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Low
5	SW Pond	lined	2.89E-09	1.02E-12	1	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
6	LF-CCR	CCR	0.2500	8.82E-05	54	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
7	GSP-CCR	CCR	0.2500	8.82E-05	54	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
8	RP-CCR	CCR	0.2500	8.82E-05	54	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
9	AP2	CCR	0.2500	8.82E-05	54	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
10	AP1	CCR	0.2500	8.82E-05	54	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Moderate
11	Cooling Pond	clay and silt	0.0510	1.80E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Low
12	GSP-RP connector	lined channel within UCU	0.0510	1.80E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
13	AP2 -berm	loess and clay	0.0510	1.80E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
14	AP1-berm	loess and clay	0.0510	1.80E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
15	Pond (west)	loess and clay	0.0510	1.80E-05	10	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
16	GSP-liner	liner	2.89E-08	1.02E-11	1	Harmonic mean of liner layers	Negligible
17	RP-liner	liner	2.89E-08	1.02E-11	1	Harmonic mean of liner layers	Negligible
18	LF-liner	liner	2.89E-08	1.02E-11	1	Harmonic mean of liner layers	Negligible
19	UCU- fill (drain/river)	NA	10.0000	3.53E-03	1	Calibrated - Conductivity Value to Allow Groundwater Flow from UCU to River and Drain Boundary Conditions	Moderate

21 LF-GSP shared embankment

reworked silts and clays

Zone	Hydrostratigraphic Unit	Materials	ft/d	cm/s	Kh/Kv	Value Source	Sensitivity ¹
Vertical Hydrau	lic Conductivity (Continued)			-		Calibration Model	
21	LF-GSP shared embankment	reworked silts and clays	0.0100	3.53E-06	1	Calibrated - Within Range of Field Test Results (Ramboll, 2021a)	Negligible
Zone	Hydrostratigraphic Unit	Materials	ft/d	in/yr	Kh/Kv	Value Source	Sensitivity ¹
Recharge						Calibration Model	
1	UCU	clay and silt	0.00055	2.41	NA	Calibrated	High
2	SW Pond	clay and silt	1.50E-08	6.57E-05	NA	Calibrated	Negligible
3	LF	CCR	8.00E-08	3.50E-04	NA	Calibrated	Negligible
4	GSP	CCR	8.00E-08	3.50E-04	NA	Calibrated	Negligible
5	RP	CCR	8.00E-08	3.50E-04	NA	Calibrated	Negligible
6	AP2	CCR	0.0005	2.19	NA	Calibrated	Moderate
7	AP1	CCR	0.0024	10.51	NA	Calibrated	High
8	Cooling pond	clay and silt	1.40E-05	0.06	NA	Calibrated	Negligible
9	GSP-RP connector	clay and silt	0.00055	2.41	NA	Calibrated	Low
10	AP2-Berm	clay and silt	0.00055	2.41	NA	Calibrated	Negligible
11	AP1-Berm	clay and silt	0.00055	2.41	NA	Calibrated	Negligible
12	Pond (west)	clay and silt	5.50E-04	2.41	NA	Calibrated	Negligible
Storage							
1	UCU	loess and clay					
2	UA	sand and sandy silt					
3	LCU (unweathered Vandalia)	sand clay till					
4	LCU (Smithboro Formation)	sand clay till					
5	SW Pond	lined					
6	LF-CCR	CCR					
7	GSP-CCR	CCR					
8	RP-CCR	CCR					
9	AP2	CCR					
10	AP1	CCR				Not used in steady-state calibration model	
11	Cooling Pond	clay and silt				Not used in steady state campitation model	
12	GSP-RP connector	lined channel within UCU					
13	AP2 -berm	loess and clay					
14	AP1-berm	loess and clay					
15	Pond (west)	loess and clay					
16	GSP-liner	liner					
17	RP-liner	liner					
18	LF-liner	liner					
19	UCU- fill (drain/river)	NA	1				

River Paramete	ers						
	Relative Location	River Width (feet)	River depth (feet)	Bed Thickness (feet)	Hydraulic Conductivity (ft/d)	Head (feet)	River Boundary Conductance (ft ² /d)
Reach 0	Unnamed Tributary East Coffeen Lake	10	3	2	4.00E-02	594.7-621.84	0.08-20.4
Sensitivity ¹	NA					Moderate	High
Reach 5	Unnamed Tributary East Coffeen Lake - downstream in layer 5	10	3	2	4.00E-01	591.0-594.7	1.5-109.2
Sensitivity ¹	NA					Moderate	Low
Reach 1	Unnamed Tributary West Coffeen Lake	10	3	2	4.80E-02	591.0-622.45	0.04-12.3
Sensitivity ¹	NA					Low	Moderately High
Reach 2	Pond (west)	cell dimensions	3	1	3.20E-03	617.50	4.0
Sensitivity ¹	NA					Low	Low
Reach 3	Condenser Cooling Flume	cell dimensions	4	1	5.00	604.00	5.00
Sensitivity ¹	NA					Moderate	High
Value Source	NA	Calibrated	Calibrated	Calibrated	Calibrated	Estimated based on DEM	Calibrated
Drain Paramete	ers						
	Name	Drain Width (feet)	Drain depth (feet)	Bed Thickness (feet)	Hydraulic Conductivity (ft/d)	Stage (feet)	Drain Conductance (ft ² /d)
Reach 0	Active LF Underdrain	2	2	1.5	2.40E-02	603.5	6.6e-5-0.47
Sensitivity ¹	NA					Low	Moderately High
Reach 1	Gravity Driven GRP Drain	cell dimensions	2	1.5	2.50E-02	600.5	9.7e-5-0.51
Sensitivity ¹						Low	Moderate
Reach 2	Northern Drain	cell dimensions	2	1.5	2.00E+00	622	5.1-135.46
Sensitivity ¹						Low	Negligible
Value Source	NA	Calibrated	Calibrated	Calibrated	Calibrated	Estimated based on DEM	Calibrated
General Head P	arameters						
	Relative Location	Width of General Head Boundary Cell (feet)	Distance to General Head Boundary Head (feet)	Saturated Thickness of Cell (feet)	Hydraulic Conductivity (ft/d)	Head (feet)	General Head Boundary Conductance (ft ² /d)
Reach 2	Northern Model Boundary in UA	variable	1	variable	4.54	591-610.66	1.4-7032.9
Sensitivity ¹	NA					Moderate	Negligible
Reach 3	Northern Model Boundary in LCU ayer 4	variable	1	variable	0.83	591-610.66	166-1812.6
Sensitivity ¹	NA					High	Negligible
Reach 4	Northern Model Boundary in LCU ayer 5	variable	1	variable	0.0014	591-610.66	1.61-6.0
Sensitivity ¹	NA					Low	Negligible
Value Source	NA	Calibrated	Calibrated	Calibrated	Calibrated	Estimated based on Groundwater Elevation Targets in UA around the GSP/GRP/LF	Calibrated

GROUNDWATER MODELING REPORT COFFEEN POWER PLANT ASH POND NO. 1 COFFEEN, ILLINOIS

Hydraulic Flow	Boundary Parameters			
	Relative Location	Width of HFB (feet) ²	Hydraulic Conductivity (feet)	
Reach 1	GSP	1	2.89E-08	
Sensitivity ¹	NA		Low	
Reach 2	RP	1	2.89E-08	
Sensitivity ¹	NA		Moderate	
Reach 3	LF	1	2.89E-08	
Sensitivity ¹	NA		Low	
Value Source	NA	Calibrated	Harmonic mean of construction material	
Notes:				[O: SLN 04/01/22; C: EGP 4/29/2

¹ Sensitivity Explanation:

Negligible - SSR changed by less than 1%

Low - SSR change between 1% and 10%

Moderate - SSR change between 10% and 50%

Moderately High - SSR change between 50% and 100%

High - SSR change greater than 100%

² Liner thickness accounted for in harmonic mean calculation

SSR = sum of squared residuals

- - - = not tested

AP1 = Ash Pond No. 1

AP2 = Ash Pond No. 2

CCR = coal combustion residuals cm/s = centimeters per second

ft/d = feet per day

 $ft^2/day = feet squared per day$ GSP = Gypsum Management Facility Gypsum Stack Pond

in/yr = inches per year

Kh/Kv = anisotropy ratio

LF = Landfill

NA = not applicable

RP = Gypsum Management Facility Recycle Pond

SW = Surface Water

Hydrostratigraphic Unit

UCU = upper confining unit

UA = uppermost aquifer

LCU = lower confining unit

TABLE 5-2. TRANSPORT MODEL INPUT VALUES (CALIBRATION)

-		Matadala										
Zone	Hydrostratigraphic Unit	Materials		Recharge	e (ft/d)		S	Sulfate Concer	tration (mg/L	.)	Value Source	Sensitivity
Initial Concent	tration		-				-					
Entire Domain	NA	NA		0.000)55				0		NA	
Source Concen	tration (recharge and constant co	ncentration cells)	•				•					•
			Pre	-GMF	Post	-GMF	Pre-	GMF	Post	-GMF		
	Model Name and Stress Period		TR1 - STP 1	TR1 - STP 2	TR2 - STP 1	TR3 - STP 1	TR1 - STP 1	TR1 - STP 2	TR2 - STP 1	TR3 - STP 1		
	Time Period		1970-1984	1985-2009	2010-2017	2018-2022	1970-1984	1985-2009	2010-2017	2018-2022		
6	AP2	CCR	0.0005	0.0005	0.0005	0.00027	1,600	1,600	1,600	0	Leachate sulfate concentrations	
13	AP2 Northwest seep area	-	0.002	0.002	0.002	0.00055	1,600	1,600	1,600	0	Based on previous model	
14	AP2 East and Southwest seep area	-	0.01	0.01	0.01	0.00055	300	300	300	0	Based on previous model	
13	AP2 closure structures	-									Based on previous model	
7	AP1	CCR	0.00055	0.00240	0.00240	0.00240	0	1,000	1,000	1,000	Calibrated	
5	RP	CCR	NA	NA	8.00E-08	8.00E-08	NA	NA	15,000	15,000	Leachate sulfate concentrations	
4	GSP	CCR	NA	NA	8.00E-08	8.00E-08	NA	NA	11,000	11,000	Leachate sulfate concentrations	
3	LF	CCR	NA	NA	8.00E-08	8.00E-08	NA	NA	7,500	7,500	Leachate sulfate concentrations	
GMF Units line	r modification (HFB)		•		•	•						•
		Well Data		Hydraulic Cond	uctivity (ft/d)							
			Pre	-GMF	Post	-GMF						
	Model Name and Stress Period		TR1 - STP 1	TR1 - STP 2	TR2 - STP 1	TR3 - STP 1	21					
	Time Period		1970-1984	1985-2009	2010-2017	2018-2022						
1	RP		NA	NA	2.89E-08	2.89E-08					Harmonic Mean	see Table 5-3
11	RP-northeast	G279	NA	NA	2.89E-08	3.00E-04					Calibrated	see Table 5-3
16	RP-southeast	G275	NA	NA	2.89E-08	6.54E-04					Calibrated	see Table 5-3
2	GSP		NA	NA	2.89E-08	2.89E-08					Harmonic Mean	see Table 5-3
21	GSP-east	G215	NA	NA	2.89E-08	6.00E-04					Calibrated	see Table 5-3
3	LF		NA	NA	2.89E-08	2.89E-08					Harmonic Mean	see Table 5-3
Storage, Speci	fic Yield and Effective Porosity							Calibr	ation Model			
Zone	Hydrostratigraphic Unit	Materials	Storage	Specific Yield	Effective Porosity						Value Source	Sensitivity
1	UCU	loess and clay	0.0034	0.35	0.35						Ramboll (2021a) HCR	see Table 5-3
2	UA	sand and sany silt	0.0034	0.16	0.16						Ramboll (2021a) HCR	see Table 5-3
3	LCU (unweathered Vandalia)	sand clay till	0.0034	0.19	0.19						Ramboll (2021a) HCR	see Table 5-3
4	LCU (Smithboro Formation)	sand clay till	0.0034	0.28	0.28						Ramboll (2021a) HCR	see Table 5-3
5	SW Pond	NA	0.0034	0.35	0.35						Ramboll (2021a) HCR	see Table 5-3
6	LF-CCR	CCR	0.0034	0.19	0.19			NA			Ramboll (2021a) HCR	see Table 5-3
7	GSP-CCR	CCR	0.0034	0.19	0.19						Ramboll (2021a) HCR	see Table 5-3
8	RP-CCR	CCR	0.0034	0.19	0.19						Ramboll (2021a) HCR	see Table 5-3
9	AP2	CCR	0.0034	0.19	0.19						Ramboll (2021a) HCR	see Table 5-3
10	AP1	CCR	0.0034	0.19	0.19						Ramboll (2021a) HCR	see Table 5-3
11	Cooling Pond	clay and silt	0.0034	0.35	0.35						Ramboll (2021a) HCR	see Table 5-3
12	GSP-RP connector	lined channel within UCU	0.0034	0.35	0.35						Ramboll (2021a) HCR	see Table 5-3
13	AP2 -berm	loess and clay	0.0034	0.35	0.35						Ramboll (2021a) HCR	see Table 5-3

TABLE 5-2. TRANSPORT MODEL INPUT VALUES (CALIBRATION)

GROUNDWATER MODELING REPORT COFFEEN POWER PLANT ASH POND NO. 1 COFFEEN, ILLINOIS

Storage, Specif	ic Yield and Effective Porosity					Calibration Model		
Zone	Hydrostratigraphic Unit	Materials	Storage	Specific Yield	Effective Porosity		Value Source	Sensitivity
14	AP1-berm	loess and clay	0.0034	0.35	0.35		Ramboll (2021a) HCR	see Table 5-3
15	Pond (west)	loess and clay	0.0034	0.35	0.35		Ramboll (2021a) HCR	see Table 5-3
16	GSP-liner	liner	0.0034	0.16	0.16	NA	Ramboll (2021a) HCR	see Table 5-3
17	RP-liner	liner	0.0034	0.16	0.16		Ramboll (2021a) HCR	see Table 5-3
18	LF-liner	liner	0.0034	0.16	0.16		Ramboll (2021a) HCR	see Table 5-3
19	UCU- fill (drain/river)	NA	0.0034	0.5	0.5		Calibrated	see Table 5-3
21	LF-GSP shared embankment	reworked silts and clays	0.0034	0.16	0.16		Calibrated	see Table 5-3
Dispersivity								
Applicable Region	Hydrostratigraphic Unit	Materials	Longitudinal (feet)	Transverse (feet)	Vertical (feet)		Value Source	Sensitivity
1	UCU	loess and clay	1	0.1	0.01	ΝΔ	calibrated	see Table 5-3
2	UA	sand and sany silt	10	1	0.1	NA	calibrated	see Table 5-3
3	LCU (unweathered Vandalia)	sand clay till	1	0.1	0.01		calibrated	see Table 5-3
4	LCU (Smithboro Formation)	sand clay till	1	0.1	0.01		calibrated	see Table 5-3

Notes:

- - - = not tested

AP1 = Ash Pond No. 1

AP2 = Ash Pond No. 2

CCR = coal combustion residuals

ft/d = feet per day

GMF = Gypsum Management Facility

GSP = Gypsum Management Facility Gypsum Stack Pond

LF = Landfill

mg/L = milligrams per liter

NA = not applicable

RP = Gypsum Management Facility Recycle Pond

SS = Steady State model

STP = Stress Period

SW = Surface Water

TR = Transient model

Hydrostratigraphic Unit

UCU = upper confining unit

UA = uppermost aquifer

LCU = lower confining unit

[O: SLN 04/01/22; C: EGP 04/29/22]

TABLE 5-3. TRANSPORT MODEL INPUT SENSITIVITY (CALIBRATION)

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

				Storage and	Specific Yield			Effective	e Porosity	
Well ID	SI	Calibration on Sulfate Concentration (mg/L)	Sulfate Concentration (mg/L)	Sensitivity ¹						
G301	AP1	961.2	961.3	Negligible	958.1	Negligible	964.1	Negligible	954.2	Negligible
G302	AP1	954.3	951.2	Negligible	937.3	Low	954.8	Negligible	950.7	Negligible
G303	AP1	626.7	613.2	Low	572.0	Low	643.3	Low	598.3	Low
G305	AP1	426.0	408.8	Low	442.1	Low	451.3	Low	379.3	Moderate
G306	AP1	427.0	371.0	Moderate	400.9	Low	463.5	Low	375.8	Moderate
G307	AP1	779.7	762.4	Low	911.7	Moderate	786.0	Negligible	768.6	Low
G308	AP1	880.0	868.7	Low	813.0	Low	883.2	Negligible	872.2	Negligible
G309	AP1	922.0	901.3	Low	867.1	Low	924.2	Negligible	916.0	Negligible
G310	AP1	921.9	925.6	Negligible	916.5	Negligible	926.7	Negligible	915.6	Negligible
G311	AP1	966.6	965.5	Negligible	956.7	Low	967.0	Negligible	964.8	Negligible
G312	AP1	934.7	940.5	Negligible	924.4	Low	936.7	Negligible	933.5	Negligible
G313	AP1	908.8	908.3	Negligible	903.2	Negligible	909.3	Negligible	907.0	Negligible
G314	AP1	848.0	845.7	Negligible	838.1	Low	850.8	Negligible	841.8	Negligible
G315	AP1	786.7	737.7	Low	791.7	Negligible	789.6	Negligible	776.3	Low
G316	AP1	507.5	509.6	Negligible	494.8	Low	532.8	Low	469.7	Low
G317	AP1	146.9	149.8	Low	116.4	Moderate	202.9	Moderate	93.4	Moderate
			S*0.1 Sy*0.5		S*10 Sy*2		Porosity-0.05		Porosity+0.05	

TABLE 5-3. TRANSPORT MODEL INPUT SENSITIVITY (CALIBRATION)

GROUNDWATER MODELING REPORT

COFFEEN POWER PLANT

ASH POND NO. 1

COFFEEN, ILLINOIS

			Disper	rsivity		HF	B (GMF GSP a	nd GMF RP Liner)
Well ID	SI	Sulfate Concentration (mg/L)	Sensitivity ¹						
G301	AP1	931.7	Low	909.6	Low	959.2	Negligible	937.3	Low
G302	AP1	914.3	Low	887.2	Low	953.4	Negligible	956.9	Negligible
G303	AP1	620.4	Negligible	589.4	Low	626.1	Negligible	622.1	Negligible
G305	AP1	415.1	Low	387.9	Low	425.8	Negligible	425.0	Negligible
G306	AP1	420.1	Low	390.5	Low	426.9	Negligible	426.2	Negligible
G307	AP1	756.7	Low	720.4	Low	779.6	Negligible	779.1	Negligible
G308	AP1	843.3	Low	800.4	Low	879.4	Negligible	879.2	Negligible
G309	AP1	892.9	Low	858.2	Low	922.8	Negligible	916.7	Negligible
G310	AP1	882.3	Low	853.6	Low	922.3	Negligible	915.6	Negligible
G311	AP1	943.7	Low	926.1	Low	965.1	Negligible	963.6	Negligible
G312	AP1	900.6	Low	869.2	Low	934.9	Negligible	933.7	Negligible
G313	AP1	774.1	Moderate	693.3	Moderate	908.4	Negligible	908.6	Negligible
G314	AP1	799.7	Low	756.2	Moderate	848.5	Negligible	848.5	Negligible
G315	AP1	764.9	Low	722.5	Low	785.7	Negligible	786.4	Negligible
G316	AP1	461.4	Low	426.2	Moderate	507.4	Negligible	507.5	Negligible
G317	AP1	123.6	Moderate	124.2	Moderate	146.9	Negligible	146.9	Negligible
		Disp*5		Disp*10		HFB*0.1		HFB*10	

Notes:

¹ Sensitivity Explanation:

Negligible = concentration changed by less than 1%

Low = concentration change between 1% and 10%

Moderate = concentration change between 10% and 50%

Moderately High = concentration change between 50% and 100%

High = concentration change greater than 100%

² sensitivity test used transient transport

AP1 = Ash Pond No. 1

AP2 = Ash Pond No. 2

Disp = dispersivity

GSP = Gypsum Management Facility Gypsum Stack Pond

HFB = Horizontal Flow Boundary

ID = identification

mg/L = milligrams per liter

RP = Gypsum Management Facility Recycle Pond

S = storativity

Sy = specific yield

[O: SLN 04/10/22; C: EGP 5/5/22]

TABLE 6-1. HELP MODEL INPUT AND OUTPUT VALUES

Closure Scenario Number (Drainage Length)	Ash Pond 1 - CIP Consolidation and Cover System Area	ation and Ash Pond 1 - CIP Removal Area (1 foot) - CBR East Side (1 foot) (3 feet)		Notes	
Input Parameter					
Climate-General					
City	Coffeen, Illinois	Coffeen, Illinois Coffeen, Illinois Coffeen, Illinois		Nearby city to the Site within HELP database	
Latitude	39.06	39.06	39.06	Site latitude	
Evaporative Zone Depth	18	12	18	Estimated based on geographic location (Illinois) and uppermost soil type (Tolaymat, T. and Krause, M., 2020)	
Maximum Leaf Area Index	ndex 4.5 4.5 4.5		4.5	Maximum for geographic location (Illinois) (Tolaymat, T. and Krause, M., 2020)	
Growing Season Period, Average Wind Speed, and Quarterly Relative Humidity	Belleville Scott Air Force Base Belleville, Illinois	Belleville Scott Air Force Base Belleville, Illinois	Belleville Scott Air Force Base Belleville, Illinois	Nearby city to the Coffeen Power Plant within HELP database	
Number of Years for Synthetic Data Generation	30	30	30		
Temperature, Evapotranspiration, and Precipitation	Precipitation, temperature, and solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39	Precipitation, temperature, and solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39	Precipitation, temperature, and solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39		
Soils-General	· · · · · · · · · · · · · · · · · · ·		·		
% where runoff possible	100	100	100		
Area (acres)	10	13	10	CBR - Removal Area based on HCR (Ramboll, 2021); CIP - Consolidation and Cover System Area based on construction drawing for Ash Pond No. 1; CIP -Removal Area equals the difference	
Specify Initial Moisture Content	No	No	No		
Surface Water/Snow	Model Calculated	Model Calculated	Model Calculated		
Soils-Layers			•		
1	Vegetative Soil Layer (HELP Final Cover Soil [topmost layer])	Protective Cover Layer (HELP Final Cover Soil [topmost layer])	Protective Cover Layer (HELP Final Cover Soil [topmost layer])		
2	Protective Soil Layer (HELP Vertical Percolation Layer)				
3	Nonwoven Geotextile (HELP Custom Layer)			Layers details for CBR, CIP, and Landfill areas based on grading plans, construction drawings, and cover system	
4	Geomembrane Liner			design for Ash Pond No. 1	
5 Unsaturated CCR Material (HELP Waste)					
6	HELP Vertical Percolation Layer				
7					

TABLE 6-1. HELP MODEL INPUT AND OUTPUT VALUES

Closure Scenario Number (Drainage Length)	Ash Pond 1 - CIP Consolidation and Cover System Area	Ash Pond 1 - CIP Removal Area (1 foot) - CBR East Side (1 foot)	Ash Pond 1 - CBR West Side (3 feet)	Notes	
Soil ParametersLayer 1					
Туре	1	1	1	Vertical Percolation Layer (Cover Soil)	
Thickness (in)	6	12	36	For CBR and CIP removal areas, layer 1 thickness is the average thickness of unsaturated backfill material placed after removal	
Texture	12	14	14	Defaults used	
Description	Silty Clay Loam	Silty Clay	Silty Clay		
Saturated Hydraulic Conductivity (cm/s)	4.20E-05	2.50E-05	2.50E-05	Defaults used	
Soil ParametersLayer 2					
Туре	1			Vertical Percolation Layer	
Thickness (in)	18			design thickness	
Texture	14			Defaults used	
Description	Silty Clay				
Saturated Hydraulic Conductivity (cm/s)	2.50E-05			Defaults used	
Soil ParametersLayer 3		· · · · · ·		·	
Туре	2			Lateral Drainage Layer	
Thickness (in)	0.11			design thickness	
Texture	123			Defaults used	
Description	10 oz Nonwoven Geotextile				
Saturated Hydraulic Conductivity (cm/s)	3.00E-01			Defaults used	
Soil ParametersLayer 4		· · · ·		·	
Туре	4			Flexible Membrane Liner	
Thickness (in)	0.04			design thickness	
Texture	36			Defaults used	
Description	LDPE Membrane				
Saturated Hydraulic Conductivity (cm/s)	4.00E -13			Defaults used	
Soil ParametersLayer 5				·	
Туре	1			Vertical Percolation Layer (Waste)	
Thickness (in)	360			design thickness	
Texture	84			Defaults used	
Description	High-Density Electric Plant Coal Bottom Ash				
Saturated Hydraulic Conductivity (cm/s)	8.80E-05			defaults used	

TABLE 6-1. HELP MODEL INPUT AND OUTPUT VALUES

GROUNDWATER MODELING REPORT COFFEEN POWER PLANT ASH POND NO. 1 COFFEEN, ILLINOIS

Closure Scenario Number (Drainage Length)	Ash Pond 1 - CIP Consolidation and Cover System Area	Ash Pond 1 - CIP Removal Area (1 foot) - CBR East Side (1 foot)	Ash Pond 1 - CBR West Side (3 feet)	Notes	
Soil ParametersLayer 6					
Туре	1			Background Silty Clay (Ash Pond No. 1)	
Thickness (in)	60			Background clay thickness (Ash Pond No. 1)	
Texture	43			Custom (Ash Pond No. 1) Defaults used (GSP and Landfill)	
Description	Loess Unit Silty Clay				
Saturated Hydraulic Conductivity (cm/s)	3.85E-06			Average for Loess Unit (Ash Pond No. 1)	
Soil ParametersLayer 7		•		+	
Туре				Drainage Liner	
Thickness (in)				design thickness	
Texture				Defaults used	
Description					
Saturated Hydraulic Conductivity (cm/s)				Defaults used	
SoilsRunoff					
Runoff Curve Number	85.9	88.6	89.2	HELP-computed curve number	
Slope	5.00%	0.50%	0.50%	Estimated from construction design drawings	
Length (ft)	350	1,000	350	estimated maximum flow path	
Vegetation	fair	fair	fair	fair indicating fair stand of grass on surface of soil backfill	
Execution Parameters					
Years	30	30	30		
Report Daily	No	No	No		
Report Monthly	No	No	No		
Report Annual	Yes	Yes	Yes		
Output Parameter					
Unsaturated Percolation Rate (in/vr)	0.00090	7.85	6.28		

Notes:

% = percent

CBR = closure by removal

CIP = closure in place

cm/s = centimeters per second

ft = feet

HCR = Hydrogeologic Site Characterization Report HELP = Hydrologic Evaluation of Landfill Performance

in = inches

in/yr = inches per year

Lat = latitude

Long = longitude

References:

Tolaymat, T. and Krause, M, 2020. Hydrologic Evaluation of Landfill Performance: HELP 4.0 User Manual . United States Environmental Protection Agency, Washington, DC, EPA/600/B 20/219 Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2021. Hydrogeologic Site Characterization Report. AP1, GMF GSP, Coffeen Power Plant. Coffeen, Illinois.

TABLE 6-2. PREDICTION MODEL INPUT VALUES

GROUNDWATER MODELING REPORT COFFEEN POWER PLANT ASH POND NO. 1 COFFEEN, ILLINOIS

Hydrostratigraphic Unit/Recharge Area	Notes	Recharge Zone	Sulfate Concentration (mg/L)	Recharge (ft/day)	Recharge (inches/yr)	Constant Concentration Layer	Constant Concentration (mg/L)
Scenario 1: CIP							
AP1 - removal area east	FILL	7	0	1.8E-03	7.85	2&3	130.0
AP1 - consolidation area west	CCR	16	1,000	6.26E-08	2.74E-04		
Scenario 2: CBR							
AP1 - removal area east	FILL	7	0	1.8E-03	7.85		
AP1 - removal area west	FILL	16	0	1.4E-03	6.28		

[O: SLN 04/01/22; C: EGP 04/29/22]

Notes:

- - - = not included

AP1 = Ash Pond No. 1

CCR = coal combustion residuals

ft/day = feet per day

inches/yr = inches per year

mg/L = milligrams per liter

FIGURES

PART 845 REGULATED UNIT (SUBJECT UNIT) PROPERTY BOUNDARY COFFEEN LAKE STATE FISH AND WILDLIFE AREA

FIGURE 1-1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

COAL MINE SHAFT	SITE MAP	FIGURE 1-2
PART 845 REGULATED UNIT (SUBJECT UNIT)		
SITE FEATURE		
LIMITS OF FINAL COVER		
PROPERTY BOUNDARY		
		RAMBOLL AMERICAS
	GROUNDWATER MODELING REPORT	ENGINEERING SOLUTIONS, INC.
	ASH POND NO. 1	
0 275 550	COFFEEN POWER PLANT	PAMBOLL
Let Feet	COFFEEN, ILLINOIS	KANDOLL

PROJECT: 169000XXXX | DATED: 4/28/2022 | DESIGNER: galarnmc

Y:\Mapping\Projects\22\2285\MXD\Model_Figures\Coffeen\AP1\Figure 2-1_Field Investigation Locations.mxd

HONITORING WELL

- 🖶 PORE WATER WELL
- STAFF GAGE, RIVER
- GALE → STAFF GAGE, CCR UNIT
- PART 845 REGULATED UNIT (SUBJECT UNIT)
- SITE FEATURE

LIMITS OF FINAL COVER

PROPERTY BOUNDARY

0 275 550

MONITORING WELL LOCATION MAP

FIGURE 2-1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

PROJECT: 169000XXXX | DATED: 10/12/2021 | DESIGNER: HOTCALD

Y:\Mapping\Projects\22\2285\MXD\845_Operating_Permit\Coffeen\AP1\Figure 3-3_GWE Contours 20210419 AP1.mxd

BACKGROUND WELL

- MONITORING WELL ₽
- ÷ SOURCE SAMPLE LOCATION
- Θ STAFF GAGE
- GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88) INFERRED GROUNDWATER ELEVATION CONTOUR NOTE:
- GROUNDWATER FLOW DIRECTION 275 550 L Feet 1
- PART 845 REGULATED UNIT (SUBJECT UNIT)
- SITE FEATURE
- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

FOR CONTOURING.

ELEVATIONS IN PARENTHESES WERE NOT USED

GROUNDWATER MODELING REPORT ASH POND NO. 1 COFFEEN POWER PLANT COFFEEN, ILLINOIS

POTENTIOMETRIC SURFACE MAP

UPPERMOST AQUIFER

APRIL 20, 2021

FIGURE 2-2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

PROJECT: 169000XXXX | DATED: 10/12/2021 | DESIGNER: HOTCALD

Y:\Mapping\Projects\22\2285\MXD\845_Operating_Permit\Coffeen\AP1\Figure 3-4_GWE Contours 20210726 AP1.mxd

	BACKGROUND V	VELL
--	--------------	------

- MONITORING WELL **-**
- SOURCE SAMPLE LOCATION ₽
- STAFF GAGE
- GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88) INFERRED GROUNDWATER ELEVATION
- CONTOUR GROUNDWATER FLOW DIRECTION 275 550 0 L Feet 1
- PART 845 REGULATED UNIT (SUBJECT UNIT)
- SITE FEATURE

NOTE:

FOR CONTOURING.

- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

ELEVATIONS IN PARENTHESES WERE NOT USED

GROUNDWATER MODELING REPORT ASH POND NO. 1 COFFEEN POWER PLANT COFFEEN, ILLINOIS

POTENTIOMETRIC SURFACE MAP

UPPERMOST AQUIFER

JULY 26, 2021

FIGURE 2-3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

FIGURE 4-1

CALIBRATION AND PREDICTIVE TIMELINE (SS = STEADY STATE MODEL AND TR = TRANSIENT MODEL)

> GROUNDWATER MODELING REPORT ASH POND NO. 1 COFFEEN POWER PLANT COFFEEN, ILLINOIS

RAMBOLL

PROJECT: 169000XXXX | DATED: 5/6/2022 | DESIGNER: galarnmc

Y:\Mapping\Projects\22\2285\MXD\Model_Figures\Coffeen\AP1\Figure 5-1_Model Area Map.mxd

BOUNDARY CONDITIONS FOR LAYER 1

BOUNDARY CONDITIONS FOR LAYER 2

BOUNDARY CONDITIONS FOR LAYER 3

BOUNDARY CONDITIONS FOR LAYER 4

BOUNDARY CONDITIONS FOR LAYER 5

BASE OF MODEL FOR LAYER 1

BASE OF MODEL FOR LAYER 2

BASE OF MODEL FOR LAYER 3

BASE OF MODEL FOR LAYER 4

BASE OF MODEL FOR LAYER 5

HYDRAULIC CONDUCTIVITY ZONES FOR LAYER 1

HYDRAULIC CONDUCTIVITY ZONES FOR LAYER 2

HYDRAULIC CONDUCTIVITY ZONES FOR LAYER 3

HYDRAULIC CONDUCTIVITY ZONES FOR LAYER 4

HYDRAULIC CONDUCTIVITY ZONES FOR LAYER 5

MODEL RECHARGE DISTRIBUTION STEADY STATE (SS) MODEL

MODEL RECHARGE DISTRIBUTION FOR THE TRANSIENT (TR) MODEL TR-1 STRESS PERIOD 1

MODEL RECHARGE DISTRIBUTION FOR THE TRANSIENT (TR) MODEL TR-1 STRESS PERIOD 2

MODEL RECHARGE DISTRIBUTION FOR THE TRANSIENT (TR) MODEL TR-2 STRESS PERIOD 1

MODEL RECHARGE DISTRIBUTION FOR THE TRANSIENT (TR) MODEL TR-3 STRESS PERIOD 1

OBSERVED VERSUS SIMULATED STEADY STATE GROUNDWATER LEVELS FROM THE CALIBRATED MODEL

SIMULATED GROUNDWATER LEVEL RESIDUALS FROM THE CALIBRATED MODEL

SIMULATED STEADY STATE GROUNDWATER LEVEL CONTOURS FROM UA (LAYER 3) FROM THE CALIBRATED MODEL

SIMULATED STEADY STATE GROUNDWATER LEVEL CONTOURS IN PROXIMITY TO AP1 FROM UA (LAYER 3) FROM THE CALIBRATED MODEL

OBSERVED VERSUS SIMULATED SULFATE CONCENTRATIONS (mg/L)

SIMULATED SULFATE PLUME IN THE UA FROM THE TRANSIENT MODEL

CIP RECHARGE AND STORMWATER POND MODIFICATIONS

CBR RECHARGE AND STORMWATER POND MODIFICATIONS

SIMULATED SULFATE PLUME OF THE UA FOR THE CIP AND CBR SCENARIOS AFTER 14.8 YEARS

SIMULATED MAXIMUM EXTENT OF THE SULFATE PLUME FOR THE CIP AND CBR SCENARIOS AFTER 14.8 YEARS

SIMULATED SULFATE PLUME OF THE UA FOR THE CIP AND CBR SCENARIOS AFTER 58.8 YEARS

SIMULATED MAXIMUM EXTENT OF THE SULFATE PLUME FOR THE CIP AND CBR SCENARIOS AFTER 58.8 YEARS

SCENARIO 1 (CIP) – HYDRAULIC STEADY STATE REDUCTIONS IN TOTAL FLUX IN AND OUT OF FILL UNIT (CCR)

SCENARIO 1 (CIP) – REDUCTIONS IN TOTAL FLUX IN AND OUT OF FILL UNIT (CCR)

ASH POND NO. 1

PROJECT: 169000XXXX | DATED: 7/1/2022 | DESIGNER: galarnmc

SITE FEATURE

87.5

175 ___ Feet

0

LIMITS OF FINAL COVER

DIFFERENCE BETWEEN BOTTOM OF CCR AND SIMULATED GROUNDWATER SURFACE* (FEET, POSITIVE VALUES INDICATE SEPARATION)

POTENTIAL ASH SATURATION SIMULATED CLOSURE IN PLACE GROUNDWATER SURFACE

FIGURE 6-9

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

*GROUNDWATER SURFACE BASED ON SIMULATED CLOSURE IN PLACE SCENARIO AT HYDRAULIC STABILIZATION.

COFFEEN POWER PLANT COFFEEN, ILLINOIS

APPENDICES

APPENDIX A EVALUATION OF POTENTIAL GWPS EXCEEDANCES

EVALUATION OF POTENTIAL GROUNDWATER PROTECTION STANDARD EXCEEDANCES

Coffeen Ash Pond No. 1 Coffeen, Illinois

Prepared for

Illinois Power Generating Company

Submitted by

engineers | scientists | innovators

1 McBride and Son Center Dr Suite 202 Chesterfield, Missouri 63005

July 5, 2022

GLP8029

TABLE OF CONTENTS

SECTION 1	Introduction	1-1
SECTION 2	Background	2-2
2.1	Site Location and Description	2-2
2.2	Ash Pond 1 Design	2-2
2.3	Geology and Hydrogeology	2-2
2.4	Groundwater and AP1 Monitoring	2-4
SECTION 3 SECTION 4	Potential Groundwater Protection Standard Exceedance Review Lines of Evidence.	3-1 4-1
4.1	LOE #1: AP1 porewater samples do not contain detectable concentra cobalt	ations of 4-1
4.2	LOE #2: Cobalt concentrations in ash samples collected from AP1 a comparable to or lower than cobalt concentrations in soil samples ne	re ear AP1 4-2
4.3	LOE #3: Monitoring well G314 has experienced significant changes oxidation-reduction (redox) conditions since well installation occurr may impact cobalt behavior in groundwater	in ed, which 4-2
4.4	LOE #4: AP1 porewater is slightly basic and would not result in low measurements at monitoring well G312	рН 4-3
4.5	LOE #5: pH values within the proposed monitoring well network are correlated with saturation indices of carbonate minerals in soil near A	e strongly AP14-4
SECTION 5	Conclusions	5-1
SECTION 6	References	6-2

LIST OF TABLES

Table 1	Cobalt Con	centrati	ons in	Soil	and	Ash
	~				-	

Table 2Summary of X-ray Diffraction Results

LIST OF FIGURES

- Figure 1 Aqueous Cobalt Time Series
- Figure 2 Oxidation-Reduction Potential (ORP) Time Series Recently Installed Wells
- Figure 3 G314 Eh-pH Diagram Iron
- Figure 4 pH Time Series
- Figure 5 pH vs. Carbonate Saturation Indices

LIST OF APPENDICES

- Appendix A Figure 2-1: Proposed 845 Groundwater Monitoring Well Network. From Groundwater Monitoring Plan, Ash Pond No. 1, Coffeen Power Plant Report.
- Appendix B Figure 1-3: Uppermost Aquifer Groundwater Elevation Contours, April 20, 2021. From Groundwater Monitoring Plan, Ash Pond No. 1, Coffeen Power Plant Report.

LIST OF ACRONYMS AND ABBREVIATIONS

AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
CCR	Coal Combustion Residuals
CFR	Code of Federal Regulations
CPP	Coffeen Power Plant
DA	Deep Aquifer
DCU	Deep Confining Unit
IPGC	Illinois Power Generation Company
LCU	Lower Confining Unit
mg/L	Milligram per Liter
NID	National Inventory of Dams
ORP	Oxidation-Reduction Potential
QC	Quality Control
SI	Saturation Index
SU	Standard Units
TDS	Total Dissolved Solids
UA	Uppermost Aquifer
UCU	Upper Confining Unit
USEPA	United States Environmental Protection Agency
USGS	United States Geological Survey

SECTION 1

INTRODUCTION

The Illinois Power Generation Company (IPGC) currently operates the Coffeen Power Plant (CPP) and its associated ash ponds. In October 2021, the IPGC submitted an Operating Permit application for the coal combustion residual (CCR) Unit referred to as the Ash Pond Number (No.) 1 (AP1), Vistra identification (ID) No. 101, IEPA ID No. W1350150004-01, and National Inventory of Dams (NID) No. IL50722 (Burns & McDonnell, 2021). The Operating Permit was prepared to comply with Part 845 "Standards of the Disposal of Coal Combustion Control Board on April 21, 2021. Ramboll Americas Engineer Solutions, Inc. (Ramboll) identified potential groundwater protection standard (GWPS) exceedances for multiple constituents in groundwater samples collected from monitoring wells in the vicinity of AP1, as presented in the Operating Permit Application. This report was developed to further evaluate the potential GWPS exceedances identified.

SECTION 2

BACKGROUND

A brief description of the site location, AP1 design, geology, and groundwater assessment activities to date are described below.

2.1 <u>Site Location and Description</u>

The CPP, operated by the IPGC is located in Montgomery County, Illinois approximately two miles south of the City of Coffeen in Section 11, Township 7 North, and Range 7 East. The CPP is located between the two lobes of Coffeen Lake to the west, east, and south, and is bordered by agricultural land to the north. The CPP operated as a coal-fired power plant from 1964 to November 2019 and has five CCR management units. The approximately 1,100-acre Coffeen Lake was built by damming the McDavid Branch of the East Fork of Shoal Creek in 1963 for use as an artificial cooling lake for the CPP. Historically, coal mines were operated at depth in the vicinity of the CPP as well as a US Minerals processing facility located to the north. Mine shafts, processing facilities, and coal storage associated with these historical operations were located south of AP1.

2.2 Ash Pond 1 Design

Coffeen AP1 is a 23-acre, unlined surface impoundment used to manage CCR and non-CCR waste streams at the CPP. The location of AP1 relative to the proposed monitoring well network is displayed on Figure 2-1 of the Groundwater Monitoring Plan Report (Ramboll, 2021a) and is provided herein as **Appendix A**. AP1 (also known as the Bottom Ash/Recycle Pond) is a reclaimed ash pond that was constructed utilizing the existing earthen berms with reinforcement. AP1 is an unlined surface impoundment which covers an area of approximately 23 acres, has berms up to 41 feet above the surrounding land surface, and a capacity of 300 acre-feet. It primarily received bottom ash and low volume wastes from floor drains in the main power block building. Several years ago, air heater wash and boiler chemical cleaning wastes were directed to AP1, but this practice was discontinued. The bottom ash is periodically removed from AP1 for beneficial uses by a third-party contractor. Sluicing of waste to AP1 ceased prior to November 4, 2019.

2.3 <u>Geology and Hydrogeology</u>

The AP1 geologic and hydrogeologic setting summarized below is excerpted from the Hydrogeologic Site Characterization Report (HCR) for AP1 (Ramboll, 2021b).

There are five principal layers of unlithified material present below AP1 and above bedrock which are categorized into hydrostratigraphic units listed below (from the surface downward) based on stratigraphic relationships and hydrogeologic characteristics:

- Upper Confining Unit (UCU): Composed of the Roxana and Peoria Silts (Loess Unit) and the upper clayey portion of the Hagarstown member which are classified as silts-clayey silts and gravelly clay below the surficial soil. The UCU has been eroded east of AP1, near the Unnamed Tributary.
- Uppermost Aquifer (UA): The uppermost aquifer is the Hagarstown Member which is classified as primarily sandy-gravelly silts and clays with thin beds of sands. Similar to the Loess Unit, the Hagarstown is absent in some locations near the Unnamed Tributary.
- Lower Confining Unit (LCU): Comprised of the Vandalia Member, Mulberry Grove Member, and Smithboro Member. These units include a sandy-silty till with thin, discontinuous sand lenses, a discontinuous and limited extent sandy silt which has infilled prior erosional features, and silty-clayey diamicton, respectively. This unit has been identified as a potential migration pathway (PMP) because downward vertical gradients indicate that there is the potential for impacts to migrate within this unit.
- **Deep Aquifer (DA):** Comprised of sand and sandy silt/clay units of the Yarmouth Soil, which include accretionary deposits of fine sediment and organic materials, typically less than five feet thick and discontinuous across the CPP. This unit is also identified as a PMP, because it is the first permeable unit below the uppermost aquifer.
- **Deep Confining Unit (DCU):** Comprised of the Banner Formation, generally consisting of clays, silts, and sands. The Lierle Clay Member is the upper layer of the Banner Formation which was encountered at the Site.

Bedrock is comprised of the Bond Formation, which consists of limestone and calcareous clays and shale. Bedrock was not encountered in the borings advanced to date at CPP.

Flow of groundwater from central portions of the CPP to Coffeen Lake or the Unnamed Tributary through the UA are the primary pathways for contaminant migration. The LCU and DA underlying the UA have been identified as PMPs. Groundwater elevations are primarily controlled by surface topography, geologic unit topography, and water levels within Coffeen Lake and the Unnamed Tributary. A groundwater divide trending north-south is observed running through the approximate center of the CPP (Figure 1-3 of Ramboll [2021a], provided as **Appendix B**). Phreatic surfaces or water elevations within the surface impoundments are generally consistent and have

not been observed to fluctuate with groundwater elevations, indicating limited hydraulic connection with the surface impoundments.

2.4 Groundwater and AP1 Monitoring

The proposed Part 845 monitoring well network for AP1 was established in the Groundwater Monitoring Plan (Ramboll, 2021a). The proposed monitoring well network consists of sixteen (16) monitoring wells, which are installed in the UA, LCU, DA, and temporary water-level only surface water staff gages. Two of the installed wells are background monitoring wells (G281 and G306) and the remaining fourteen are compliance monitoring wells. Both background wells and most compliance wells are screened within the UA. G307D, G314, and G316 are screened within the LCU, and G314D is screened within the DA. Well locations are shown on **Appendix A**.

SECTION 3

POTENTIAL GROUNDWATER PROTECTION STANDARD EXCEEDANCE REVIEW

An evaluation of the history of potential GWPS exceedances was completed for the Operating Permit application in October 2021 (Burns & McDonnell, 2021). Groundwater concentrations from 2015 to 2021 were evaluated for potential exceedances in accordance with the Statistical Analysis Plan proposed in the Operating Permit application. Potential exceedances are summarized below:

- Boron at monitoring well G313: The boron statistical result at G313 is 3.5 milligrams per liter (mg/L), which exceeds the Part 845 GWPS (3.2 mg/L).
- Cobalt at monitoring well G314: The cobalt statistical result at G314 is 0.00959 mg/L which exceeds the Part 845 GWPS (0.006 mg/L).
- pH (field) at monitoring well G312: The pH statistical result at G312 is 6.4 standard units (SU), which is below the lower limit of the Part 845 GWPS (6.5/9.0 SU).
- Sulfate at monitoring wells G301, G303, G304, G305, G307, G307D, G308, G309, G310, G311, G312, G313, G314, G314D, G315, and G317: The sulfate statistical results ranged from 464 to 1100 mg/L and individually exceed their relevant Part 845 GWPS (400 to 700 mg/L) for the identified wells.
- Total dissolved solids (TDS) at monitoring wells G303, G304, G305, G307, G307D, G308, G309, G310, G311, G312, G313, G314, G315, and G317: The TDS statistical results ranged from 1210 to 1900 mg/L which exceed the Part 845 GWPS (1200 mg/L).

A review of groundwater, porewater, soil, and ash data indicates that the potential exceedances of cobalt at G314 and pH at G312 are not related to AP1, as documented in Section 4. An evaluation of alternative sources of the boron, sulfate, and TDS potential exceedances was not completed at this time.

SECTION 4 LINES OF EVIDENCE

A review of groundwater, porewater, soil, and ash data indicates that the potential GWPS exceedances of cobalt at G314 and the pH value at G312 are not related to AP1, as supported by the lines of evidence (LOE) below:

- 1. AP1 porewater samples do not contain detectable concentrations of cobalt.
- 2. Cobalt concentrations in ash samples collected from AP1 are comparable to or lower than cobalt concentrations in soil samples near AP1.
- 3. Monitoring well G314 has experienced significant changes in oxidation-reduction (redox) conditions since well installation occurred, which may impact cobalt behavior in groundwater.
- 4. AP1 porewater is slightly basic and would not result in low pH measurements at monitoring well G312.
- 5. pH values within the proposed monitoring well network are strongly correlated with saturation indices of carbonate minerals in soil near AP1.

4.1 LOE #1: AP1 porewater samples do not contain detectable concentrations of cobalt

Of the three AP1 porewater sampling locations analyzed for cobalt (AP1d, XPW01, and XPW02), none have ever contained cobalt concentrations above the method detection limit of 0.002 mg/L; therefore, cobalt concentrations detected at G314 cannot be derived from a mixing scenario between groundwater and AP1 porewater. In contrast, both background monitoring wells have at times contained cobalt concentrations within the range observed at G314. This indicates that aqueous cobalt is naturally present in groundwater at CPP at variable concentrations.

Figure 1 displays cobalt concentrations over time for G314, background wells G306 and G281, and porewater samples from AP1. Cobalt concentrations at G314 display an increasing trend, but this trend is punctuated by a concentration decrease in the most recent sampling event. The highest values at G314 are comparable to or lower than select results observed at background well G306, suggesting there is variability within the aquifer.

4.2 <u>LOE #2: Cobalt concentrations in ash samples collected from AP1 are comparable</u> to or lower than cobalt concentrations in soil samples near AP1

Soil samples were collected in May 2021 and September 2021 adjacent to select existing monitoring wells and analyzed for total metals. Cobalt concentrations in soil are displayed in **Table 1** along with total cobalt concentrations in ash material collected from AP1. Cobalt concentrations in ash from AP1 (4.3 - 4.8 mg/kg) fall within the range of cobalt concentrations observed in CPP soil (4.0 - 10 mg/kg). Cobalt concentrations in soil are highest at Ash Pond No.2 (AP2) background monitoring well G270, which is in a background location relative to AP1 (**Appendix B**). **Table 1** indicates variability in cobalt concentrations detected in soil across the CPP. Three sample locations (two background locations and one compliance location) contained greater cobalt concentrations than ash samples, indicating that naturally occurring cobalt exists in solid phase across the CPP at equivalent or greater concentrations than within AP1 itself.

4.3 <u>LOE #3: Monitoring well G314 has experienced significant changes in oxidation-</u> reduction (redox) conditions since well installation occurred, which may impact <u>cobalt behavior in groundwater</u>

Groundwater oxidation-reduction potential (ORP) was measured as a field parameter during the sample collection process at monitoring wells in the proposed network. ORP is a measure of the redox conditions of water which, along with other parameters like pH, temperature, and chemical composition, govern the stability of minerals comprising groundwater aquifer solids. ORP values over time at recently installed compliance monitoring wells are displayed on **Figure 2**. ORP values for recently installed wells display a decreasing trend, indicating a shift from highly oxic to near reducing conditions. This decreasing trend is hypothesized to be attributable to stabilization of the new wells following the potential introduction of drilling water involved in the well installation process. Such a change in geochemical conditions can influence the stability of redox-sensitive mineral phases such as iron and manganese oxides. Significantly, decreases in ORP are commonly correlated with dissolution of iron and manganese bearing minerals, leading to the release of ions associated with these mineral phases.

Cobalt is known to undergo isomorphic substitution for iron in crystalline iron minerals such as iron oxides, iron sulfides, and iron carbonates due to the similar ionic radii of approximately 1.56 angstroms (Å) for iron vs. 1.52 Å for cobalt (Clementi and Raimondi, 1963; Krupka and Serne, 2002; Hitzman et al., 2017). Soil samples around AP1 were collected and submitted for mineralogical analysis via X-ray diffraction (XRD) to determine the mineralogical composition of the natural aquifer material. XRD results are shown in **Table 2**. **Table 2** indicates that the majority component of site soils consists of geochemically inert minerals quartz and feldspar (microcline and albite). No iron oxides or iron sulfides were detected in XRD analysis, but iron-bearing carbonate mineral ankerite (Ca,Fe(CO₃)₂) was detected at a maximum abundance of 7.7 wt.%.
An Eh-pH diagram displaying the thermodynamic stability of iron phases was generated using the average composition of G314 groundwater (**Figure 3**). Geochemical conditions during initial sampling events favored thermodynamic stability of the ferric (Fe^{3+}) iron hydroxide mineral Fe(OH)₃; however, no iron hydroxide or oxide minerals were present in XRD results above the detection limit of 0.5%. **Figure 3** indicates G314 groundwater conditions have shifted in recent sampling events, favoring the formation of ferrous (Fe^{2+}) carbonate mineral siderite (FeCO₃). The modeled shift of thermodynamic stability away from iron hydroxide and oxide minerals and towards iron carbonates would result in the release of iron and isomorphically substituted cobalt into groundwater through mineral dissolution reactions.

While siderite was not detected in the XRD results, iron-bearing carbonate mineral ankerite was detected at abundances of up to 7.7 wt.%. Ankerite exists in nature as a solid-solution mineral without a fixed mineral formula. As a result, accurate thermodynamic information is not available for modeling purposes and ankerite was consequently not included in the thermodynamic database used to generate **Figure 3**. It is likely that ankerite thermodynamic stability is favored over siderite stability at G314 and the ankerite detected in XRD analyses is a product of the formation of carbonate minerals in an iron-rich environment.

Naturally occurring cobalt is known to substitute for iron in iron-bearing minerals. Thermodynamic modeling indicates that a recent trend in redox conditions has resulted in a mineral stability shift from iron hydroxides and oxides towards iron carbonates. The presence of ankerite, an iron-bearing carbonate mineral, has been confirmed across the site. The modeled dissolution of iron hydroxide and oxide minerals may have resulted in isomorphically substituted cobalt being released from the crystal structure of these minerals and entering groundwater. The presence of observed iron carbonate minerals in soil samples supports the occurrence of this mineralogical shift.

4.4 LOE #4: AP1 porewater is slightly basic and would not result in low pH measurements at monitoring well G312

Groundwater pH conditions were measured as a field parameter during the sample collection process at monitoring wells within the proposed monitoring well network. A time series plot of field pH measurements at G312, background wells G281 and G306, and AP1 porewater monitoring locations XPW-01 and XPW-02 is provided as **Figure 4**. Groundwater at monitoring well G312 contains pH levels below the calculated lower GWPS for pH of 6.5 SU. Low pH values at G312 cannot be attributed to AP1, because AP1 porewater samples are consistently slightly basic (pH values range from 7.78-8.08). Physical mixing of AP1 porewater with G312 groundwater would result in an increase in pH at G312. In contrast, pH values at background well G306 were occasionally measured at 6.5 SU, which is within the range of measurements observed

at G312. Therefore, low pH conditions at G312 are attributable to natural variability within the aquifer.

4.5 <u>LOE #5: pH values within the proposed monitoring well network are strongly</u> <u>correlated with saturation indices of carbonate minerals in soil near AP1</u>

As mentioned in Section 4.3, composite soil samples from various locations surrounding AP1 were collected and submitted for mineral identification analysis via XRD (**Table 2**). Soil surrounding AP1 contains variable abundances of carbonate minerals such as calcite, dolomite, and ankerite, with the total abundance of carbonates at each location ranging an order of magnitude from 2.7-27.5 wt.%. Carbonate minerals in nature function as pH buffers, capable of neutralizing acidity through reaction with carbonate (CO₃) (Drever, 1988). pH levels at individual wells may be significantly influenced by the presence and abundance of carbonate minerals comprising localized sections of the aquifer unit. Although soil samples were not collected for all wells of interest, carbonate saturation indices (SIs) provide a method to assess the role of carbonate minerals in soil buffering capacity in the absence of XRD results.

United States Geologic Survey (USGS) software package PHREEQC was used to calculate SIs of carbonate minerals at G312 and background wells G281 and G306 based on groundwater compositions. A mineral's SI is an expression of its thermodynamic equilibrium state relative to a liquid (groundwater). If the calculated SI for a mineral is negative, then that mineral is undersaturated relative to groundwater and is thermodynamically favored to dissolve. If the calculated SI for a mineral is positive, then that mineral is supersaturated relative to groundwater and is thermodynamically favored to precipitate. If a mineral's SI is approximately 0 (+ 0.2), then the mineral is in thermodynamic equilibrium with groundwater. SIs for calcite (CaCO₃) and dolomite (Ca,Mg(CO₃)₂) were plotted against pH for individual samples (Figure 5). Figure 5 demonstrates a strong positive correlation between pH and carbonate SI. pH values tend to be lower in groundwater that is undersaturated with respect to carbonate minerals. This relationship is expected - monitoring wells which favor carbonate dissolution are likely to contain less carbonate in the solid phase. Absence of carbonate in localized portions of the aquifer results in the inability of these locations to buffer low pH groundwater. According to Figure 5, background wells G281 and G306 are near equilibrium or supersaturated with respect to carbonate minerals and are likely to have these minerals present and stable. These wells would then have greater capability to buffer acidic water and retain near-neutral pH values. G312 was not sampled for mineralogy, although Figure 5 demonstrates that groundwater from this well is undersaturated with respect to carbonate minerals, suggesting that large abundances of carbonate are not likely to be present in aquifer solids at this location.

XRD analyses indicate carbonate mineral abundances around AP1 vary up to an order of magnitude (**Table 2**). Evaluation of carbonate SIs reveals that a strong correlation exists between

carbonate SIs and pH. G312 is undersaturated with respect to calcite and dolomite; therefore, these minerals are likely not present as pH buffers, resulting in lower groundwater pH values where acid neutralizing minerals are not available.

SECTION 5

CONCLUSIONS

Based on these five LOEs, it has been demonstrated that AP1 is not the source of the potential cobalt and pH exceedances identified.

- 1. AP1 porewater samples do not contain detectable concentrations of cobalt, whereas cobalt concentrations in background well G306 occasionally exceed the relevant GWPS.
- 2. Cobalt concentrations in ash samples collected from AP1 are comparable to or lower than cobalt concentrations in soil samples from downgradient and background monitoring wells.
- 3. Monitoring well G314 has experienced significant changes in oxidation-reduction (redox) conditions since well installation occurred, which may cause destabilization of iron-bearing minerals capable of hosting cobalt ions in their crystal structure.
- 4. AP1 porewater is slightly basic and would not result in low pH measurements at monitoring well G312.
- 5. pH values within the proposed monitoring well network are strongly correlated with saturation indices of carbonate minerals which are detected at variable abundances across soil near AP1.

SECTION 6

REFERENCES

Burns & McDonnell. 2021. Initial Operating Permit – Coffeen Ash Pond No. 1. October.

- Clementi, E., and Raimdoni, D. L. 1963. Atomic screening constants from SCF functions. J. Chem. Phys., 38, 2686.
- Drever, J. 1988. The Geochemistry of Natural Waters. Englewood Cliffs, N.J: Prentice Hall.
- Hitzman, M.W., Bookstrom, A.A., Slack, J.F., and Zientek, M.L., 2017. Cobalt Styles of Deposits and the Search for Primary Deposits. USGS Open File Report 2017-1155.
- Krupka, K.M. and Serne, R.J., 2002. Geochemical Factors Affecting the Behavior of Antimony, Cobalt, Europium, Technetium, and Uranium in Vadose Sediments. Pacific Northwest National Lab, PNNL-14126. December.
- Ramboll. 2021a. Groundwater Monitoring Plan, Ash Pond No.1, Coffeen Power Plant, Coffeen, Illinois. October.
- Ramboll. 2021b. Hydrogeologic Site Characterization Report, Ash Pond No. 1, Coffeen Power Plant, Coffeen, Illinois. October.

TABLES

Table 1: Cobalt Concentrations in Soil and AshCoffeen Power Plant - Ash Pond No. 1

Sample Location	Description	Sample Depth (feet)	Cobalt (mg/kg)
G270	Background	16-20	10
G306	Background	14-16	6.0
G311	Compliance	14-15	4.0
G313	Compliance	8-9	7.0
G316	Compliance	13-16	4.0
XPW01	Ash Pond 1	NA	4.8
XPW02	Ash Pond 1	NA	4.3

Notes:

Soil samples were composite samples collected over the indicated depth range

Sample ID	SB-306	SB-311	SB-313	SB-316	
Sample Depth (ft.)	14 16	14 15	8.0	12 16	
Mineral	14-10	14-13	8-9	15-10	
Quartz	70.9	58.9	51.3	67.6	
Microcline	8.5	7.4	7.6	9.8	
Albite	9.6	8.6	7.9	9.6	
Chlorite	1.8	1.7	1.1	1.7	
Diopside	3.1	3.8	4.6	1.3	
Muscovite	-	-	-	7.3	
	Carboi	nate Minerals			
Calcite	0.5	2.5	4.1	-	
Dolomite	3.5	12.1	15.7	1.9	
Ankerite	2.1	5	7.7	0.8	
Carbonate Total	6.1	19.6	27.5	2.7	

Table 2: Summary of X-ray Diffraction ResultsGeosyntec Consultants, Inc.Coffeen Power Plant - Ash Pond No. 1

Notes:

Results presented in units of weight %

- : Mineral was not detected in sample

Weight % quantities have been normalized to a sum of 100% to remove reporting of amorphous material Carbonate total consists of calcite, dolomite, and ankerite

FIGURES

Notes: Data displayed for compliance well G314, background wells G281 and G306, and pore water samples XPW01, XPW02, and AP1d. The calculated Groundwater Protection Standard (GWPS) is indicated by the dashed line. Samples which did not contain cobalt concentrations above the method detection limit of 0.002 mg/L are displayed on the figure as having a detected concentration of 0.002 mg/L.

APPENDIX A

Figure 2-1: Proposed 845 Groundwater Monitoring Well Network. From Groundwater Monitoring Plan, Ash Pond No. 1, Coffeen Power Plant

COMPLIANCE WELL BACKGROUND WELL SITE FEATURE STAFF GAGE

PART 845 REGULATED UNIT (SUBJECT UNIT) LIMITS OF FINAL COVER PROPERTY BOUNDARY

PROPOSED 845 GROUNDWATER MONITORING WELL NETWORK

GROUNDWATER MONITORING PLAN ASH POND NO.1 COFFEEN POWER PLANT COFFEEN, ILLINOIS

FIGURE 2-1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

APPENDIX B

Figure 1-3: Uppermost Aquifer Groundwater Elevation Contours, April 20, 2021. From Groundwater Monitoring Plan, Ash Pond No. 1, Coffeen Power Plant PROJECT: 169000XXXX | DATED: 10/12/2021 | DESIGNER: HOTCALD

Y:\Mapping\Projects\22\2285\MXD\845_Operating_Permit\Coffeen\AP1\GMP\Figure 1-3_GWE Contours 20210419 AP1.mxd

FIGURE 1-3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

UPPERMOST AQUIFER GROUNDWATER ELEVATION CONTOURS APRIL 20, 2021

> **GROUNDWATER MONITORING PLAN** ASH POND NO.1 COFFEEN POWER PLANT COFFEEN, ILLINOIS

GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88) PART 845 REGULATED UNIT INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION LIMITS OF FINAL COVER PROPERTY BOUNDARY

0 275 550 L Feet

MONITORING WELL

(SUBJECT UNIT)

SITE FEATURE

STAFF GAGE

NOTE:

ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING.

APPENDIX B MODFLOW, MT3DMS, HELP MODEL, AND FLUX EVALUATION DATA EXPORT FILES (ELECTRONIC ONLY)

APPENDIX C EVALUATION OF PARTITION COEFFICIENT RESULTS

Memorandum

Date:	July 5, 2022
To:	David Mitchell, Stu Cravens, Vic Modeer Illinois Power Generating Company
Copies to:	Brian Hennings - Ramboll
From:	Allison Kreinberg, Ryan Fimmen – Geosyntec Consultants, Inc.
Subject:	Evaluation of Partition Coefficient Results – Coffeen Ash Pond No. 1 CCR Unit 101, Coffeen Power Plant, Coffeen, Illinois

INTRODUCTION

The Illinois Power Generation Company (IPGC) currently operates the Coffeen Power Plant (CPP) and its associated ash ponds located in Coffeen, Illinois. Ash Pond Number (No.) 1 (AP1) (Vistra identification (ID) No. 101; Illinois Environmental Protection Agency [IEPA] ID No. W1350150004-01; National Inventory of Dams [NID] No. IL50722) is a 23-acre, unlined SI used to manage CCR (bottom ash) and non-CCR waste streams at the CPP in accordance with the plant's Water Pollution Control Permit 1978-EA-389 issued by the Agency on May 26, 1978. Geosyntec Consultants (Geosyntec) is assisting IPGC with Part 845 compliance at the Site.

IPGC is currently preparing a Construction Permit application for AP1 as required under Section 845.220. As part of the Construction Permit application, groundwater modeling is being completed for known potential exceedances of groundwater protection standards (GWPS) identified in the Operating Permit (Burns & McDonnell, 2021). In the Operating Permit (October 2021), Burns & McDonnell identified potential GWPS exceedances for several compounds potentially associated with AP1, including boron, cobalt, pH (field), sulfate, and total dissolved solids (TDS). An evaluation of potential exceedances of applicable GWPS found that both cobalt and pH potential exceedances are not related to AP1 (Geosyntec, 2022). Batch adsorption testing was conducted for boron and sulfate to generate site-specific partition coefficients. This technical memorandum summarizes the results of the batch adsorption testing and calculation of partition coefficients.

IPGC – AP1 Batch Attenuation Testing Summary July 5, 2022 Page 2

BATCH ATTENUATION TESTING

In 2021, Geosyntec conducted a field investigation at AP1 which included completion of four (4) soil/rock borings ranging in depth from 13 to 18 feet below ground surface. As part of that investigation, soil and groundwater samples were submitted to SiREM Laboratories (Guelph, ON) for batch solid/liquid partitioning testing. A summary of the soil samples used for the batch testing is provided in **Table 1**.

Two groundwater samples (G311 and G313) and three soil samples (SB-306, SB-311, and SB-313) were used for batch attenuation testing at five (5) soil:solution ratios (**Table 1**), each ran in duplicate. For each treatment, 0.1 L of groundwater was brought into contact with varying amounts of soil (0.004 to 0.2 kg, depending on the ratio) and equilibrated over a seven-day period. Each microcosm was amended (i.e., spiked) with sodium sulfate (Na₂SO₄), and the microcosms with G313 groundwater were also amended with boric acid (H₃BO₃), to achieve a target concentration of sulfate and boron, respectively (**Table 2**). The G311 microcosm was not amended with boric acid because potential boron exceedances were not identified in the vicinity of G311. G313 groundwater was combined with aquifer solids both adjacent to downgradient location G311 and background location G306 to understand how partitioning behavior may be affected by position relative to AP1.

An initial sample of the stock solution for each experimental design was collected on Day 0, and a control sample (i.e., only amended G311 or G313 groundwater with no aquifer solids) was collected on Day 7 after tumbling in polypropylene bottleware to evaluate any loss to interactions with the bottleware or ambient conditions. Duplicates were constructed for each microcosm, including the control samples. After seven days of contact time, an aliquot of the free liquid was collected and filtered through a 0.45 micron (μ m) filter prior to analysis for dissolved concentrations of sulfate and/or boron. The oxidation/reduction potential (redox) and pH were measured for each batch test at the beginning and end of the contact period and in the control samples.

Data obtained from the tests (**Tables 3** and **4**) were used to construct isotherms for boron and sulfate; 5-point isotherms were constructed by averaging duplicate results for each soil:solution ratio. Mathematical fitting was used to calculate the attenuation distribution coefficients (K_d), assuming linear adsorption. The linear adsorption equation was used:

$$q_e = K_d \times C_e$$
 Eq. 1

where q_e is the mass of constituent adsorbed to the solid phase at equilibrium, C_e is the remaining aqueous constituent concentration at equilibrium, and K_d is the linear sorption coefficient (reported in liters per kilogram [L/kg]). Some of the data showed a deviation from a linear trend, and so were also fitted using non-linear isotherms. The non-linear Langmuir isotherm was used:

IPGC – AP1 Batch Attenuation Testing Summary July 5, 2022 Page 3

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e}$$
 Eq. 2

where q_m is the inverse of the slope and K_L is the Langmuir distribution coefficient. The adsorption data were linearized according to:

$$\frac{C_e}{q_e} = \frac{1}{(K_L \times q_m)} + \frac{C_e}{q_m}$$
 Eq. 3

A common non-linear Freundlich equation was also used:

$$q_e = K_F (C_e)^{1/n}$$
 Eq. 4

where q_e is the mass of constituent adsorbed to the solid phase at equilibrium, C_e is the remaining aqueous constituent concentration at equilibrium, K_F is the Freundlich distribution coefficient, and l/n is a non-linearity constant. The adsorption data were plotted as log-transformed values to perform the non-linear isotherm fitting using the linearized Freundlich equation:

$$log(q_e) = \log(K_F) + (1/n)\log(C_e)$$
Eq. 5

The calculated linear, Langmuir, and Freundlich distribution coefficients (K_d, K_L, and K_F, respectively) and 1/n values are shown in **Tables 5** and **6**.

SUMMARY OF RESULTS

The partition coefficient values for G311 and G313 (denoted below as G313/SB-306 when combined with SB-306 geologic material and G313/SB-313 when combined with the SB-313 geologic material) are presented in **Tables 5** and **6**, respectively. Figures which show the linear, Langmuir, and Freundlich isotherms for boron and sulfate are provided in **Appendix A**.

A boron partition coefficient was not calculated for G311, since the microcosm was not amended with boric acid because potential boron exceedances were not identified in the vicinity. The Freundlich isotherm fit the data best for G313/SB-306 and G313/SB-313, yielding K_F values of 0.65 L/kg and 2.03 L/kg, respectively. Though slightly higher at G313/SB-313, these values are comparable to boron partition coefficients reported in the literature, which range from 0.19 to 1.3 L/kg depending on pH conditions and the amount of sorbent present (EPRI, 2005; Strenge & Peterson, 1989).

The G311 partition coefficient for sulfate ranged from -624 L/kg for the Langmuir isotherm to 10.11 L/kg for the linear isotherm, but the best-fitting Freundlich isotherm yielded a low K_F value of 9.2×10^{-12} L/kg. None of the isotherms showed a high goodness-of-fit (i.e., R²) for either G313/SB-306 or G313/SB-313, with the highest correlation being 0.51, and were associated with erroneously high (1700 L/kg) and low (-690 L/kg) partition coefficients. An accurate sulfate

IPGC – AP1 Batch Attenuation Testing Summary July 5, 2022 Page 4

partition coefficient could therefore not be calculated from any of the data. These results are consistent with the findings of Strenge and Peterson (1989), who found that partition coefficients for sulfate are 0.0 L/kg, regardless of pH conditions and the amount of sorbent present.

REFERENCES

EPRI, 2005. Chemical constituents in coal combustion product leachate: boron. Final Report 1005258.

Burns & McDonnell. 2021. Initial Operating Permit Coffeen GMF Recycle Pond. October

Strenge, D. and Peterson, S. 1989. Chemical Data Bases for the Multimedia Environmental Pollutant Assessment System (MEPAS) (No. PNL-7145). Pacific Northwest National Laboratory, Richland, WA (USA).

Geosyntec. 2022. Evaluation of Potential Groundwater Protection Standard Exceedances. Coffeen Ash Pond No. 1. Coffeen, Illinois. May

TABLES

Table 1 - Batch Attenuation Testing Data SummaryGeosyntec ConsultantsCoffeen AP1

Groundwater Sample ID	Soil Sample ID	Soil: Water Ratio
		2:1.4
		1:1.3
G311	SB-311 (14-15 ft bgs)	1:5.7
		1:11.3
		1:27.8
		2:1.5
	SB-306 (14-16 ft bgs)	1:1.3
G313		1:6.0
		1:11.7
		1:28.8
		2:1.5
		1:1.3
G313	SB-313 (8-9 ft bgs)	1:6.0
		1:11.7
		1:28.8

Notes:

ft bgs = feet below ground surface

Table 2 - Microcosm Amendment and Target Concentrations Coffeen AP1

Groundwater Sample ID	Soil Sample ID	Compound	Amendment	Target Concentration (mg/L)
G211	SP 211 (1/ 15 ft bas)	Boron		
0311	SD-511 (14-15 ft bgs)	Sulfate	$2.76 \text{ g of } Na_2SO_4$	1500
C212	SD 20((14.1(6.1)))	Boron	19.73 mL of a 2 g/L H_3BO_3	5
6313	SB-306 (14-16 ft bgs)	Sulfate	$1.98 \text{ g of } \text{Na}_2\text{SO}_4$	1500
C212	SD 212 (9.0 fb)	Boron	19.73 mL of a 2 g/L H_3BO_3	5
0313	5D-515 (8-9 ll bgs)	Sulfate	1.98 g of Na ₂ SO ₄	1500

Notes:

ft bgs - feet below ground surface

mg/L - milligrams per liter

Na₂SO₄ - sodium sulfate

H₃BO₃ - boric acid

Table 3 - Batch Attenuation Testing Results, G311 Coffeen AP1

Groundwater Sample	Geologic Material	Treatment	Date	Day	Replicate	Dissolved Sulfate	рН	ORP
ID	Sample ID					mg/L	SU	mV
			ht Date Day Replicate 0nly 25-Jan-22 0 $G311-1a$ 25-Jan-22 0 $G311-2a$ 1-Feb-22 7 $G311-2$ Average Concentration (mg/L) $G311-2$ Average Concentration (mg/L) $G311-2$ Average Concentration (mg/L) $G311-2$ Average Concentration (mg/L) $SB-311:G311 2:1-1$ Ratio 1-Feb-22 7 25-Jan-22 0 $Average Concentration (mg/L)$ Ratio 1-Feb-22 7 25-Jan-22 0 $Average Concentration (mg/L)$ Ratio 1-Feb-22 7 SB-311:G311 1:1-2 $Average Concentration (mg/L)$ Ratio 1-Feb-22 7 SB-311:G311 1:5-1 $SB-311:G311 1:5-1$ Ratio 1-Feb-22 7 SB-311:G311 1:5-1 $SB-311:G311 1:5-1$ Ratio 1-Feb-22 7 SB-311:G311 1:0-1 $SB-311:G311 1:0-1$ Ratio 1-Feb-22 7 SB-311:G311 1:10-2	0	G311-1a	1,589	6.83	-62
					G311-2a	1,826	6.88	-66
		Groundwater Only		Average Concentration (mg/L)	1,708	6.86	-64	
		Control		1,617	6.85	42		
			1-Feb-22	7	G311-2	1,478	6.85	38
				Day Replicate 0 G311-1a 0 G311-2a Average Concentration (mg/l 7 G311-1 7 G311-2 Average Concentration (mg/l 0 SB-311:G311 2:1-1 7 SB-311:G311 2:1-2 Average Concentration (mg/l 0 SB-311:G311 1:1-1 7 SB-311:G311 1:1-1 7 SB-311:G311 1:1-1 7 SB-311:G311 1:1-1 7 SB-311:G311 1:1-2 Average Concentration (mg/l 0 0 SB-311:G311 1:1-2 Average Concentration (mg/l 0 0 SB-311:G311 1:5-1 7 SB-311:G311 1:5-2 Average Concentration (mg/l 0 0 SB-311:G311 1:10-1 7 SB-311:G311 1:10-1 7 SB-311:G311 1:10-2 Average Concentration (mg/l 0 0 SB-311:G311 1:20-1 7 SB-311:G311 1:20-1 7 SB-311:G311 1:20-1 7	Average Concentration (mg/L)	1,548	6.85	40
			25-Jan-22	0				
		2.1 Soil-Water Patio			SB-311:G311 2:1-1	1,321	6.92	50
		2.1 3011. Water Katto	1-Feb-22	7	SB-311:G311 2:1-2	1,302	6.86	100
					Average Concentration (mg/L)	1,311	6.89	75
			25-Jan-22	0				
			1-Feb-22	0 SB-311:G311 1:1-1 SB-311:G311 1:1-2 Average Concentration (mg/L) 0	SB-311:G311 1:1-1	1,727	6.92	51
C211		1:1 Soll: Water Katio			SB-311:G311 1:1-2	860	6.88	24
G311					Average Concentration (mg/L)	1,294	6.90	38
	0211		25-Jan-22	0				-
	G311 SP 211 Coologia	1:5 Soil:Water Ratio	1-Feb-22	7	SB-311:G311 1:5-1	1,326	6.87	93
	Material				SB-311:G311 1:5-2	1,516	6.88	56
	Wateria				Average Concentration (mg/L)	1,421	6.88	75
			25-Jan-22	0				
		1.10 Soil-Water Patio			SB-311:G311 1:10-1	1,570	6.89	27
		1.10 Soll. Water Katlo	1-Feb-22	7	SB-311:G311 1:10-2	1,551	6.86	133
					Average Concentration (mg/L)	1,560	6.88	80
		25-Jan-22	0					
		1.20 Soil-Water Potio	1-Feb-22		SB-311:G311 1:20-1	1,511	6.88	88
		1.20 Soll. water Katlo		7	SB-311:G311 1:20-2	1,588	6.86	39
					Average Concentration (mg/L)	1,550	6.87	64

Notes:

mg/L - milligrams per liter

mV - millivolts

SU - Standard Units

ORP - oxidation/reduction potential

Geosyntec Consultants

Table 4 - Batch Attenuation Testing Results, G313 Coffeen AP1

Groundwater	Geologic Material	Treatment	Date	Dav	Ranlicata	Dissolved Boron	Dissolved Sulfate	рН	ORP
Sample ID	Sample ID	Treatment		Day	Kephcate	mg/L	mg/L	SU	mV
					G313-1a	6.5	1,372	6.98	-60
			25-Jan-22	0	G313-2a	6.7	1,473	6.98	-21
	Groundwater Only			Average Concentration (mg/L)	6.6	1,423	6.98	-41	
		Control			G313-1	6.3	1,158	6.98	113
			1-Feb-22	7	G313-2	6.2	1,058	6.97	40
					Average Concentration (mg/L)	6.2	1,108	6.98	77
			25-Jan-22	0					
		2.1 Soil-Water Ratio			SB-306:G313 2:1-1	4.5	884	6.95	46
		2.1 5011. Water Ratio	1-Feb-22	7	SB-306:G313 2:1-2	4.7	779	6.95	44
					Average Concentration (mg/L)	4.6	831	6.95	45
			25-Jan-22	0					
		1.1 Soil-Water Ratio			SB-306:G313 1:1-1	5.3	1,049	6.94	75
		1.1 Soll. Water Ratio	1-Feb-22	7	SB-306:G313 1:1-2	5.3	976	6.93	44
					Average Concentration (mg/L)	5.3	1,012	6.94	60
	G313		25-Jan-22	0		-			
	SB-306 Geologic	1.5 Soil-Water Ratio			SB-306:G313 1:5-1	5.8	243	6.95	80
	Material		1-Feb-22	7	SB-306:G313 1:5-2	6.1	1,005	6.96	-5
	Material				Average Concentration (mg/L)	5.9	624	6.96	38
			25-Jan-22	0		T	1		r
		1:10 Soil:Water Ratio	1-Feb-22	7	SB-306:G313 1:10-1	6.1	958	6.96	203
					SB-306:G313 1:10-2	6.1	832	6.97	90
					Average Concentration (mg/L)	6.1	895	6.97	147
G313		1:20 Soil:Water Ratio	25-Jan-22	0					
			1-Feb-22	7	SB-306:G313 1:20-1	6.0	881	6.96	39
					SB-306:G313 1:20-2	6.0	1,409	6.94	81
				-	Average Concentration (mg/L)	6.0	1,145	6.95	60
		2:1 Soil:Water Ratio	25-Jan-22	0			0.50		
			1-Feb-22	-	SB-313:G313 2:1-1	4.3	852	6.96	164
					SB-313:G313 2:1-2	4.6	900	6.93	143
			25.1.22	0	Average Concentration (mg/L)	4.5	876	6.95	154
			25-Jan-22	0		4.0	402	(00	70
		1:1 Soil:Water Ratio	1 5 1 22	7	SB-313:G313 1:1-1	4.9	482	6.99	78
			1-Feb-22	/	SB-313:G313 1:1-2	5.0	1,000	6.95	39
			25 1 22	0	Average Concentration (mg/L)	4.9	741	6.97	59
	G313		25-Jan-22	0	GD 212 C212 1 5 1	()	1.007	()(
	SB-313 Geologic	1:5 Soil:Water Ratio	1 E 1 22	7	SB-313:G313 1:5-1	6.0	1,227	6.96	23
	Material		1-Feb-22	/	SB-313:G313 1:5-2	6.2	837	6.97	25
			25 1 22	0	Average Concentration (mg/L)	6.1	1,032	6.97	24
			2 3-Jan- 22	0	SD 212-C212 1 10 1	()	1 450	(07	(2)
		1:10 Soil:Water Ratio	1 Eat 22	7	SB-313:0313 1:10-1	0.0	1,439	0.9/	03
			1-Feb-22	/	SB-313:0313 1:10-2	5.8	2,105	0.98	85
			25 Jan 22	0	Average Concentration (mg/L)	5.9	1,/82	0.98	/4
			2 3-Jan- 22	0	SD 212-C212 1 20 1	5.0	1.000	() (105
		1:20 Soil:Water Ratio	1 Eak 22	7	SB-313:U313 1:20-1 SD 212:C212 1:20 2	5.8 6.0	1,000	0.90	125
			1-Feb-22	/	SB-313:G313 1:20-2	6.0	1,043	6.97	4/
					Average Concentration (mg/L)	5.9	1,022	6.9 7	86

Notes:

mg/L - milligrams per liter

mV - millivolts

SU - Standard Units

ORP - oxidation/reduction potential

Geosyntec Consultants

Table 5 - Partition Coefficient Results, G311 Coffeen AP1

Analyte	Isotherm	Variable	Value
Sulfate	Lincor	\mathbf{R}^2	0.61
	Linear	$K_D (L/kg)$	10.11
	Langmuir	\mathbf{R}^2	0.65
		q _m (mg/g)	-0.10
		$K_L (L/kg)$	-6.24E+02
	Freundlich	\mathbf{R}^2	0.78
		1/n	10.27
		$K_F (L/kg)$	9.20E-12

Notes:

K_D - linear partition coefficient

K_L - Langmuir partition coefficient

K_F - Freundlich partition coefficient

 \boldsymbol{q}_m - inverse of the slope of the linearized Langmuir isotherm

n - non-linearity constant of the Freundlich isotherm

Table 6 - Partition Coefficient Results, G313 Coffeen AP1

Materials	Analyte	Isotherm	Variable	Value
		Lincor	\mathbf{R}^2	0.37
		Linear	K_{D} (L/kg)	6.13
			\mathbf{R}^2	0.76
	ron	Langmuir	$q_m (mg/g)$	0.00
	Boi		$K_L (L/kg)$	-1.51E+05
			\mathbf{R}^2	0.64
306		Freundlich	1/n	6.65
B			$K_F (L/kg)$	6.50E-01
13/9		Lincor	R ²	0.05
C3		Linear	K_{D} (L/kg)	3.97
			\mathbf{R}^2	0.01
	fate	Langmuir	q _m (mg/g)	2.20
	Sul		$K_L (L/kg)$	1.19E+03
			\mathbf{R}^2	0.00
		Freundlich	1/n	-0.06
			$K_F (L/kg)$	1.70E+03
	Boron	Linear	\mathbf{R}^2	0.24
		Linear	$K_D (L/kg)$	5.68
			\mathbf{R}^2	0.50
		Langmuir	q _m (mg/g)	0.00
			$K_L (L/kg)$	-1.43E+05
			\mathbf{R}^2	0.46
313		Freundlich	1/n	5.25
SB-			K_{F} (L/kg)	2.03E+00
13/		Linear	\mathbf{R}^2	0.21
63		Lincar	$K_D (L/kg)$	-6.50
	<u> </u>		R ²	0.51
	fate	Langmuir	$q_m (mg/g)$	-0.66
	Sul		$K_L (L/kg)$	-6.91E+02
			\mathbf{R}^2	
		Freundlich	1/n	
			$K_{\rm F}$ (L/kg)	

Notes:

The Freundlich isotherm was not calculated for G313/SB-313

because the data were not conducive to log transformation

K_D - linear partition coefficient

K_L - Langmuir partition coefficient

K_F - Freundlich partition coefficient

 \boldsymbol{q}_m - inverse of the slope of the linearized Langmuir isotherm

n - non-linearity constant of the Freundlich isotherm

APPENDIX A BATCH TESTING ISOTHERM PLOTS

APPENDIX D HELP MODEL OUTPUT FILES

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE **HELP MODEL VERSION 4.0 BETA (2018)** DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: COF AP1 CIP

Simulated On: 6/23/2022 13:38

Lay	er 1	
Type 1 - Vertical Percol	lation Layer (Cove	r Soil)
SiCL - Silty	Clay Loam	
Material Textu	ure Number 12	
Thickness	=	6 inches
Porosity	=	0.471 vol/vol
Field Capacity	=	0.342 vol/vol
Wilting Point	=	0.21 vol/vol
Initial Soil Water Content	=	0.2544 vol/vol
Effective Sat. Hyd. Conductivity	=	4.20E-05 cm/sec

Layer 2

Type 1 - Vertical Percolation Layer

SiC - Silty Clay

Material Texture Number 14

Thickness	=	18 inches
Porosity	=	0.479 vol/vol
Field Capacity	=	0.371 vol/vol
Wilting Point	=	0.251 vol/vol
Initial Soil Water Content	=	0.3554 vol/vol
Effective Sat. Hyd. Conductivity	=	2.50E-05 cm/sec

Layer 3

Type 2 - Lateral Drainage Layer 10 oz Nonwoven Geotextile Material Texture Number 123

Thickness	=	0.11 inches
Porosity	=	0.85 vol/vol
Field Capacity	=	0.01 vol/vol
Wilting Point	=	0.005 vol/vol
Initial Soil Water Content	=	0.5445 vol/vol
Effective Sat. Hyd. Conductivity	=	3.00E-01 cm/sec
Slope	=	5 %
Drainage Length	=	350 ft

Type 4 - Flexible Membrane Liner LDPE Membrane

Material Texture	Number 36		
Thickness	=	0.04	inches
Effective Sat. Hyd. Conductivity	=	4.00E-13	cm/sec
FML Pinhole Density	=	1	Holes/Acre
FML Installation Defects	=	1	Holes/Acre
FML Placement Quality	=	3	Good

Layer 5

Type 1 - Vertical Percolation Layer (Waste) High Density Electric Plant Coal Bottom Ash Material Texture Number 84

Thickness	=	360 inches
Porosity	=	0.578 vol/vol
Field Capacity	=	0.076 vol/vol
Wilting Point	=	0.025 vol/vol
Initial Soil Water Content	=	0.0762 vol/vol
Effective Sat. Hyd. Conductivity	=	8.80E-05 cm/sec

Layer 6		
Type 2 - Lateral Dra	inage Layer	
Loess Unit Silt	y Clay	
Material Texture N	lumber 43	
Thickness	=	60 inches
Porosity	=	0.479 vol/vol
Field Capacity	=	0.371 vol/vol
Wilting Point	=	0.251 vol/vol
Initial Soil Water Content	=	0.371 vol/vol
Effective Sat. Hyd. Conductivity	=	3.85E-08 cm/sec
Slope	=	0 %
Drainage Length	=	0 ft

Note: Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	87.9
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	10.37 acres
Evaporative Zone Depth	=	18 inches
Initial Water in Evaporative Zone	=	5.654 inches
Upper Limit of Evaporative Storage	=	8.574 inches

Lower Limit of Evaporative Storage	=	4.272 inches
Initial Snow Water	=	0.088108 inches
Initial Water in Layer Materials	=	57.664 inches
Total Initial Water	=	57.752 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	39.06 Degrees
Maximum Leaf Area Index	=	4.5
Start of Growing Season (Julian Date)	=	97 days
End of Growing Season (Julian Date)	=	302 days
Average Wind Speed	=	8 mph
Average 1st Quarter Relative Humidity	=	72 %
Average 2nd Quarter Relative Humidity	=	64 %
Average 3rd Quarter Relative Humidity	=	71 %
Average 4th Quarter Relative Humidity	=	72 %

Note: Evapotranspiration data was obtained for Coffeen, Illinois

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	<u>Apr/Oct</u>	<u>May/Nov</u>	<u>Jun/Dec</u>
2.353618	2.511085	2.81508	3.241374	3.956664	4.312863
4.375035	2.656228	3.284204	3.675466	3.677412	3.106835

Note: Precipitation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Normal Mean Monthly Temperature (Degrees Fahrenheit)

Jan/Jul	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
37.3	37.1	50	61.9	69.7	80.6
84.2	81	72.2	62.4	48.1	38

Note: Temperature was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39 Solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Average Annual Totals Summary

 Title:
 COF AP1 CIP

 Simulated on:
 6/23/2022 13:40

	Average Annual Totals for Years 1 - 30*				
	(inches)	[std dev]	(cubic feet)	(percent)	
Precipitation	39.97	[4.83]	1,504,439.0	100.00	
Runoff	5.219	[2.734]	196,475.1	13.06	
Evapotranspiration	30.032	[3.266]	1,130,503.8	75.14	
Subprofile1					
Lateral drainage collected from Layer 3	4.5549	[1.2488]	171,460.7	11.40	
Percolation/leakage through Layer 4	0.195970	[0.082153]	7,376.9	0.49	
Average Head on Top of Layer 4	4.4608	[1.8873]			
Subprofile2					
Percolation/leakage through Layer 6	0.000911	[0.001146]	34.3	0.00	
Water storage					
Change in water storage	0.1585	[1.4776]	5,965.1	0.40	

* Note: Average inches are converted to volume based on the user-specified area.

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE

HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: COF AP1 CBR E 1ft Simulated On: 18/04/2022 12:42

Layer 1 Type 1 - Vertical Percolatior	n Layer (Cove	r Soil)		
SiC - Silty Cl	ay			
Material Texture N	umber 14			
Thickness	=	12 inches		
Porosity	=	0.479 vol/vol		
Field Capacity	=	0.371 vol/vol		
Wilting Point	=	0.251 vol/vol		
Initial Soil Water Content = 0.2751 vol/vol				
Effective Sat. Hyd. Conductivity = 2.50E-05 cm/sec				

Note: Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	88.6
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	14.28 acres
Evaporative Zone Depth	=	12 inches
Initial Water in Evaporative Zone	=	3.302 inches
Upper Limit of Evaporative Storage	=	5.748 inches
Lower Limit of Evaporative Storage	=	3.012 inches
Initial Snow Water	=	0.088108 inches
Initial Water in Layer Materials	=	3.302 inches
Total Initial Water	=	3.39 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	39.06 Degrees
Maximum Leaf Area Index	=	4.5
Start of Growing Season (Julian Date)	=	97 days
End of Growing Season (Julian Date)	=	302 days

Average Wind Speed	=	8 mph
Average 1st Quarter Relative Humidity	=	72 %
Average 2nd Quarter Relative Humidity	=	64 %
Average 3rd Quarter Relative Humidity	=	71 %
Average 4th Quarter Relative Humidity	=	72 %

Note: Evapotranspiration data was obtained for Coffeen, Illinois

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
2.353618	2.511085	2.81508	3.241374	3.956664	4.312863
4.375035	2.656228	3.284204	3.675466	3.677412	3.106835

Note: Precipitation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	<u>May/Nov</u>	Jun/Dec
37.3	37.1	50	61.9	69.7	80.6
84.2	81	72.2	62.4	48.1	38

Note: Temperature was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39 Solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39 Average Annual Totals Summary

Title:	COF AP1 CBR E 1ft
Simulated on:	18/04/2022 12:43

	Average Annual Totals for Years 1 - 30*			
	(inches)	[std dev]	(cubic feet)	(percent)
Precipitation	39.97	[4.83]	2,071,686.5	100.00
Runoff	4.098	[2.566]	212,424.0	10.25
Evapotranspiration	28.031	[2.833]	1,453,011.5	70.14
Subprofile1				
Percolation/leakage through Layer 1	7.845754	[2.291827]	406,695.7	19.63
Water storage				
Change in water storage	-0.0086	[0.9272]	-444.6	-0.02

 * Note: Average inches are converted to volume based on the user-specified area.

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: COF AP1 CBR W 3ft

Simulated On: 18/04/2022 17:19

Layer 1			
Type 1 - Vertical Percolation	Layer (Cov	er Soil)	
SiC - Silty Cla	ау		
Material Texture N	umber 14		
Thickness	=	36 inches	
Porosity	=	0.479 vol/vol	
Field Capacity	=	0.371 vol/vol	
Wilting Point	=	0.251 vol/vol	
Initial Soil Water Content	=	0.3502 vol/vol	
Effective Sat. Hyd. Conductivity	=	2.50E-05 cm/sec	

Note: Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	89.2
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	10.38 acres
Evaporative Zone Depth	=	18 inches
Initial Water in Evaporative Zone	=	5.826 inches
Upper Limit of Evaporative Storage	=	8.622 inches
Lower Limit of Evaporative Storage	=	4.518 inches
Initial Snow Water	=	0.088108 inches
Initial Water in Layer Materials	=	12.606 inches
Total Initial Water	=	12.694 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	39.06 Degrees
Maximum Leaf Area Index	=	4.5
Start of Growing Season (Julian Date)	=	97 days
End of Growing Season (Julian Date)	=	302 days

Average Wind Speed	=	8 mph
Average 1st Quarter Relative Humidity	=	72 %
Average 2nd Quarter Relative Humidity	=	64 %
Average 3rd Quarter Relative Humidity	=	71 %
Average 4th Quarter Relative Humidity	=	72 %

Note: Evapotranspiration data was obtained for Coffeen, Illinois

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
2.353618	2.511085	2.81508	3.241374	3.956664	4.312863
4.375035	2.656228	3.284204	3.675466	3.677412	3.106835

Note: Precipitation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	<u>May/Nov</u>	Jun/Dec
37.3	37.1	50	61.9	69.7	80.6
84.2	81	72.2	62.4	48.1	38

Note: Temperature was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39 Solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Average Annual Totals Summary

Title:	COF AP1 CBR W 3ft
Simulated on:	18/04/2022 17:20

	Average Annual Totals for Years 1 - 30*			
	(inches)	[std dev]	(cubic feet)	(percent)
Precipitation	39.97	[4.83]	1,505,889.7	100.00
Runoff	4.277	[2.541]	161,157.5	10.70
Evapotranspiration	29.447	[3.212]	1,109,534.9	73.68
Subprofile1				
Percolation/leakage through Layer 1	6.278209	[2.388206]	236,559.2	15.71
Water storage				
Change in water storage	-0.0361	[1.2459]	-1,361.9	-0.09

* Note: Average inches are converted to volume based on the user-specified area.

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018) DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

 Title:
 COF AP1 CIP Default
 Simulated On:
 6/21/2022 16:04

Layer	1	
Type 1 - Vertical Percolati	ion Layer (Cove	r Soil)
SCL - Sandy C	lay Loam	
Material Texture	Number 10	
Thickness	=	6 inches
Porosity	=	0.398 vol/vol
Field Capacity	=	0.244 vol/vol
Wilting Point	=	0.136 vol/vol
Initial Soil Water Content = 0.154 vol/vo		
Effective Sat. Hyd. Conductivity = 1.20E-04 cm/se		

Layer 2

Type 1 - Vertical Percolation Layer

SiC - Silty Clay

Material Texture Number 14

Thickness	=	30 inches
Porosity	=	0.479 vol/vol
Field Capacity	=	0.371 vol/vol
Wilting Point	=	0.251 vol/vol
Initial Soil Water Content	=	0.3698 vol/vol
Effective Sat. Hyd. Conductivity	=	2.50E-05 cm/sec

Layer 3

Type 2 - Lateral Drainage Layer 10 oz Nonwoven Geotextile Material Texture Number 123

Thickness	=	0.11 inches
Porosity	=	0.85 vol/vol
Field Capacity	=	0.01 vol/vol
Wilting Point	=	0.005 vol/vol
Initial Soil Water Content	=	0.6794 vol/vol
Effective Sat. Hyd. Conductivity	=	3.00E-01 cm/sec
Slope	=	5 %
Drainage Length	=	350 ft

Type 4 - Flexible Membrane Liner LDPE Membrane

Material Texture	Number 36		
Thickness	=	0.04	inches
Effective Sat. Hyd. Conductivity	=	4.00E-13	cm/sec
FML Pinhole Density	=	1	Holes/Acre
FML Installation Defects	=	1	Holes/Acre
FML Placement Quality	=	3	Good

Layer 5

Type 1 - Vertical Percolation Layer (Waste) High Density Electric Plant Coal Bottom Ash Material Texture Number 84

Thickness	=	360 inches
Porosity	=	0.578 vol/vol
Field Capacity	=	0.076 vol/vol
Wilting Point	=	0.025 vol/vol
Initial Soil Water Content	=	0.0762 vol/vol
Effective Sat. Hyd. Conductivity	=	8.80E-05 cm/sec

Layer 6		
Type 2 - Lateral Drai	inage Layer	
Loess Unit Silt	y Clay	
Material Texture N	umber 43	
Thickness	=	60 inches
Porosity	=	0.479 vol/vol
Field Capacity	=	0.371 vol/vol
Wilting Point	=	0.251 vol/vol
Initial Soil Water Content	=	0.371 vol/vol
Effective Sat. Hyd. Conductivity	=	3.85E-08 cm/sec
Slope	=	0 %
Drainage Length	=	0 ft

Note: Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	85.9
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	10.37 acres
Evaporative Zone Depth	=	18 inches
Initial Water in Evaporative Zone	=	5.059 inches
Upper Limit of Evaporative Storage	=	8.136 inches

Lower Limit of Evaporative Storage	=	3.828 inches
Initial Snow Water	=	0.088108 inches
Initial Water in Layer Materials	=	61.794 inches
Total Initial Water	=	61.882 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	39.06 Degrees
Maximum Leaf Area Index	=	4.5
Start of Growing Season (Julian Date)	=	97 days
End of Growing Season (Julian Date)	=	302 days
Average Wind Speed	=	8 mph
Average 1st Quarter Relative Humidity	=	72 %
Average 2nd Quarter Relative Humidity	=	64 %
Average 3rd Quarter Relative Humidity	=	71 %
Average 4th Quarter Relative Humidity	=	72 %

Note: Evapotranspiration data was obtained for Coffeen, Illinois

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	<u>Apr/Oct</u>	<u>May/Nov</u>	<u>Jun/Dec</u>
2.353618	2.511085	2.81508	3.241374	3.956664	4.312863
4.375035	2.656228	3.284204	3.675466	3.677412	3.106835

Note: Precipitation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Normal Mean Monthly Temperature (Degrees Fahrenheit)

Jan/Jul	Feb/Aug	Mar/Sep	Apr/Oct	May/Nov	Jun/Dec
37.3	37.1	50	61.9	69.7	80.6
84.2	81	72.2	62.4	48.1	38

Note: Temperature was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39 Solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Average Annual Totals Summary

 Title:
 COF AP1 CIP

 Simulated on:
 6/21/2022 16:05

	Average Annual Totals for Years 1 - 30*			
	(inches)	[std dev]	(cubic feet)	(percent)
Precipitation	39.97	[4.83]	1,504,439.0	100.00
Runoff	4.089	[2.542]	153,905.0	10.23
Evapotranspiration	30.058	[3.318]	1,131,459.1	75.21
Subprofile1				
Lateral drainage collected from Layer 3	5.5133	[1.5623]	207,537.5	13.80
Percolation/leakage through Layer 4	0.344465	[0.16843]	12,966.7	0.86
Average Head on Top of Layer 4	7.8378	[3.8306]		
Subprofile2				
Percolation/leakage through Layer 6	0.049311	[0.128508]	1,856.2	0.12
Water storage				
Change in water storage	0.2572	[1.781]	9,681.1	0.64

* Note: Average inches are converted to volume based on the user-specified area.

HYDROLOGIC EVALUATION OF LANDFILL PERFORMANCE HELP MODEL VERSION 4.0 BETA (2018)

DEVELOPED BY USEPA NATIONAL RISK MANAGEMENT RESEARCH LABORATORY

Title: COF AP1 Default Earth Simulated On: 27/06/2022 18:16

Layer 1
Type 1 - Vertical Percolation Layer (Cover Soil)
SCL - Sandy Clay Loam
Material Texture Number 10

Thickness	=	6 inches
Porosity	=	0.398 vol/vol
Field Capacity	=	0.244 vol/vol
Wilting Point	=	0.136 vol/vol
Initial Soil Water Content	=	0.1542 vol/vol
Effective Sat. Hyd. Conductivity	=	1.20E-04 cm/sec

Layer 2

Type 1 - Vertical Percolation Layer SiC - Silty Clay Material Texture Number 14

Thickness	=	30 inches
Porosity	=	0.479 vol/vol
Field Capacity	=	0.371 vol/vol
Wilting Point	=	0.251 vol/vol
Initial Soil Water Content	=	0.436 vol/vol
Effective Sat. Hyd. Conductivity	=	2.50E-05 cm/sec

Layer 3 Type 3 - Barrier Soil Liner Liner Soil (High) Material Texture Number 16

Thickness	=	36 inches
Porosity	=	0.427 vol/vol
Field Capacity	=	0.418 vol/vol
Wilting Point	=	0.367 vol/vol
Initial Soil Water Content	=	0.427 vol/vol
Effective Sat. Hyd. Conductivity	=	1.00E-07 cm/sec

Layer 4

Type 1 - Vertical Percolation Layer (Waste) High Density Electric Plant Coal Bottom Ash

Material Texture Number 84

Porosity=0.578 vol/volField Capacity=0.076 vol/volWilting Point=0.025 vol/volInitial Soil Water Content=0.0805 vol/volEffective Sat. Hyd. Conductivity=8.80E-05 cm/set	Thickness	=	360 inches
Field Capacity=0.076 vol/volWilting Point=0.025 vol/volInitial Soil Water Content=0.0805 vol/volEffective Sat. Hyd. Conductivity=8.80E-05 cm/set	Porosity	=	0.578 vol/vol
Wilting Point=0.025 vol/volInitial Soil Water Content=0.0805 vol/volEffective Sat. Hyd. Conductivity=8.80E-05 cm/sel	Field Capacity	=	0.076 vol/vol
Initial Soil Water Content=0.0805 vol/volEffective Sat. Hyd. Conductivity=8.80E-05 cm/se	Wilting Point	=	0.025 vol/vol
Effective Sat. Hyd. Conductivity = 8.80E-05 cm/se	Initial Soil Water Content	=	0.0805 vol/vol
5	Effective Sat. Hyd. Conductivity	=	8.80E-05 cm/sec

Layer 5 Type 2 - Lateral Drainage Layer

Loess Unit Silty Clay Material Texture Number 43

Thickness	=	60 inches	
Porosity	=	0.479 vol/vol	
Field Capacity	=	0.371 vol/vol	
Wilting Point	=	0.251 vol/vol	
Initial Soil Water Content	=	0.371 vol/vol	
Effective Sat. Hyd. Conductivity	=	3.85E-08 cm/sec	
Slope	=	0 %	
Drainage Length	=	0 ft	

Note: Initial moisture content of the layers and snow water were computed as nearly steady-state values by HELP.

General Design and Evaporative Zone Data

SCS Runoff Curve Number	=	85.9
Fraction of Area Allowing Runoff	=	100 %
Area projected on a horizontal plane	=	10.37 acres
Evaporative Zone Depth	=	18 inches
Initial Water in Evaporative Zone	=	5.382 inches
Upper Limit of Evaporative Storage	=	8.136 inches
Lower Limit of Evaporative Storage	=	3.828 inches
Initial Snow Water	=	0.088108 inches
Initial Water in Layer Materials	=	80.625 inches
Total Initial Water	=	80.713 inches
Total Subsurface Inflow	=	0 inches/year

Note: SCS Runoff Curve Number was calculated by HELP.

Evapotranspiration and Weather Data

Station Latitude	=	39.06 Degrees
Maximum Leaf Area Index	=	4.5

Start of Growing Season (Julian Date)	=	97 days
End of Growing Season (Julian Date)	=	302 days
Average Wind Speed	=	8 mph
Average 1st Quarter Relative Humidity	=	72 %
Average 2nd Quarter Relative Humidity	=	64 %
Average 3rd Quarter Relative Humidity	=	71 %
Average 4th Quarter Relative Humidity	=	72 %

Note: Evapotranspiration data was obtained for Coffeen, Illinois

Normal Mean Monthly Precipitation (inches)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	<u>May/Nov</u>	Jun/Dec
2.353618	2.511085	2.81508	3.241374	3.956664	4.312863
4.375035	2.656228	3.284204	3.675466	3.677412	3.106835

Note: Precipitation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Normal Mean Monthly Temperature (Degrees Fahrenheit)

<u>Jan/Jul</u>	Feb/Aug	Mar/Sep	Apr/Oct	<u>May/Nov</u>	Jun/Dec
37.3	37.1	50	61.9	69.7	80.6
84.2	81	72.2	62.4	48.1	38

Note: Temperature was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39 Solar radiation was simulated based on HELP V4 weather simulation for: Lat/Long: 39.06/-89.39

Average Annual Totals Summary

Title:	COF AP1 Default Earth
Simulated on:	27/06/2022 18:17

	Aver	Average Annual Totals for Years 1 - 30*					
	(inches)	[std dev]	(cubic feet)	(percent)			
Precipitation	39.97	[4.83]	1,504,439.0	100.00			
Runoff	6.862	[3.483]	258,316.2	17.17			
Evapotranspiration	31.176	[3.425]	1,173,551.9	78.01			
Subprofile1							
Percolation/leakage through Layer 3	1.992946	[0.073666]	75,020.7	4.99			
Average Head on Top of Layer 3	21.7496	[2.1124]					
Subprofile2							
Percolation/leakage through Layer 5	1.698973	[0.713508]	63,954.6	4.25			
Water storage							
Change in water storage	0.2289	[1.8082]	8,616.3	0.57			

 * Note: Average inches are converted to volume based on the user-specified area.

APPENDIX E FLUX EVALUATION DATA

Appendix E. Flux Evaluation Data

GROUNDWATER MODELING REPORT COFFEEN POWER PLANT ASH POND NO. 1 COFFEEN, ILLINOIS

Calibration Model										
Model	Model Period (years)	HSU	Total Flux In ¹ (ft ³ /d)	Total Flux In (gpm)						
Calibration Model	42	Fill Unit (CCR)	2888.39	15.00						
Model	Model Period (years)	HSU	Total Flux Out ¹ (ft ³ /d)	Total Flux Out (gpm)						
Calibration Model	42	Fill Unit (CCR)	-2975.75	-15.46						

Scenario 1: CIP (CCR removal from the northwest areas of the Ash Pond, consolidation to the northeast, central and southern areas of the Ash Pond, and construction of a cover system over the remaining CCR)

Prediction Model	Construction Period (years)	HSU	Total Flux In ¹ (ft ³ /d)	Total Flux In (gpm)	Reduction in Flux In Post Closure ² (Percentage, %)
CIP	56	Fill Unit (CCR)	2.20	0.01	99.92%
Prediction Model	Construction Period (years)	HSU	Total Flux Out ¹ (ft ³ /d)	Total Flux Out (gpm)	Reduction in Flux Out Post Closure ² (Percentage, %)
CIP	56	Fill Unit (CCR)	-2.21	-0.01	99.93%
				[O: SLN 6	/25/22; C: BGH 6/29/22]

Notes:

1. Total flux in and out source data provided in flux calculation data files included in Appendix B.

2. Reduction in flux as compared to flux at the end of calibration model (model period of 42 years).

CCR = coal combustion residuals

CIP = Closure In Place

HSU = Hydrostratigraphic Unit

% = percentage

 ft^3/d = cubic feet per day

gpm = gallons per minute

APPENDIX C MATERIAL QUANTITY, LABOR, AND MILEAGE ESTIMATES FOR ALTERNATIVE 2 AND ALTERNATIVE 3 REMEDIES

RAMBOLL

ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 2 - UPGRADIENT BARRIER WALL AND GROUNDWATER EXTRACTION TRENCH¹

ITEM NO.	ENGINEERING, PRE-CONSTRUCTION, AND CONSTRUCTION SUPPORT TASKS	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
1	Engineering Support and CQA During Construction	LS	1	Eng	12	1,728	0	Assumed labor and equipment hours based on Ramboll project experience.
	PRE-CONSTRUC	CTION ESTIMAT	ED SUBTOTAL			1,728	0	
ITEM NO.	SITE PREPARATION	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
2	Staging Area & Temporary Roads Preparation	-	-	-	-	473	146	Assumes some work general preparation of temporary access roads along the trench alignment will be needed specific to extraction trench construction.
	Subsurface Stabilization Nonwoven Geotextile	SY	5,600	2 Clab	2500	36	0	313219161550: Geosynthetic soil stabilization, geotextile fabric, non-woven, 120 lb tensile strength includes scarifying and compaction. Assumes 0.5 acre stading area and approximately 2.500 ft of temporary access mad.
	Construct Staging Area & Temporary Roads	SY	5,600	B14	615	437	146	Assumes 0.5 act e scigning area and approximately 2,300 it of temporary access road. 015523500100: Temporary, roads, gravel fill, 8° gravel depth, excluding surfacing. Assumes 0.5 acre staging area and approximately 2,500 ft of temporary acress road.
3	Construction Soil Erosion & Sediment Controls	-	-	-	-	241	80	Assumes soil erosion and sediment controls will be implemented only during the groundwater extraction trench construction.
	Silt Fence	LF	3,600	B62	650	133	44	312514161000: Synthetic erosion control, silt fence, install and remove, 3' high. Assumes silt fence is installed down both sides of the
	Sediment Log, Filter Sock	LF	4,500	A2	1000	108	36	extraction trench alignment (3,600 ft total). 312514160705: Sediment Log, Filter Sock, 9". Assume sediment log is needed along alignment of extraction trench (3,600 LF total) and settling good perimeter (~900 LF).
4	Temporary Electrical Installation	EA	1	R1B	-	144	0	Electrical installation based on Ramboll experience to install two power drops for low-voltage (120V) power for the pneumatic extraction numeralized the extraction trench, and for the nonumatic transfer numeral the settling pond for discharge of water to outfall
								pump along the Extraction trench, and for the predmate dansier pump at the secting point or discharge or water to outdan.
5	Work Pad Construction	-	-	-	-	1,124	409	be saw-cut as needed for trench and barrier wall installation.
	Remove Asphalt Roads Along Perimeter	SY	10,833	B38	690	628	251	Assumes saw cutting and removal asphalt roads along the entire perimeter of AP2 for the total wall installation (30-ft wide road).
	Surface Grading	MSF	50	B11L	30	27	13	312/1510/5000: Fine grading, work pad area. Assumes grading along banks of AP2 between the bottom of the berm and the road to complete the needed working surface.
	Subsurface Stabilization Nonwoven Geotextile	SY	5,555	2 Clab	2500	36	0	313/19/19/15/2001 Geosynthetic soil stabilization, geotextue raonc, non-woven, 120 ib tensile strength includes scarnying and compaction. Assume stabilization needed for 15-ft wide swath between berm and road.
	Install Crushed Gravel Work Pad (8" Thick)	SY	5,555	B14	615	434	145	015523500100: Temporary, roads, gravel fill, 8" gravel depth, excluding surfacing. Assume stabilization needed for 15-ft wide swath between berm and road.
6	Geotechnical Monitoring	LS	-	GM	-	600	0	Assumes installation of inclinometers, survey prisms, and settlement monitoring devices. Assumes a 4-person crew installs the monitoring system over a period of 3 weeks. Based on Ramboll experience.
	SITE PREPARJ	TION ESTIMAT	ED SUBTOTAL			2,580	640	
ITEM NO.	BARRIER WALL & GROUNDWATER EXTRACTION TRENCH CONSTRUCTION	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
7	Materials Import	-	-	-	-	134	106	Includes materials associated with barrier wall and extraction trench and labor costs associated with hauling. Purchase of sand/granular material for backfilling the extraction trench.
	Sand/Granular Backfill	CY	725	B13D	376	31	15	Sand/granular backfilled with granular material. Based on Pamboll and Socialty Contractor experience.
	Clay Trench Cap	CY	150	B13D	100	24	12	Clay material for extraction trench cap. Assumes trench is 3,250 ft long, 2.5 ft wide, and cap is approximately 0.5 feet thick. Based on
	Haul material to Site	ICY	875	B34C	99	71	71	Rainboit experience. 312323203104: Cycle hauling (wait, load, travel, unload or dump & return) time per cycle, excavated or borrow, loose cubic yards, 15
		Lei	075	0040		, ,	, 1	min load/wait/unload, 16.5 C.Y. truck, cycle 50 miles, 45 mph, excludes loading equipment. 312323206170: Hauling; no loading equipment, including hauling, waiting, loading/dumping; 34 C.Y. off-road, 15 min wait/ld./uld., 15
	Haul material to Trench Locations	CY	875	B34G	850	8	8	MPH, cycle 1 mile. Daily output extrapolated down to 10 min wait. Assumes onsite stockpile locations average of 0.25 mile from trench dumping location.
8	Installation of Groundwater Extraction Trench	-	-	-	-	544	544	Assumes mobilization and demobilization, trench excavation, and construction of clay trench cap.
	Mobilization, Assembly, & Demobilization of Specialty Contractor	LS	1	-	-	-	-	Mobilization, assembly, and demobilization from One-Pass technology specialty contractor.
	Trench Excavation	LF	3,250	OP	300	542	542	OP crew determined from crew information provided by specialty contractor. Assumes total trench length 3,250 ft with an approximate average depth of 8 ft and 2 ft wide.
	Spread Lifts for Clay Trench Cap	CY - as	120	B10B	1000	1	1	312323170020: Spread dumped material, no compaction, by dozer. Daily output edited to match excavation based on experience.
	Compaction of Clay Trench Cap	CY - in place	120	B10F	5200	1	1	312323235060: Compaction; Riding, vibrating roller, 6" lifts, 2 passes. RS Means Crew is B10Y; altered to B10F based on experience.
9	Installation of Barrier Wall	-	_	-	-	1.083	1.083	Assumes same mobilization and specialty contractor as extraction trench construction. Barrier wall to be installed immediately following
-						_,	-,	trench installation. Assumes barrier wall construction and materials (bentonite and standard Portland cement) provided by specialty contractor. OP crew
	Installation of Barrier Wall	LF	3,250	OP	150	1,083	1,083	determined from crew information provided by specialty contractor. Assumes total wall length is 3,250 ft with approximate average depth of 7 ft and 2.5 ft wide.
	Barrier Wall Mix Design	LS	1	-	-	0	0	Specialty contractor for creating mix design to achieve specifications. Mix design will include 1 soil bore to obtain a representative soil sample.
10	Groundwater Extraction Trench Mechanical Installation	-	-	-	-	1,174	403	Includes installation of sumps, equalization tank, transfer pumps and controllers, and associated excavation and backfill.
	Install Sumps	EA	5	Q1	2	44	0	Sump installation from specialty contractor. 8-20" diameter Sch. 40-304 Stainless Steel. Daily output adjusted for scale.
	Install Equalization Tank	EA	2	B6	1	180	60	Installation of equalization tank at each trench and associated site preparation and instrumentation. Assumes 2 days each for installation.
	Install Transfer Pumps and Controllers	EA	2	R30	1	52	0	Installation of transfer pump and pump controller at each extraction trench to convey water from settling pond to discharge outfall based on Ramboll project experience. Assumes inclusion of housing structure and 2 days for installation.
	Excavate Utility Trench for Lines to Compressors and Extraction Pumps	LF	500	B54	860	5	5	312316142750: Utility trench excavating, chain trencher, 40 HP operator riding, 12" wide trench and backfill, 18" deep. Trench installed from power drop/compressor shed to extraction trench to supply compressed air and power to sump pits. Assumes 500 ft distance from
								compressor shed to trench. Assumes furnishing all mechanical elements (air compressors, pneumatic extraction pumps, transfer pumps) and associated HDPE housing
	Install Mechanical Elements and Piping	EA	1	R30	-	260	0	piping for distribution of power and housing of mechanical elements throughout the extraction trench system. Assumes approximately 10 days of work.
	Excavate Utility Trench for Conveyance to Settling Pond	LF	2,500	B10R	100	300	200	312316142750: Utility trench excavating, chain trencher, 40 HP operator riding, 12" wide trench and backfill, 18" deep. Trench installed from groundwater extraction trench to convey extracted water to the settling pond.
	Install 8" HDPE Conveyance Pipe to Settling Pond	LF	2,500	B22A	320	313	125	331413350300: Water supply distribution piping, piping HDPE, butt fusion joints, 40' lengths, 8" diameter, SDR 21. Includes labor, materials, and machine for installation and welding of HDPE pipe for conveying extracted water from trench to settling pond.
	Backfill with Granular Trench Backfill	LCY	166	B10R	100	20	13	312316133060: Backfill trench, F.E. loader, wheel mtd., 1 C.Y. bucket, 200' haul. Backfill with granular trench backfill. Quantity based on trench dimensions 12" wide, 18" deep, 3,000 ft (500 ft and 2,500 ft) long.
11	Construction of Compressor Shed	-	-	-	-	180	60	Based on Ramboll experience for construction of housing unit for air compressor shed.
	Construct Compressor Shed	EA	1	B6	-	180	60	Assumes pre-fabricated air compressor shelter, installed primarily by hand with light equipment assistance. Hours are based on Ramboll experience
12	Installation of Settling Pond	-	-	-	-	226	89	Quantity based on 1-acre pond, 2 feet deep. Assume all excavated material is reused for berm construction.
	Excavation and Loading of Settling Pond Material	BCY	3,300	B12D	2080	25	13	312316420300: Excavating, bulk bank measure, hydraulic, crawler mtd., 3 C.Y. cap (300 CY/hr). Assumes loading of material onto trucks.
	Hauling and Placement of Settling Pond Material	LCY	3,300	B34G	3287	8	8	312323206130: Hauling: no loading equipment, including hauling, waiting, loading/dumping; 34 C.Y. off-road, 15 min wait/ld./uld., 15
	Spreading/Drying Material in Berm	CY	3,300	B10B	1000	40	26	MPH, CYCIE 2,000 T. Daily output extrapolated down to 600 It CYCIE. 312323170020: Spread dumped material, no compaction, by dozer. Daily output edited to match excavation based on experience.
	Compaction of Material in Berm	BCY	3,300	B10F	2600	15	10	312323235060: Compaction; Riding, vibrating roller, 12" lifts, 2 passes. RS Means Crew is B10Y; altered to B10F based on experience.
	Fine Grading of Berm	MSF	36	B11L	30	19	10	312216103600: Fine grading, tops of lagoon banks for compaction. Assumes 10 ft-wide berm around perimeter of 1-acre settling pond.
	Subsurface Stabilization Nonwoven Geotextile	SY	5,000	2 Clab	2500	32	0	313219161550: Geosynthetic soil stabilization, geotextile fabric, non-woven, 120 lb tensile strength includes scarifying and compaction. Assumes 1 acre settling pond
	Settling Pond Liner	SF	5,000	B63B	1850	86	22	310519531100: Reservoir liners, membrane lining, 40 mil, LLDPE.
13	Extracted Water Discharge Management	-	-	-	-	193	64	Based on approximate 1,000 ft distance from settling pond to discharge outfall.
	Install Transfer Pump and Controller	EA	1	R30	1	52	0	Installation of transfer pump and pump controller to convey water from settling pond to discharge outfall based on Ramboll project
	Evravate I Itility Trench for Conveyance to Discharge	IF	1 000	B54	860	9	9	experience. Assumes inclusion of housing structure. Assume 2 days for installation. 312316142750: Utility trench excavating, chain trencher, 40 HP operator riding, 12" wide trench and backfill, 18" deep. Trench installed
	Install 8" HDPE Conveyance Pine to Discharge	IE	1.000	B224	320	125	50	nrom settiing pond to convey settied water to outfail for discharge. 331413350300: Water supply distribution piping, piping HDPE, butt fusion joints, 40' lengths, 8" diameter, SDR 21. Includes labor,
	Backfill with Granular Tranch Backfill		57	BIOR	100	7	5	materials, and machine for installation and welding of HDPE pipe for conveying water from settling pond to discharge point. 312316133060: Backfill trench, F.E. loader, wheel mtd., 1 C.Y. bucket, 200' haul. Backfill with granular trench backfill. Quantity based on
		201	57	DION	100	~		trench dimensions 12" wide, 18" deep, 1,000 ft long. Quantity based on average area of trench excavation 2.5 ft wide by 8 ft deep over 3.250 ft extraction trench alignment. Spoils assumed to
14	rrenku & wan Spons management	CV - 20	-	-	-	24	18	be disposed of in on-site landfill.
	Loading	excavated	725	B14B	5000	2	1	fluff factor from ground to excavated). Spoils volume is 30% of total trench volume per Contractor experience.
	Hauling and Placement to On-site Landfill	excavated	725	B34G	850	7	7	MPH, cycle 1 mile. 312333170020: Spread dumped motorial on comparison by down Daily strategy and the strategy of the strategy
	Spreading/Drying Moisture Conditioning	excavated	375	B10B	1000	5	3	Quantity assumes 50% of volume requires moisture conditioning.
	Spreading Lifts	excavated	650	B10B	1000	8	5	312323170020: Spread dumped material, no compaction, by dozer. Daily output edited to match excavation based on experience.
	Compaction of Material	CY - in place	650	B10F	2600	3	2	312323235060: Compaction; Riding, vibrating roller, 12" lifts, 2 passes. RS Means Crew is B10Y; altered to B10F based on experience.
	BARRIER WALL & GROUNDWATER EXTRACT	ION TRENCH CO	NSTRUCTION			3,560	2,370	

RAMBOLL

ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 2 - UPGRADIENT BARRIER WALL AND GROUNDWATER EXTRACTION TRENCH¹

ITEM NO.	SITE RESTORATION	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
15 :	Site Restoration	-	-	-	-	317	88	Assumes restoration of grade surface following extraction trench installation
	Erosion Control Blanket	SF	8,000	B1	2500	77	0	312514160100: Rolled erosion control mats and blankets, plastic netting stapled, 2" x 1" mesh, 20 mil. Assumes erosion control blanket installed over settling pond berm.
	Lime	MSF	100.0	B66	700	2	2	329113234250: Soil preparation, structural soil mixing, spread soil conditioners, ground limestone, 1#/S.Y., tractor spreader. Assumes soils possibly being void of nutrients. Quantity disturbed areas including staging area, temporary roads, and working surface (~2.3 acre total) excluding settling pond.
	Fertilizer	MSF	144.0	B66	700	2	2	329113234150: Soil preparation, structural soil mixing, spread soil conditioners, fertilizer, 0.2#/S.Y., tractor spreader. Assumes soils possibly being void of nutrients. Quantity all disturbed areas including staging area, temporary roads, and working surface (~2.3 acre total) and new settling pond (1 acre).
	Grassland Mix	MSF	144.0	B66	52	22	22	329219142300: Seeding athletic fields, seeding fescue, tall, 5.5 lb. per M.S.F., tractor spreader. Quantity all disturbed areas including staging area, temporary roads, and working surface (~2.3 acre total) and new settling pond (1 acre).
	Mulch	MSF	144.0	B65	530	4	4	329113160350: Mulching, Hay, 1" deep, power mulcher, large.
	Road Pavement Replacement	SY	10,833	B25	4545	210	57	321216130160: Plant-mixed asphalt paving, for highways and large paved areas, binder course, 3" thick, no hauling.
	SITE RESTORA	ED SUBTOTAL			317	88		
ITEM NO.	Corrective Action Operation and Maintenance	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
16	Sroundwater Extraction Trench Operation & Maintenance	-	-	-	-	4800	-	Assumes routine maintenance required over the maximum 30 years of operation. Operation excludes the 3 years of confirmation monitoring.
	Field Maintenance	Event	120	TM	-	4800	0	Assumes quarterly maintenance on pneumatic pumps and air compressors over 30 years of operation. Each maintenance event assumes 2 staff for 3 days to check, clean, and service all mechanical parts.
	Electrical Distribution and Service Charges	МО	360	-	-	-	-	Assumes electrical distribution and usage for operating the extraction and transfer pumps.
17	Non-routine System O&M	-	-	-	-	3960	990	Assumes non-routine tasks including flushing of groundwater conveyance lines and periodic site visits (e.g., alarm responses or equipment troubleshooting) over 30 years of operation. Operation excludes the 3 years of confirmation monitoring.
	Groundwater Conveyance Line Flushing - Vacuum Truck	LF	105,000	ντ	-	1,980	990	330130116140: Pipe, internal cleaning and inspection, cleaning, power rudder with header & cutts, 4"-12" diameter. Assumes one 3-day deaning event of 3,500 LF of 8" HDPE pipe per year for a total of 30 years of operation.
	Non-Routine Site Visits/Alarm Responses	LS	180	ОМ	-	1,980	0	Assumes 6 non-routine site visits per year over 30 years of operation. Each non-routine event assumes 2 staff for 1 day.
	CORRECTIVE ACTION OPERATION A	ND MAINTENAN	ICE SUBTOTAL			8,760	990	
					Total Labor Hours	Total Equipment Hours		
	ENGINEERING AN	D CONSTRUCTI	ON SUBTOTAL			8,200	3,100	
—	CORRECTIVE ACTION OPERATION A		EDING HOUDS			8,760	990	4
	ENGINEER'S ESTIMATE OF TOTAL CONSTRUCTIO	N AND ENGINE	ERING HOURS		17,000	4,100	J	

Notes: 1. Alternative 2: Source Control with groundwater extraction trench and barrier wall is estimated to take greater than 30 years to achieve groundwater protection standards (GWPS-35 I.A.C Section 845.600) at all perimeter wells associated with AP2. For the purposes of this estimate, a maximum of 30 years of operation & compliance monitoring followed by 3 years of confirmation monitoring was assumed. 2. RS Means refers to the 2023 Quarter 4 online edition of RS Means Commercial New Construction. 3. See crews for assumptions regarding crew size, total labor hours and required construction equipment, as needed, for each task. 4. See mileage tab (Alt 2 - Mileage) for assumptions regarding total mileage for tasks outlined in this alternative.

4. See milleage tab (kit 2 - mileage) for assumptions regarding tota
 ACRONYMS:
 AC = Acre
 AC = Acre
 AP2 = Ash Pond No. 2
 CY = Cubic Yard
 Loose: Material swelled when removed from compacted state
 EA = Each
 GWPS = groundwater protection standards
 LF = Linear Foot
 LS = Lump Sum
 MSF = square feet divided by 1000
 MOA = Month
 Moare Feet
 SY = Square Feet
 SY = Square Yard

ALTERNATIVE 2

CREW CODES ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ADIENT BARRIER WALL AND GROUNDWATER

FRENCH

FYTRAC

Daily Daily Onsite Heavy Onsite Labo Item No. Crew Code Labor Labor Equipment Equipment Crew Size Equipment Hours Hours Hours Hours Construction 2,5,12 2 Clab Laborer x2 16 0 None 0 2 103 Laborer x2 36 3 A2 24 Flatbed Truck, Gas, 1.5 ton 8 3 108 Truck Driver x1 Labor Foremanx1 B1 24 0 77 0 15 3 None Laborer x2 Laborer x 2 10,11 B6 24 Backhoe Loader, 48 H.P. 8 3 360 120 Operator (light) x 1 Operator x1 8,12,14 B10B 12 Dozer, 200 H.P. 8 1.5 53 36 Laborer x0.5 Operator (med) x1 8,12,14 B10F 12 Tandem Roller, 10, Ton 8 19 13 1.5 Laborer x0.5 Operator (med) x 1 10,13 B10R 12 Frontend loader, W.M., 1 C.Y. 8 1.5 327 218 Laborer x 0.5 Operator (med) x 1 5,12 B11L 16 Grader, 30,000lb 8 2 46 23 Laborer x 1 Operator (crane) x 1 12 B12D 16 Hydraulic excavator, 3.5 C.Y. 8 2 25 13 Laborer x 1 Operator (crane) x 1 Hydraulic excavator, 1 C.Y. 7 B13D 8 2 55 27 16 Laborer x 1 Trench Box Labor Foreman x 1 Hyd. Excavator, 4.5 C.Y. 2,5 B14 48 16 6 871 290 Operator (light) x1 Backhoe Loader, 48 H.P. Laborer x 4 Operator (crane) x 1 14 B14B 12 Hydraulic excavator, 6, C.Y. 8 1.5 2 1 Laborer x 0.5 Labor Foreman x1 S.P. Crane, 4x4, 5 ton Skilled Worker x1 10 13 B22A 40 16 5 438 175 Laborer x2 Butt Fusion Machine, 4-12" diam. Operator (crane) x1 Labore Foreman x1 Asphalt Paver, 130 H.P. 15 B25 Laborer x7 88 Tandem Roller, 10 ton 24 11 210 57 Operator x3 Roller, Pneum. Whl, 12 ton Truck Tractor, 6x4, 380 H.P. 7 B34C Truck Driver x1 1 71 71 8 8 Dump Trailer, 16.5 C.Y. B34G Dump Truck, Off Hwy., 50 ton 7,12,14 Truck Driver x1 8 8 1 23 23 Labor Foreman x1 Backhoe Loader, 48 H.P. Hyd. Hammer (1200 lb) F.E. Loader, W.M., 4 C.Y. Laborer x2 5 B38 40 16 5 628 251 Operator (light) x1 Operator (med) x1 Pvmt. Rem. Bucket Operator (light) x1 B54 8 8 14 10.13 Trencher, Chain, 40 H.P. 1 14 Laborer x2 24 Loader, Skid Steer, 30 H.P. 133 3 B62 8 3 44 Operator x 1 Labor Foreman x1 12 B63B Laborer x2 32 Loader, Skid Steer, 78 H.P. 8 86 22 4 Operator (light) x1 Power Mulcher (large) Laborer x1 4 15 B65 16 16 2 4 Truck Driver (light) x1 Flatbed Truck, Gas, 1.5 ton 15 B66 Operator (light) x1 8 Loader-Backhoe, 40 H.P. 8 1 26 26 Plumber x1 10 Q1 16 None 0 2 44 0 Plumber Apprentice x1 Electrician x1 4 R1B 24 0 3 144 0 None Electrician Apprentice x2 Electrician Foreman x0.25 10,13 R30 26 0 3.25 312 0 Electrician x1 None Laborer (Semi-Skilled) x2 Engineering Staff x4 40 0 4 0 6 GM Service Vehicle x 2 600 CAT 950 Loader x 3, Operator x3 CAT 374 Excavator x 1 8,9 OP 50 50 5 1,625 1,625 CAT 349 Excavator x 1 Laborer x 2 Manlift x 1, Telehandlers x 2 Engineering Staff x1.2 1 Eng 10 Rental Vehicle x1 0 1.2 1.728 0 **Construction Subtotals** 8,200 3,100 Corrective Action Operation & Maintenance Service Truck x2 16 ΤМ Maintenance Crew x2 20 0 2 4,800 0 Hand Tools Vacuum Truck with Flushing Laborer x1 17 VT 20 10 2 1,980 990 Operator x1 Capabilities 17 OM Laborer x1 10 Service Truck x1 0 1 1.980 0 **O&M** Subtotals 8,760 990 Note: Blue shaded crew codes were created by Ramboll based on experience (not pulled from RS Means). Totals 17,000 4,100

CONSTRUCTION MILEAGE AND LABOR ESTIMATES ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 2 - UPGRADIENT BARRIER WALL AND GROUNDWATER EXTRACTION TRENCH

Construction Mileage and Labor Estimates - Alternative 2: Upgradient Barrier Wall and Groundwater Extraction Trench

Item	Quantity	Assumptions
Labor Total Hours	8,132	Per projected Construction total in cost estimate (does not include contingency)
Duration of Onsite Construction Days	135	Total Days
Average Daily Crew Size	5.0	Assumes multiple crew sizes and a 10 hour work day Assumes 1 Ramboll personnel daily for construction oversight
Daily Labor Mobilization Miles	47,274	Includes light and medium commercial vehicles Average of 70 miles round trip per day
Vehicles Miles Onsite	10,130	Includes light and medium commercial vehicles 5 miles per day for onsite miles No contingency Included
Equipment Mobilization Miles - Unloaded	5,628	Average of 250 miles one-way for equipment hauling (from Chicago, IL) Average 1 load of equipment per working week
Equipment Mobilization Miles - Loaded	5,628	Average of 250 miles one-way for equipment hauling (from Chicago, IL) Average 1 load of equipment per working week
Onsite Haul Truck Miles - Unloaded	2,098	34 CY Off Road Dump Truck 1 mile round trip per load
Onsite Haul Truck Miles - Loaded	2,098	34 CY Off Road Dump Truck 1 mile round trip per load
Offsite Haul Truck Miles - Unloaded	8,697	Assumes 16 CY loads of fill materials (gravel/sand backfill and clay cap) are delivered to the site from a regional supplier located within 100 miles of the site
Offsite Haul Truck Miles - Loaded	8,697	Assumes truck is returning to the regional supplier located within 100 miles of the site
Material Delivery Miles - Unloaded	4,502	Misc. construction materials (erosion controls, piping, geotextile) Assumes 200 mile round trip, average 2 trips per working week
Material Delivery Miles - Loaded	4,502	Misc. construction materials (erosion controls, piping, geotextile) Assumes 200 mile round trip, average 2 trips per working week

Operation & Maintenance (O&M) Mileage and Labor Estimates - Alternative 2: Upgradient Barrier Wall and Groundwater Extraction Trench

Item	Quantity	Assumptions
Labor Total Hours	8,760	Per projected CM total in cost estimate (does not include contingency)
Duration of Onsite OMM Days	240	Total Days
Average Daily Crew Size	4	Assumes multiple crew sizes and a 10 hour work day
Daily Labor Mobilization Miles	105,120	Includes mob/demob from Chicago (260 miles round trip) and local daily commute mileage (40 round trip miles per day). Assumes 6 work days per week
Vehicles Miles Onsite	13,140	Includes light and medium commercial vehicles 15 miles per day for onsite miles No contingency Included
Equipment Mobilization Miles - Unloaded	7,500	Average of 250 miles one-way for equipment mobilization (from Chicago, IL) Average 1 mobilization/demobilization per year for jetting/flushing of conveyance lines over 30 years of operation
Equipment Mobilization Miles - Loaded	7,500	Average of 250 miles one-way for equipment mobilization (from Chicago, IL) Average 1 mobilization/demobilization per year for jetting/flushing of conveyance lines over 30 years of operation
Onsite Haul Truck Miles - Unloaded	0	-
Onsite Haul Truck Miles - Loaded	0	-
Offsite Haul Truck Miles - Unloaded	0	-
Offsite Haul Truck Miles - Loaded	0	-
Material Delivery Miles - Unloaded	0	-
Material Delivery Miles - Loaded	0	-

CAGM = Corrective Action Groundwater Monitoring

RAMBOLL

ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 3 - HORIZONTAL EXTRACTION WELL¹

ITEM NO.	ENGINEERING, PRE-CONSTRUCTION, AND CONSTRUCTION SUPPORT TASKS	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
1	Engineering Support and CQA During Construction	LS	1	Eng	12	1440	0	Assumed labor and equipment hours based on Ramboll project experience.
	ENGINEERING, PRE-CONSTRUCTION, AND CONSTRUCTION SUPPORT	TASK ESTIMAT	ED SUBTOTAL			1,440	0	
ITEM NO.	SITE PREPARATION	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
2	Staging Area & Temporary Roads Preparation	-	-	-	-	524	161	Assumes some work general preparation of temporary access roads to access the horizontal well installation point
	Subsurface Stabilization Nonwoven Geotextile	SY	6,200	2 Clab	2500	40	0	313219161550: Geosynthetic soil stabilization, geotextile fabric, non-woven, 120 lb tensile strength includes scarifying and compaction. Assumes 0.25 acre staging area and approximately 1,500 ft of temporary access road along the southern edge of flume for access to the horizontal well installation point in southeast corner of AP2.
	Construct Staging Area & Temporary Roads	SY	6,200	B14	615	484	161	015523500100: Temporary, roads, gravel fill, 8" gravel depth, excluding surfacing. Assumes 0.25 acre staging area and approximately 1,500 ft of temporary access road along the southern edge of flume for access to the horizontal well installation point in southeast corner of AP2.
3	Construction Soil Erosion Controls	-	-	-	-	27	9	Assumes soil erosion controls will be implemented throughout horizontal well construction.
	Silt Fence	LF	450	B62	650	17	6	312514161000: Synthetic erosion control, silt fence, install and remove, 3' high. Assumes silt fence is installed around perimeter of work pad.
	Sediment Log, Filter Sock	LF	450	A2	1000	11	4	312514160705: Sediment Log, Filter Sock, 9". Assumes silt fence is installed around perimeter of work pad.
4	Temporary Electrical Installation	EA	1	R1B	-	72	0	Electrical installation based on Ramboll experience to install one power drop for low-voltage (120V) power for the pneumatic transfer pump at the settling pond for discharge of water to outfall.
5	Work Pad Construction for Horizontal Well Installation	-	-	-	-	134	48	Construction of work pad within the flume for access during horizontal well construction, approximately 50 feet long by 50 feet wide and 10 feet deep. Gravel in flume will be left in place after construction with a free-draining culvert.
	Clearing & Grubbing for Work Surface	Acre	0.35	B7	0.3	56	28	311110100020: Clearing & grubbing, cut & chip light trees to 6" diameter. Clearing of 100 ft by 150 ft total area salong northern bank of flume/southern side of AP2.
~~~~~~~	Surface Grading	MSF	15	B11L	30	8	4	312216103600: Fine grading, work pad area. Assumes grading in cleared area 100 ft by 150 ft along northern bank of flume/southern side of AP2.
	Subsurface Stabilization Nonwoven Geotextile	SY	1,670	2 Clab	2500	11	0	313219161550: Geosynthetic soil stabilization, geotextile fabric, non-woven, 120 lb tensile strength includes scarifying and compacting. Assumes reinforcement for graded slope area on northern bank of flume/southern side of AP2, 100 ft by 150 ft.
	Install Crushed Gravel Work Pad in Flume	SY	926	B10R	800	14	9	312323155050: Borrow, select granular fill, 3/4 C.Y. bucket, loading and/or spreading, front end loader, wheel mounted. Work pad in flume for horizontal well installation assumed 10 ft deep (flume depth), 50 ft wide (flume width) and extending 300 ft long for placement of drill rig for horizontal well installation.
	Install Concrete Culverts	LY	50	B13	62	45	6	334211601594: Public storm utility drainage piping, reinforced concrete pipe (RCP), 36" diameter, class 2, excludes excavation and backfill, gaskets. Assumes culvert extends the length of the area of placed rip-rap and gravel work pad.
	SITE PREPARA	TION ESTIMAT	ED SUBTOTAL		1	760	220	
ITEM NO.	HORIZONTAL WELL CONSTRUCTION	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
6	Installation of Horizontal Well	-	-	-	-	1,640	1,204	Installation of one single-ended well in north-south alignment at the base of AP2, performed in one mobilization.
******	Drill Pilot Bore for 4" Single-Ended Well	LF	1,325	OP	-	700	500	Quantities for labor of well assembly and installation in the pilot bore for one horizontal well per specialty contractor estimate. Assumes one well takes approximately 5 full days to bore.
	Assembly and Installation of 4" Well Materials	LF	1,325	OP	-	700	500	Quantities for labor of well assembly and installation in the pilot bore for one horizontal well per specialty contractor estimate. Assumes one well takes approximately 5 full days to assemble and install after drilling of the borehole.
	Install Entry Grout Seal	EA	1	SUP	-	40	40	Quantities for one horizontal well per specialty contractor estimate. Assume each seal takes approximately half a day to complete.
	Install Surface Pad	EA	1	SUP	-	40	4	Installation of concrete surface pad for 4" well per specialty contractor estimate. Assume one pad takes approximately half a day to install.
	Well Development	EA	1	SUP	-	160	160	Quantities for one horizontal well per specialty contractor estimate. Purge water to be managed by settling pond.
7	Horizontal Well Mechanical Installation	-	-	-	-	551	139	Includes installation of sumps, equalization tank, transfer pumps and controllers, and associated excavation and backfill.
	Install Equalization Tank	EA	1	B6	1	180	60	Installation of equalization tank at end or each nonzontal well and associated site preparation and instrumentation. Assumes 2 days each for installation. Installation of transfer nump and nump controller at end of one horizontal well to convey water from settling pond to discharge outfall
	Install Transfer Pumps and Controllers	EA	1	R30	1	26	0	1 Statistics of the state of
~~~~~~~~~~~	Excavate Utility Trench for Lines to Compressors and Extraction Pumps	LF	1,200	B54	860	11	11	from power drop/compressor shed to extraction trench to supply compressed air and power to sump pits. Assumes 1,200 ft distance from compressor shed to end of horizontal well.
	Install Mechanical Elements and Piping	EA	1	R30	-	208	0	Assumes furnishing all mechanical elements (air compressors, pneumatic extraction pumps, transfer pumps) and associated HDPE housing piping for distribution of power and housing of mechanical elements throughout the extraction trench system. Assumes approximately 8 days of work.
	Excavate Utility Trench for Conveyance to Settling Pond	LF	500	B10R	100	60	40	312316142750: Utility trench excavating, chain trencher, 40 HP operator riding, 12" wide trench and backfill, 18" deep. Trench installed from horizontal well to convey extracted water to the settling pond.
****	Install 8" HDPE Conveyance Pipe to Settling Pond	LF	500	B22A	320	63	25	331413350300: Water supply distribution piping, piping HDPE, butt fusion joints, 40' lengths, 8" diameter, SDR 21. Includes labor, materials, and machine for installation and welding of HDPE pipe for conveying extracted water from horizontal well to settling pond.
	Backfill with Granular Trench Backfill	LCY	30	B10R	100	4	2	312316133060: Backfill trench, F.E. loader, wheel mtd., 1 C.Y. bucket, 200' haul. Backfill with granular trench backfill. Quantity based on trench dimensions 12" wide, 18" deep, 500 ft long.
8	Construction of Compressor Shed	-	-	-	-	180	60	Based on Ramboll experience for construction of housing unit for air compressor shed.
	Construct Compressor Shed	EA	1	B6	-	180	60	Assumes pre-rauricated an compressor snetter, instance primariny by nano with ngin equipment assistance. Hours are based on Kamboli experience
9	Installation of Settling Pond	-	-	-	-	226	89	Quantity based on 1-acre pond, 2 feet deep. Assume all excavated material is reused for berm construction.
	Excavation and Loading of Settling Pond Material	BCY	3,300	B12D	2080	25	12.7	312316420300: Excavating, bulk bank measure, hydraulic, crawler mtd., 3 C.Y. cap (300 CY/hr). 312323206130: Hauling; no loading equipment, including hauling, waiting, loading/dumping; 34 C.Y. off-road, 15 min wait/ld./uld., 15
	Spreading/Drying Material in Berm	CY	3,300	B34G B10B	1000	40	26.4	MPH, cycle 2,000 ft. Daily output extrapolated down to 600 ft cycle. 312323170020: Spread dumped material, no compaction, by dozer. Daily output edited to match excavation based on experience.
*****	Compaction of Material in Berm	BCY	3,300	B10F	2600	15	10.2	312323235060: Compaction; Riding, vibrating roller, 12" lifts, 2 passes. RS Means Crew is B10Y; altered to B10F based on experience.
	Fine Grading of Berm	MSF	36	B11L	30	19	10	312216103600: Fine grading, tops of lagoon banks for compaction. Assumes 10 ft-wide berm around perimeter of 1-acre settling pond.
	Subsurface Stabilization Nonwoven Geotextile	SY	5,000	2 Clab	2500	32	0	313219161550: Geosynthetic soil stabilization, geotextile fabric, non-woven, 120 lb tensile strength includes scarifying and compaction. Assumes 1 acre settling pond.
	Settling Pond Liner	SF	5,000	B63B	1850	86	22	310519531100: Reservoir liners, membrane lining, 40 mil, LLDPE.
10	Extracted Water Discharge Management	-	-	-	-	123	32	Management of water extracted from the horizontal well to convey from settling pond to discharge. Based on approximate distance of 500 ft from settling pond to discharge outfall.
	Install Transfer Pump and Controller	EA	1	R30	1	52	0	Installation of transfer pump and pump controller to convey water from settling pond to discharge outfall based on Ramboll project experience. Assumes inclusion of housing structure. Assume 2 days for installation.
	Excavate Utility Trench for Conveyance to Discharge	LF	500	B54	860	5	5	312316142/SU: Utility trench excavating, chain trencher, 40 HP operator riding, 12" wide trench and backhil, 18" deep. Trench installed from settling pond to convey settled water to outfall for discharge. 33141355300: Water sundy distribution piping, piping https://doi.org/10.1016/j.com/10.1016
	Install 8" HDPE Conveyance Pipe to Discharge	LF	500	B22A	320	63	25	materials, and machine for installation and welding of HDPE pipe for conveying water from settling pond to discharge point. 312316133060: Backfill trench, F.E. loader, wheel mtd., 1 C.Y. bucket, 200' haul. Backfill with granular trench backfill. Quantity based on
	Backhii with Granular Trench Backhii		30	BIOK	100	4	2	trench dimensions 12" wide, 18" deep, 500 ft long.
ITEM	HORIZ	UNIAL WELL CO	ASTRUCTION		Daily O i	2,720 Labor	1,530 Equipment	
NO.		UNITS	Quantity	Crew	Daily Output	Hours	Hours	Notes Assumes restoration of grade surface following horizontal well installation for staging area (50x150 ft) and bank restoration (50x100 ft).
11		-		-	-	126	6	Gravel backfill and culvert will remain in place in flume. Gravel access road will remain in place for O&M access. 312514160100: Rolled erosion control mats and blankets, plastic netting stapled, 2" x 1" mesh, 20 mil. Assumes erosion control hlanket
		SF	12,500	B1	2500	120	0	installed on work pad (150x50 ft). 329113234250: Soil preparation, structural soil mixing, spread soil conditioners, around limestone. 1#/S.Y. tractor spreader Assumes
	Lime	MSF	13.8	B66	700	1	1	soils possibly being void of nutrients. Quantity disturbed areas staging area and northern bank of fume.
	Fertilizer	MSF	13.8	B66	700	1	1	possibly being void of nutrients. Quantity disturbed areas staging area and northern bank of fund.
	Grassland Mix	MSF	13.8	B66	52	3	3	area and northern tank of flume. Assume that gravel in flume and temporary roads are to remain in place.
	Mulch	MSF	13.8	B65	530	1	1	329113160350: Mulching, Hay, 1" deep, power mulcher, large.
	SITE RESTORA	TION ESTIMAT	ED SUBTOTAL			126	6	

RAMBOLL

ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 3 - HORIZONTAL EXTRACTION WELL¹

ITEM NO.	Corrective Action Operation and Maintenance	Units	Quantity	Crew	Daily Output	Labor Hours	Equipment Hours	Notes
12 Horizontal Well Operation & Maintenance		-	-	4800	-	Assumes routine maintenance required over the maximum of 30 years of operation. Operation excludes the 3 years of confirmation monitoring.		
Field Maintenance Event 120		120	тм	-	4800	0	Assumes quarterly maintenance on transfer pumps and air compressors over a maximum of 30 years of operation. Each maintenance event assumes 2 staff for 2 days to check, clean, and service all mechanical parts. Assumes all labor, equipment, mobilization over 2 days.	
13 Non-routine System O&M		-	-	2,760	300	Assumes non-routine tasks including flushing of groundwater conveyance lines and periodic site visits (e.g., alarm responses or equipment troubleshooting) over a maximum of 30 years of operation. Operation excludes the 3 years of confirmation monitoring.		
	Groundwater Conveyance Line Flushing - Vacuum Truck	LF	30,000	VT	-	600	300	330130116140: Pipe, internal cleaning and inspection, cleaning, power rudder with header & cutts, 4"-12" diameter. Assumes one 2-day deaning event of 1,000 LF of 8" HDPE pipe per year for a total of 15 years.
	Non-Routine Site Visits/Alarm Responses	LS	180	ОМ	-	1,800	-	Assumes 6 non-routine site visits per year over a maximum of 30 years of operation. Each non-routine event assumes 2 staff for 1 day.
	Extraction Well Development and Maintenance	LS	6	WD	-	360	-	Assumes extraction well will be developed once every 5 years to remove potential accumulation of organic or inorganic solids in the extraction well over 30 years of operation. Assumes re-development is completed with a two man crew over a 3 day period total for the one well.
CORRECTIVE ACTION OPERATION AND MAINTENANCE SUBTOTAL						7,560	300	
						Total Labor Hours	Total Equipment Hours	
ENGINEERING AND CONSTRUCTION SUBTOTAL						5,100	1,800	
CORRECTIVE ACTION OPERATION AND MAINTENANCE SUBTOTAL					7,560	300	4	
NOTES					4			
1. Alterna 2. RS Mea 3. See cre 4. See mi	1. Alternative 3: Source Control with horizontal extraction well is estimated to take greater than 30 years to achieve and maintain groundwater protection standards (GWPS-35 I.A.C Section 845.600) at all perimeter wells associated with AP2 following alternative implementation. 2. RS Means refers to the 2023 Quarter 4 online edition of RS Means Commercial New Construction. 3. See crew to kl(h1 3 - Cwevs) for assumptions regarding crew size, Iotal labor hours and required construction equipment, as needed, for each task. 4. See mileage tab (Alt 3 - Mileage) for assumptions regarding total mileage for tasks outlined in this alternative.							

See mileage tab (Alt 3 - Mileage) for assumptions regarding tota
 ACC = Arce
 ACE = Arce
 AP2 = Ash Pond No. 2
 CY = Cubic Yard
 Loose: Material swelled when removed from compacted state
 EA = Each
 CY = Louse Cubic Yards
 LCY = Loose Cubic Yards
 LF = Linear Foot
 LS = Lump Sum
 MSF = square feet divided by 1000
 MO = Montion, Monitoring, Maintenance
 SF = Square Feet
 SY = Square Yard

CREW CODES ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 3 - HORIZONTAL EXTRACTION WELL

Item No.	Crew Code	Labor	Daily Labor Hours	Equipment	Daily Equipment Hours	Crew Size	Onsite Labor Hours	Onsite Heavy Equipment Hours
				Construction				
2,5,9	2 Clab	Laborer x2	16	None	0	2	82	0
3	A2	Laborer x2 Truck Driver x1	24	Flatbed Truck, Gas, 1.5 ton	8	3	11	4
11	B1	Labor Foremanx1 Laborer x2	24	None	0	3	120	0
7,8	B6	Laborer x 2 Operator (light) x 1	24	Backhoe Loader, 48 H.P.	8	3	360	120
5	В7	Labore Foreman (outside) x1 Laborer x4	48	Brush Chipper, 12", 130 H.P. Crawl Loader, 3 C.Y. Chain Saws, Gas, 36" Long x2	24	6	56	28
9	B10B	Operator x1 Laborer x0.5	12	Dozer, 200 H.P.	8	1.5	40	26
9	B10F	Operator (med) x1 Laborer x0.5	12	Tandem Roller, 10, Ton	8	1.5	15	10
5,7,10	B10R	Operator (med) x 1 Laborer x 0.5	12	Frontend loader, W.M., 1 C.Y.	8	1.5	81	54
5,9	B11L	Operator (med) x 1 Laborer x 1	16	Grader, 30,000lb	8	2	27	14
9	B12D	Operator (crane) x 1 Laborer x 1	16	Hydraulic excavator, 3.5 C.Y.	8	2	25	13
5	B13	Laborer Foreman x1 Laborer x4 Operator (crane) x1 Operator (oiler) x1	56	Hydraulic Crane, 25 ton	8	6	45	6
2	B14	Labor Foreman x 1 Operator (light) x1 Laborer x 4	48	Hyd. Excavator, 4.5 C.Y. Backhoe Loader, 48 H.P.	16	6	498	171
7,10	B22A	Labor Foreman x1 Skilled Worker x1 Laborer x2 Operator (crane) x1	40	S.P. Crane, 4x4, 5 ton Butt Fusion Machine, 4-12" diam.	16	5	125	50
9	B34G	Truck Driver x1	8	Dump Truck, Off Hwy., 50 ton	8	1	8	8
7,10	B54	Operator (light) x1	8	Trencher, Chain, 40 H.P.	8	1	16	16
3	B62	Laborer x2 Operator x 1	24	Loader, Skid Steer, 30 H.P.	8	3	17	6
9	B63B	Labor Foreman x1 Laborer x2 Operator (light) x1	32	Loader, Skid Steer, 78 H.P.	8	4	86	22
11	B65	Laborer x1 Truck Driver (light) x1	16	Power Mulcher (large) Flatbed Truck, Gas, 1.5 ton	16	2	1	1
11	B66	Operator (light) x1	8	Loader-Backhoe, 40 H.P.	8	1	5	5
4	R1B	Electrician x1 Electrician Apprentice x2	24	None	0	3	72	0
7,10	R30	Electrician Foreman x0.25 Electrician x1 Laborer (Semi-Skilled) x2	26	None	0	3.25	260	0
6	SUP	Operator x2 Laborer x2	40	CAT 950 Loader x 3, CAT 374 Excavator x 1 CAT 349 Excavator x 1 Manlift x 1, Telehandler x 1	40	4	200	200
6	OP	Operator x4 Laborer x3	70	Drill Rig x1 Drill Cab, Trailer-Mtd x1 CAT Excavator x 1 Mud Recycling System x1 Water Truck x1 Manlift x 1, Telehandlers x 2	50	7	1,400	1,000
1	Eng	Engineering Staff x1.2	10	Rental Vehicle x1	0	1.2	1,440	0
				Construction Subtotals			5,000	1,800
Corrective Action Operation & Maintenance								
12	ТМ	Maintenance Crew x2	20	Hand Tools	0	2	4,800	0
13	VT	Laborer x1 Operator x1	20	Vacuum Truck with Flushing Capabilities	10	2	600	300
13	WD	Laborer x1 Operator x1	20	Well Development Rig, Mounted Winch or Hoisting System	8	2	360	0
13	ОМ	Laborer x1	10	Service Truck x1	0	1	1,800	0
				O&M Subto	tals		7,560	300
	Note: Blue shaded	d crew codes were created by F	Ramboll based	on experience (not pulled from RS Mea	ns).	Totals	12,600	2,100

CONSTRUCTION MILEAGE AND LABOR ESTIMATES ILLINOIS POWER GENERATING COMPANY - COFFEEN POWER PLANT - ASH POND 2 CORRECTIVE ACTION ALTERNATIVES ANALYSIS SUPPORTING INFORMATION REPORT (CAAA-SIR) ALTERNATIVE 3 - HORIZONTAL EXTRACTION WELL

Construction Mileage and Labor Estimates - Alternative 3: Horizontal Extraction Wells

Item	Quantity	Assumptions
Labor Total Hours	5,000	Per projected Construction total in cost estimate (does not include contingency)
Duration of Onsite Construction Days	69	Total Days
Average Daily Crew Size	5.3	Assumes multiple crew sizes and a 10 hour work day Assumes 1 Ramboll personnel daily for construction oversight
Daily Labor Mobilization Miles	25,586	Includes light and medium commercial vehicles Average of 70 miles round trip per day
Vehicles Miles Onsite	5,483	Includes light and medium commercial vehicles 5 miles per day for onsite miles No contingency Included
Equipment Mobilization Miles - Unloaded	5,711	Average of 500 miles round trip for equipment hauling (from Chicago, IL) Average 1 load of equipment per working week
Equipment Mobilization Miles - Loaded	5,711	Average of 500 miles round trip for equipment hauling (from Chicago, IL) Average 1 load of equipment per working week
Onsite Haul Truck Miles - Unloaded	49	34 CY Off Road Dump Truck 1 mile round trip per load
Onsite Haul Truck Miles - Loaded	49	34 CY Off Road Dump Truck 1 mile round trip per load
Offsite Haul Truck Miles - Unloaded	4,973	Assumes 16 CY loads of fill materials (gravel/sand backfill and clay cap) are delivered to the site from a regional supplier and 16 CY loads of recyced concrete are hauled to a facility located within 50 miles of the site
Offsite Haul Truck Miles - Loaded	4,973	Assumes truck is returning to the regional supplier/recycling facility located within 50 miles of the site
Material Delivery Miles - Unloaded	2,284	Misc. construction materials (erosion controls, piping, geotextile) Assumes 200 mile round trip, average 2 trips per working week
Material Delivery Miles - Loaded	2,284	Misc. construction materials (erosion controls, piping, geotextile) Assumes 200 mile round trip, average 2 trips per working week

Operation & Maintenance (O&M) Mileage and Labor Estimates - Alternative 3: Horizontal Extraction Wells

Item	Quantity	Assumptions
Labor Total Hours	7,560	Per projected CM total in cost estimate (does not include contingency)
Duration of Onsite OMM Days	240	Total Days
Average Daily Crew Size	3	Assumes multiple crew sizes and a 10 hour work day
Daily Labor Mobilization Miles	90,720	Includes mob/demob from Chicago (260 miles round trip) and local daily commute mileage (40 round trip miles per day). Assumes 6 work days per week
Vehicles Miles Onsite	11,340	Includes light and medium commercial vehicles 15 miles per day for onsite miles No contingency Included
Equipment Mobilization Miles - Unloaded	3,750	Average of 250 miles one-way for equipment mobilization (from Chicago, IL) Average 1 mobilization/demobilization per year for jetting/flushing of conveyance lines over 30 years of operation
Equipment Mobilization Miles - Loaded	3,750	Average of 250 miles one-way for equipment mobilization (from Chicago, IL) Average 1 mobilization/demobilization per year for jetting/flushing of conveyance lines over 30 years of operation
Onsite Haul Truck Miles - Unloaded	0	No onsite hauling during this phase
Onsite Haul Truck Miles - Loaded	0	No onsite hauling during this phase
Offsite Haul Truck Miles - Unloaded	0	No spoil handling off-site will occur under this alternative
Offsite Haul Truck Miles - Loaded	0	No spoil handling off-site will occur under this alternative
Material Delivery Miles - Unloaded	1,500	Misc. vegetation maintenance materials (seeding, etc.) Assumes 200 mile round trip, 1 load per mobilization (once per year)
Material Delivery Miles - Loaded	1,500	Misc. vegetation maintenance materials (seeding, etc.) Assumes 200 mile round trip, 1 load per mobilization (once per year)

CAGM = Corrective Action Groundwater Monitoring

Appendix C

Corrective Measures Assessment

Intended for Illinois Power Generating Company

Date June 12, 2024

Project No. 1940103584-002

35 I.A.C. § 845 CORRECTIVE MEASURES ASSESSMENT

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS IEPA ID: W135015004-02

35 I.A.C. § 845 CORRECTIVE MEASURES ASSESSMENT COFFEEN POWER PLANT ASH POND NO. 2

Project name	Coffeen Power Plant Ash Pond No. 2
Project no.	1940103584-002
Recipient	Illinois Power Generating Company
Document type	35 I.A.C. § 845 Corrective Measures Assessment
Revision	FINAL
Date	June 12, 2024
Prepared by	A. Frances Ackerman, RG, PE
Checked by	Lucas P. Carr, PE
Approved by	Brian G. Hennings, PG

2 2 2 4

Frances Ackerman, RG, PE Senior Managing Engineer

Brian Hennings, PG Project Officer, Hydrogeology

CONTENTS

1.	Introduction	3
1.1	Source Control and Residual Plume Management	3
1.2	Adaptive Site Management	3
2.	Site Information	5
2.1	Conceptual Site Model	5
2.2	Groundwater Quality	6
3.	Corrective Measures Assessment Methodology	8
4.	Description of Potential Corrective Measure Technologies	9
4.1	Source Control with Groundwater Polishing	9
4.2	Source Control with Groundwater Extraction	10
4.3	Source Control with a Cutoff Wall	11
4.4	Source Control with In-Situ Chemical Treatment	11
5.	Assessment of Corrective Measure Technologies	13
5.1	Requirements	13
5.2	Groundwater Corrective Technology Assessment	13
5.2.1	Source Control with Groundwater Polishing	13
5.2.2	Source Control with Groundwater Extraction	14
5.2.3	Source Control with Groundwater Cutoff Wall	15
5.2.4	Source Control with In-Situ Chemical Treatment	16
5.3	Technologies Advanced to CAAA	17
6.	References	18

TABLES

 Table 5-1
 Corrective Measures Assessment Matrix

FIGURES

Figure 2-1	Site Location Map
Figure 2-2	Site Map
Figure 2-3	Potentiometric Surface Map - April 30, 2023

Figure 2-4 Monitoring Well Location Map

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
ASD	alternative source demonstration
CAAA	Corrective Action Alternatives Analysis
CAP	Corrective Action Plan
CCR	coal combustion residuals
CIP	closure-in-place
CMA	Corrective Measures Assessment
cm/s	centimeters per second
CPP	Coffeen Power Plant
CSM	conceptual site model
DA	deep aquifer
DCU	deep confining unit
EPRI	Electric Power Research Institute
E001	Event 1; quarter 2, 2023
GMF	Gypsum Management Facility
GMF GSP	GMF Gypsum Stack Pond
GMF RP	GMF Recycle Pond
GMP	Groundwater Monitoring Plan
GWPS	groundwater protection standard(s)
ID	identification
IDNR	Illinois Department of Natural Resources
IEPA	Illinois Environmental Protection Agency
IPCB	Illinois Pollution Control Board
IPGC	Illinois Power Generating Company
ITRC	National Research Council, Interstate Technology & Regulatory Council
LCU	lower confining unit
NID	National Inventory of Dams
No.	number
NPDES	National Pollutant Discharge Elimination System
NRT	Natural Resource Technology
PMP	potential migration pathway
PRB	Permeable Reactive Barrier
Ramboll	Ramboll Americas Engineering Solutions, Inc.
SI	surface impoundment
Site	Coffeen Power Plant
TDS	total dissolved solids
UA	uppermost aquifer
UCU	upper confining unit
USEPA	United States Environmental Protection Agency
ZVI	zero-valent iron
1. INTRODUCTION

Ramboll Americas Engineering Solutions, Inc. (Ramboll) has developed this assessment of groundwater corrective measures on behalf of Illinois Power Generating Company (IPGC) to assist in the compliance with the requirements of Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845 Standards for the Disposal of Coal Combustion Residuals in Surface Impoundments. This assessment applies specifically to the coal combustion residuals (CCR) unit referred to as the Ash Pond Number (No.) 2 (AP2) at the Coffeen Power Plant (CPP), also referred to as CCR unit identification (ID) No. 102, Illinois Environmental Protection Agency (IEPA) ID No. W1350150004-02, and National Inventory of Dams (NID) No. IL50723. This report addresses content requirements specific to 35 I.A.C. § 845.660 (Assessment of Corrective Measures) for exceedances of boron, cobalt, pH, sulfate, and total dissolved solids (TDS) at AP2.

1.1 Source Control and Residual Plume Management

IPGC completed significant source control and residual plume management efforts in 2020 as part of final closure of AP2 (Golder Associates, Inc., 2021). The final closure was performed in accordance with the Closure and Post-Closure Care Plan (AECOM, 2017) that was developed in accordance with Title 40 of the Code of Federal Regulations (40 C.F.R.) § 257 and approved by IEPA on January 30, 2018.

The AP2 closure construction included closure-in-place (CIP) of the entire AP2 and installation of an alternative geomembrane cover system. This was accomplished by constructing a final cover system that complies with 40 C.F.R. § 257.102 to minimize water infiltration into the closed AP2 and improve surface water drainage off the cover system, thus reducing generation of potentially impacted water and ultimately reducing the extent of CCR impacts to groundwater. The source control was predicted to lower water levels and decrease the potential transport of CCR constituents off-site (Natural Resource Technology [NRT], 2017a). These source control activities will serve as the primary groundwater corrective measure at AP2. The potentially feasible corrective measures presented herein are intended to be supplementary to the primary source control and are intended to serve as management measures to address any residual plume that may remain after completion of source control.

1.2 Adaptive Site Management

Adaptive site management strategies will be employed as an integral part of ongoing corrective action at AP2. The adaptive site management approach will allow timely incorporation of new site information over the closure and post-closure life cycle of AP2 to ensure the achievement of the groundwater protection standards (GWPS). The adaptive site management approach is proposed to expedite progress toward meeting the GWPS while acknowledging uncertainties, such as the persistence of current groundwater flow directions and flux quantities and potential related changes in geochemical conditions. A structured decision-making process and explicitly planned iterations between the implemented corrective measures and monitoring results will ensure that remediation is occurring. System performance and the condition of the residual plume will be monitored as the corrective measure(s) selected through the 35 I.A.C. § 845.710 Corrective Action Plan (CAP) process are implemented to supplement the source control measures described above. If the groundwater concentrations do not decrease consistent with the modeling predictions, the adaptive site management approach will facilitate timely modifications or enhancements to the corrective measure(s), as needed in accordance with 35 I.A.C. §

845.680(b). This approach will be employed in response to new site information and/or the performance of the selected corrective measure(s).

The planned adaptive site management strategies are generally consistent with National Research Council, Interstate Technology & Regulatory Council (ITRC) and United States Environmental Protection Agency (USEPA) methodologies developed to address sites with long remediation times and high levels of uncertainty regarding the remedial actions necessary to achieve final and protective remediation goals (USEPA, 2022). The elements of the proposed adaptive site management strategy at AP2 will be responsive to the changing conditions associated with pond closure and performance of the selected corrective measure(s) and will include the following:

- 1. Implementing the groundwater corrective measure(s) selected as part of the CAP for the current conditions at AP2. The selected corrective measures may include a combination of the technologies presented in this Corrective Measures Assessment (CMA).
- 2. Establishing both the absolute remedial objective and functional (interim) goals to monitor progress toward the remedial objective. Achieving the GWPS for 35 I.A.C. § 845.600 constituents at the downgradient waste boundary is the remedial objective for AP2. Specific functional goals will be developed as part of the CAP process. The functional goals will be measurable thresholds for future action and may include short-term or technology-specific objectives and triggers. Functional goals may vary for different locations, CCR constituents or other site-specific considerations (ITRC, 2017) and will serve as benchmarks for comparison to ongoing groundwater monitoring at AP2.
- 3. Ongoing groundwater monitoring at AP2 will continue throughout the implementation of source control and residual plume management activities. Post-closure monitoring will continue for a period of at least 30 years, in accordance with 35 I.A.C. § 845.780(c). A comprehensive groundwater monitoring plan (GMP) will be developed as part of the CAP process in accordance with 35 I.A.C. § 845.670 and 35 I.A.C. § 845.220(c)(4). The GMP will include the functional goals and proposed action levels.
- 4. Groundwater monitoring information will be used to guide decisions regarding whether progress toward the remedial goal is advancing as expected and/or whether additional actions may be needed to achieve the remedial objective, in conjunction with IEPA, as required by 35 I.A.C. § 845.680(b).

2. SITE INFORMATION

The CPP is located in Montgomery County in central Illinois, approximately two miles south of the city of Coffeen and about eight miles southeast of the city of Hillsboro. AP2 is a closed CCR surface impoundment (SI) located in Section 11, Township 7 North and Range 7 East. AP2 is located south of the power plant and situated in a predominantly agricultural area (**Figure 2-1**). AP2 is located between two lobes of Coffeen Lake (the western lobe is identified as "Coffeen Lake" and the upper reaches of the eastern lobe are fed by a stream labeled as "Unnamed Tributary" on Figures 2-1 and 2-2), which surround the SI to the west, east, and south. The southern edge of AP2 is adjacent to the former discharge flume for the closed generating plant. AP2 is bordered by other CCR units and agricultural land to the north. **Figure 2-2** is a site map showing the location of AP2 (35 I.A.C. § 845 regulated CCR Unit and subject of this CMA), Ash Pond No. 1 (AP1), the Gypsum Management Facility (GMF) Gypsum Stack Pond (GMF GSP), GMF Recycle Pond (GMF RP), and Landfill. The area near AP2 will hereinafter be referred to as the Site.

The CPP was a coal-fired electrical generating plant that began operation in 1964. The plant initially burned bituminous coal from Illinois and CCR from the coal fired units was disposed of in surface impoundments. AP2 was utilized in the early 1970's until the mid-1980's, beginning in 2010 CCR material was placed in the Landfill and GMF Units.

2.1 Conceptual Site Model

Significant site investigation has been completed at the CPP to characterize the geology, hydrogeology, and groundwater quality. Based on extensive investigation and monitoring, AP2 has been well characterized and detailed in the Hydrogeologic Characterization Report (NRT, 2017b). The conceptual site model (CSM) is presented below.

In addition to the CCR present at AP2, there are five principal layers of unlithified material present above the bedrock, which are categorized into hydrostratigraphic units below (from surface downward) based on stratigraphic relationships and common hydrogeologic characteristics.

- **Upper Confining Unit (UCU):** Composed of the Roxana and Peoria Silts (Loess Unit) and the upper clayey portion of the Hagarstown member which are classified as silts to clayey silts and gravelly clay below the surficial soil. Loess Unit thickness ranges from 0 feet (absent) to 16 feet and the clayey portion of the Hagarstown member is up to 6 feet thick. The UCU has been eroded east of AP2, near the Unnamed Tributary.
- **Uppermost Aquifer:** The uppermost aquifer is the Hagarstown Member which is classified as primarily sandy to gravelly silts and clays with thin beds of sands. Where present the sandy portion of the Hagarstown is generally 2 to 4 feet thick, and 1 to 2 feet thick near AP2. Similar to the Loess Unit and upper Hagarstown, the lower Hagarstown is absent in some locations near the Unnamed Tributary. Historical hydraulic conductivities near AP2 ranged from 4.3 x 10⁻⁵ to 9.8 x 10⁻⁴ centimeters per second (cm/s) (geometric mean of 2.7 x 10⁻⁴ cm/s).
- Lower Confining Unit (LCU): Comprised of the Vandalia Member, Mulberry Grove Member, and Smithboro Member. These units include a sandy to silty till with thin, discontinuous sand lenses, a discontinuous and limited extent sandy silt which has infilled prior erosional features, and silty to clayey diamicton, respectively. The Vandalia Member typically ranged in thickness

from 11.7 feet in the northern portion of the CPP, to 31.0 feet between the GMF GSP and the GMF RP; the Mulberry Grove Member is represented by pockets (generally less than 2 feet thick); and the Smithboro Member ranges in thickness from 6.7 to 21.2 feet northwest of the landfill. This LCU has been identified as a potential migration pathway (PMP) because downward vertical gradients indicate that there is the potential for impacts to migrate through this unit. The LCU is approximately 7 to 18 feet thick near AP2. Historical hydraulic conductivities ranged from 4.0×10^{-8} to 3.4×10^{-5} cm/s (geometric mean of 5.6 x 10^{-6} cm/s).

- Deep Aquifer (DA): Sand and sandy silt/clay units of the Yarmouth Soil, which include accretionary deposits of fine sediment and organic materials, typically less than five feet thick and discontinuous across the CPP. This unit is also identified as a PMP due to presence of downward gradients in the overlying LCU and the relatively greater hydraulic conductivities measured in the DA. Historical hydraulic conductivity in the DA ranged from 7.5 x 10⁻⁸ to 3.6 x 10⁻⁵ cm/s (geometric mean of 4.4 x 10⁻⁴ cm/s).
- **Deep Confining Unit (DCU):** Comprised of the Banner Formation, generally consists of clays, silts, and sands. The Lierle Clay Member is the upper layer of the Banner Formation which was encountered at the Site. No monitoring wells are screened only within the DCU, and no field hydraulic conductivity tests were conducted for the DCU.

In the UA, groundwater generally migrates from central portions of the CPP towards Coffeen Lake or the Unnamed Tributary. The LCU and DA underlying the UA have been identified as PMPs. Groundwater elevations are primarily controlled by surface topography, geologic unit topography, and water levels within Coffeen Lake and the Unnamed Tributary. Groundwater generally flows from the center of the CPP west towards Coffeen Lake, and east towards the Unnamed Tributary, the eastern lobe of Coffeen Lake, and the former discharge flume present along the southern perimeter of AP2 and northern perimeter of AP1, resulting in a groundwater divide (high) running through the middle of the CPP. Groundwater elevations and contours for the quarter 2, 2023 groundwater monitoring event (Event 1 [E001]) are presented in **Figure 2-3**.

2.2 Groundwater Quality

Groundwater monitoring in accordance with the proposed GMP and sampling methodologies provided in the operating permit application for AP2 began in the second quarter of 2023. The 35 I.A.C § 845 groundwater monitoring system is displayed on **Figure 2-4** and consists of 10 wells screened in the UA (three background and seven compliance), one compliance well screened in the LCU, and three temporary water level only surface water staff gages. The groundwater samples collected from the 11 wells are used to monitor and evaluate groundwater quality and demonstrate compliance with the groundwater quality standards listed in 35 I.A.C. § 845.600(a). The proposed monitoring wells yield groundwater samples that represent the quality of downgradient groundwater at the CCR boundary (as required in 35 I.A.C. § 845.630(a)(2)).

The E001 sampling event was completed on June 8, 2023. In accordance with 35 I.A.C. § 845.610(b)(3)(C), statistically derived values were compared with the GWPSs summarized in 35 I.A.C. § 845.600 to determine exceedances of the GWPS. The statistical determination identified the following GWPS exceedances at compliance groundwater monitoring wells (Ramboll, 2023):

- Boron in UA wells G401, G402, G404, and G405
- Cobalt in UA well G401
- pH in UA well G401

- Sulfate in UA wells G401, G402, G404, G405, G406, and G407
- TDS in UA wells G401, G402, G404, G405, and G407

Pursuant to 35 I.A.C. § 845.650(e), an alternative source demonstration (ASD) was prepared and submitted to IEPA that presented evidence demonstrating that sources other than AP2 were the cause of the cobalt GWPS exceedance in G401, and sulfate and TDS GWPS exceedances in G407 listed above (Geosyntec Consultants, Inc., 2023).

The IEPA did not concur with the cobalt ASD due to the following alleged data gaps:

- 1. Source characterization of the CCR at AP2 must include total solids sampling in accordance with SW846.
- 2. Research on porewater characterization of CCR does not come from an independent peer reviewed publication.

The IEPA did not concur with the G407 sulfate and TDS ASD due to the following alleged data gaps:

- 1. Characterization to include sample and analysis in accordance with 35 I.A.C. § 845.640 must be provided with the ASD.
- 2. Updated geologic cross sections must be provided and must include data surrounding the hydrogeologic divide and the exceedance well G407 in accordance with § 845.620(b)(9).

IPGC filed a petition asking the Illinois Pollution Control Board (IPCB) to review IEPA's ASD denial. The petition included a motion for a partial stay of the 35 I.A.C. § 845 requirements as they apply to the cobalt, sulfate, and TDS GWPS exceedances at AP2. The IEPA had no objection to the requested stay, which was granted by IPCB on April 18, 2024. Therefore, the CMA will address identified GWPS exceedances summarized above, exclusive of the cobalt exceedance at well G401, and the sulfate and TDS exceedances in G407, in accordance with 35 I.A.C. § 845.660 and the partial stay. The 35 I.A.C. § 845.650 groundwater monitoring requirements will continue to ensure that there will be timely detection of any additional changes in groundwater quality during the stay.

3. CORRECTIVE MEASURES ASSESSMENT METHODOLOGY

This section describes the CMA methodology initiated in response to the identification of exceedances of the GWPSs for 35 I.A.C. § 845.600 constituents at the downgradient waste boundary of AP2 during the E001 groundwater monitoring event (Ramboll, 2023). The CMA was initiated on January 14, 2024, within 90 days after the detection of exceedance(s) of GWPS. Under 35 I.A.C. § 845, owners and operators of existing CCR SIs must initiate the assessment of corrective measures in accordance with 35 I.A.C. § 845.660 if one or more constituents are detected, and confirmed by an immediate resample, to be in exceedance of a GWPS in 35 I.A.C. § 845.600, and the owner or operator has not demonstrated that: a source other than the CCR SI caused the exceedance, or; that the exceedance of the GWPS resulted from error in sampling, analysis, statistical evaluation, natural variation in groundwater quality or a change in the potentiometric surface and groundwater flow direction (*i.e.*, an ASD).

The CMA is the first step in developing a long-term CAP to address the GWPS exceedances at CCR SIs. The process provides a systematic, rational method for evaluating potential corrective measures by first identifying potentially viable technologies and assessing them using qualitative information to eliminate from consideration infeasible or otherwise unacceptable remedial technologies (*i.e.*, the 35 I.A.C. § 845.660). The remaining technologies will be evaluated individually, or assembled into combined alternatives, and further evaluated under the CAP process per 35 I.A.C. § 845.670.

This CMA identified applicable corrective measure technologies and evaluated them for viability, given the site-specific conditions and considerations at AP2, by addressing the following 35 I.A.C § 845.660 evaluation criteria:

- Performance, reliability, ease of implementation and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination;
- Time required to begin and complete the CAP; and
- Institutional requirements, such as State or local permit requirements or other environmental or public health requirements that may substantially affect implementation of the CAP.

The evaluation included qualitative and/or semi-quantitative screening of the potential corrective measures (technologies) relative to their general performance, reliability, and ease of implementation characteristics and their potential impacts, timeframes, and institutional requirements to assess the viability of each technology to address the GWPS exceedances at AP2. This approach provided a reasoned set of corrective measures that could be used, either individually or in combination, to supplement the primary source control measures described in **Section 1.1**. This set of corrective measures will be further evaluated in the Corrective Action Alternatives Assessment (CAAA).

4. DESCRIPTION OF POTENTIAL CORRECTIVE MEASURE TECHNOLOGIES

The potential groundwater corrective measures summarized below are applicable to AP2 and were included in the CMA development and analysis. Site-specific considerations provided in **Section 2** were used to evaluate potential groundwater corrective measures. Each of the corrective measures evaluated may be capable of satisfying the requirements and objectives, listed in **Section 3**, to varying degrees of effectiveness. The corrective measure review process was intended to yield a set of applicable corrective measures that could be used to supplement the primary corrective actions, namely the completed source control activities described in **Section 1.1** (CIP with an alternative geomembrane cover system). The completed source control has significantly reduced infiltration rates relative to pre-closure conditions. Ongoing monitoring will be an integral part of all corrective measures to verify and document the remedial process. The corrective measures ultimately advanced to the CAAA and selected in the CAP will be used to enhance the effectiveness of the completed source control and may be used independently or combined into specific remedial alternatives to leverage the advantages of multiple corrective measures to attain GWPSs.

Source control measures were completed for AP2 in 2020, as described in **Section 1.1**; all of the evaluated additional corrective measure technologies are proposed to be supplemental and complementary to source control activities. The following potential corrective measures, commonly used to mitigate groundwater impacts, were considered as a part of the CMA process:

- Source Control with Groundwater Polishing;
- Source Control with Groundwater Extraction (groundwater pumping wells or collection trenches);
- Source Control with a Cutoff Wall; and
- Source Control with In-Situ Chemical Treatment.

4.1 Source Control with Groundwater Polishing

Both federal and state regulators have long recognized that natural geochemical processes can be an acceptable component of a remedial action when it can achieve remedial action objectives in a reasonable timeframe. In 1999, the United States Environmental Protection Agency (USEPA) published a final policy directive (USEPA, 1999) for groundwater remediation and described the process as follows:

• "The reliance on natural attenuation processes (within the context of a carefully controlled and monitored site cleanup approach) to achieve site-specific remediation objectives within a time frame that is reasonable compared to that offered by other more active methods. The 'natural attenuation processes' that are at work in such a remediation approach include a variety of physical, chemical, or biological processes that, under favorable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil or groundwater. These in-situ processes include biodegradation; dispersion; dilution; sorption; volatilization; radioactive decay; and chemical or biological stabilization, transformation, or destruction of contaminants."

The USEPA has stated that source control is the most effective means of ensuring the timely attainment of remediation objectives (USEPA, 1999). Natural geochemical processes may be appropriate as a "finishing step" after effective source control implementation (*i.e.*, groundwater polishing), to reduce the residual mass remaining in the groundwater after closure, if there are no risks to receptors and/or the contaminant plume is not expanding. Thus, groundwater polishing would be used in conjunction with the completed source control activities at the site, which consisted of CIP with an alternative cover system described in **Section 1.1**.

In 2015, USEPA addressed remediation of inorganic compounds in groundwater and noted that the use of natural geochemical processes to address inorganic contaminants: (1) is not intended to constitute a treatment process for inorganic contaminants; (2) when appropriately implemented, can help to restore an aquifer to beneficial uses by immobilizing contaminants onto aquifer solids and providing the primary means for attenuation of contaminants in groundwater; and (3) is not intended to be a "do nothing" response (USEPA, 2015). Rather, documenting the applicability of natural geochemical processes for groundwater remediation should be thoroughly and adequately supported with site-specific characterization data and analysis (USEPA, 1999; USEPA, 2007; USEPA, 2015):

Both physical and chemical processes can contribute to the reduction of the small amount of residual mass remaining since closure of AP2, and the toxicity, mobility, volume, or concentration of contaminants in groundwater. Physical processes applicable to CCR constituents in groundwater include dilution, dispersion, and flushing. Chemical processes applicable to CCR constituents in groundwater include precipitation and coprecipitation (*e.g.,* incorporation into sulfide minerals), sorption (*e.g.,* to iron, manganese, aluminum; to other metal oxides or oxyhydroxides; or to sulfide minerals or organic matter), and ion exchange.

All inorganic compounds are subject to physical processes and under typical environmental conditions, physical mechanisms most often exert the dominant control on the CCR constituents of interest, such as sulfate and chloride, and lithium to a more variable degree. Chemical mechanisms are also likely to be active, though not often dominant, such as adsorption, ion exchange, and organic complexation. In combination with source control, these natural controls can provide an effective means to polish residual loading and achieve the GWPS in a reasonable timeframe. Additional data collection and analysis may be required to support the USEPA's evaluation framework (USEPA, 2015) and obtain regulatory approval.

4.2 Source Control with Groundwater Extraction

Groundwater extraction is one of the most widely used groundwater corrective technologies and has a long history of performance. This corrective measure includes installation of one or more groundwater pumping wells or trenches to control and extract impacted groundwater. Groundwater extraction captures and contains impacted groundwater and can limit plume expansion and/or off-site migration. Construction of a groundwater extraction system typically includes, but is not limited to, the following primary components:

- Designing and constructing a groundwater extraction system consisting of one or more extraction wells and operating at a rate to allow capture of CCR impacted groundwater within the UA and/or the LCU and DA.
- Management of extracted groundwater, which may include modification to the existing National Pollutant Discharge Elimination System (NPDES) permit.

• Ongoing inspection and maintenance of the groundwater extraction system.

Remediation of inorganics by groundwater extraction can be effective, but systems do not always perform as expected. A combination of factors, including geologic heterogeneities, difficulty in flushing low-permeability zones, and rates of contaminant desorption from aquifer solids can limit effectiveness. Groundwater extraction systems require ongoing operation and maintenance to address issues such as iron bacteria and well fouling and to ensure optimal performance. The extracted groundwater must be managed, either by ex-situ treatment or disposal.

4.3 Source Control with a Cutoff Wall

Since the late 1970s and early 1980s, vertical cutoff walls have been used to control and/or isolate impacted groundwater. Low-permeability cutoff walls can be used to prevent horizontal off-site migration of potentially impacted groundwater. Cutoff walls act as barriers to transport of impacted groundwater and can isolate soils that have been impacted by CCR to prevent contact with unimpacted groundwater. Cutoff walls are often used in conjunction with an interior pumping system to establish an inward gradient within the cutoff wall. The gradient imparted by the pumping system maintains an inward flow through the wall, keeping it from acting as a groundwater. Constructing the cutoff wall such that it intersects a low-permeability material at its base, referred to as "keying", greatly increases its effectiveness.

A commonly used cutoff wall construction technology is the slurry trench method, which consists of excavating a trench and backfilling it with a soil-bentonite mixture, often created with the excavated soils, or, for deeper walls, a cement-bentonite mixture that is produced at an onsite batch plant. The trench is temporarily supported with bentonite slurry pumped into the trench during excavation (D'Appolonia & Ryan, 1979). Cutoff wall excavation uses conventional hydraulic excavators, hydraulic excavators equipped with specialized booms to extend their reach (*i.e.*, long-stick excavators), clamshells, or more specialized equipment such as hydromills or secant-pile drill rigs, depending upon trench depth, material excavated, and type of material that the wall is keyed into.

Cutoff walls are a widely accepted technology for containing impacted groundwater. Combining a cutoff wall and groundwater extraction in specific areas may provide advantages over independent use of these potential corrective technologies. Cutoff walls can also be used in combination with groundwater extraction or as part of a PRB system (as the "funnel" in a funnel-and-gate system; **Section 3.4**).

4.4 Source Control with In-Situ Chemical Treatment

The use of in-situ treatment, either by injection or PRBs is a widely used technology for treating impacted groundwater. However, in-situ treatment techniques for boron and sulfate are not well established, therefore performance is unknown.

Chemical treatment could consist of injection of reactive materials into the subsurface to treat contaminants at specific, targeted locations. Alternately, treatment via PRB, where reactive materials are placed in the subsurface at locations designed to direct the contaminant plume along a flow path through the reactive media. In either system, the contaminants are transformed or otherwise rendered into environmentally acceptable forms to attain remediation concentration goals downgradient of the barrier (Electric Power Research Institute [EPRI], 2006).

As groundwater passes through the PRB under natural gradients, dissolved constituents in the groundwater react with the media and are transformed or immobilized. A variety of media have been used or proposed for use in PRBs. Zero-valent iron (ZVI) has been shown to effectively immobilize some CCR constituents, including arsenic, chromium, cobalt, molybdenum, selenium, and sulfate. Use of a combination media consisting of ZVI and a boron-selective ion exchange resin to treat boron has been documented in a pilot-scale test (EPRI, 2006).

System configurations include continuous PRBs, in which the reactive media extends across the entire path of the contaminant plume; and funnel-and-gate systems, where low-permeability barriers are installed to control groundwater flow through a permeable gate containing the reactive media. Continuous PRBs intersect the entire contaminant plume and do not materially impact the groundwater flow system. Design may or may not include keying the PRB into a low-permeability unit at depth. Funnel-and-gate systems utilize a system of barriers to groundwater flow (funnels) to direct the contaminant plume through the reactive gate. The barriers, typically some form of cutoff wall, are keyed into a low-permeability unit at depth to prevent short circuiting of the plume. Funnel-and-gate design must consider the residence time to allow chemical reactions to occur. Directing the contaminant plume through the reactive gate can significantly increase the flow velocity, thus reducing residence time.

Design of in-situ treatment systems requires rigorous site investigation to characterize the site hydrogeology and to delineate the contaminant plume. A thorough understanding of the geochemical and redox characteristics of the plume is critical to assess the feasibility of the process and select appropriate reactive media. Laboratory studies, including batch studies and column studies using samples of site groundwater, are needed to determine the effectiveness of the selected reactive media at the site (EPRI, 2006). The main considerations in selecting reactive media are as follows (Gavaskar et al., 1998 as cited by EPRI, 2006):

- Reactivity The media should be of adequate reactivity to immobilize a contaminant within the residence time of the design.
- Hydraulic performance The media should provide adequate flow through the PRB, meaning a greater particle size than the surrounding aquifer materials. Alternatively, gravel beds have been emplaced in front of barriers to direct flow through the barrier.
- Stability The media should remain reactive for an amount of time that makes its use economically advantageous over other technologies.
- Environmentally compatible by-products Any by-products of media reaction should be environmentally acceptable. For example, iron released by zero-valent iron corrosion should not occur at levels exceeding regulatory acceptance levels.
- Availability and price: The media should be easy to obtain in large quantities at a price that does not negate the economic feasibility of using a PRB.

5. ASSESSMENT OF CORRECTIVE MEASURE TECHNOLOGIES

This CMA was initiated to address exceedances of the 35 I.A.C. § 845.600 GWPS for boron, pH, sulfate, and TDS (exclusive of the sulfate and TDS exceedances in G407) at the downgradient waste boundary of AP2 identified during the E001 groundwater monitoring event (**Section 2.2**).

5.1 Requirements

The potential groundwater corrective technologies described in the previous section were evaluated relative to the requirements presented in **Section 3** and reiterated below:

- Performance, reliability, ease of implementation and potential impacts of appropriate potential remedies, including safety impacts, cross-media impacts, and control of exposure to any residual contamination:
- Time required to begin and complete the corrective action plan; and
- Institutional requirements, such as State or local permit requirement or other environmental or public health requirements that may substantially affect implementation of the corrective action plan.

Table 5-1 presents the qualitative CMA evaluation of each corrective technology relative to these requirements, as well as their ability to address boron, pH, sulfate, and TDS GWPS exceedances. The following sections provide a summary of these evaluations and a discussion of the potential groundwater corrective measure technologies that may be viable, either independently or in combination, to address GWPS exceedances. This section also provides a summary of corrective measure technologies that have been retained and advanced for evaluation as part of the 35 I.A.C. § 845.670 CAAA process for selecting the final remedy for AP2.

5.2 Groundwater Corrective Technology Assessment

Source control, consisting of CIP with an alternate geomembrane cover system, is the primary groundwater corrective measure for AP2 and was completed in 2020. Each of the potential groundwater corrective measure technologies would supplement the positive impact of the prior closure activities. The following sections evaluate groundwater corrective measure technologies that, when combined with site closure, may be viable to address the boron, pH, sulfate, and TDS GWPS exceedances (exclusive of the sulfate and TDS exceedances in G407). Technologies that are not viable for addressing the GWPS at AP2 will be eliminated from further evaluation and viable technologies will be advanced for further evaluation as part of the CAAA process per 35 I.A.C. § 845.600.

5.2.1 Source Control with Groundwater Polishing

Completed source control corrective measures (**Section 1.1**) have reduced the mass loading to the groundwater system. Performance of groundwater polishing, which is currently occurring at the site to some degree, could decrease the timeframe for attainment of GWPS for one or more parameters in the UA. The time estimated for plume contraction at AP2 is relatively long, based on previous groundwater modeling (NRT, 2017c). Groundwater polishing is dependent on site-specific conditions and may not significantly reduce the time to attain the GWPS for all parameters at AP2.

Groundwater polishing by natural geochemical processes is a widely accepted component of groundwater remediation and is routinely approved by the USEPA when paired with source control. The performance of groundwater polishing as a groundwater corrective measure varies based on site-specific conditions and additional data collection may be needed to support the design and regulatory approval. Site conditions are favorable for physical attenuation, while chemical attenuation may be limited under normal UA conditions.

Naturally occurring geochemical processes are currently ongoing at post-closure AP2 and will continue to affect post-closure groundwater constituent concentrations. Ongoing monitoring of groundwater conditions is needed to better understand the mechanisms and efficacy of the groundwater polishing process and to confirm the effectiveness over time. Thus, additional groundwater sample collection and analyses would be required to characterize potential mechanisms, as discussed above, and to provide long term monitoring of the remedial progress. Enhancements to the groundwater monitoring system may be required to ensure that groundwater polishing is occurring as predicted, consistent with the adaptive site management approach. The reliability of groundwater polishing as a groundwater corrective measure is high because operation and maintenance requirements are limited. However, the reliability can also vary based on site-specific hydrogeologic and geochemical conditions.

Following characterization and approval of the CAP, monitoring of the groundwater polishing processes and comparison to functional goals established to monitor progress toward the remedial objective could begin approximately 90 days after CAP permit approval.

No potential safety impacts or exposure to human health or environmental receptors are expected to result from implementing the groundwater polishing processes. Timeframes to achieve GWPS are dependent on site-specific conditions, which require detailed technical analysis which are ongoing and will be evaluated in connection with the CAAA. Selecting groundwater polishing as a corrective measure for AP2 will require approval of the CAP permit by the IEPA.

Monitoring the groundwater polishing to track progress toward achievement of the GWPS, in conjunction with source control at AP2, would require long-term maintenance and monitoring of the groundwater monitoring system to confirm source control and verify the effectiveness in reducing groundwater concentrations to levels below the GWPS. Monitoring activities could be initiated immediately after approval of the CAP permit.

Groundwater polishing processes will continue to occur naturally at AP2. It may be a viable corrective measure for the boron, pH, sulfate, and TDS exceedances at AP2. Therefore, it is being advanced to the CAAA for further evaluation.

5.2.2 Source Control with Groundwater Extraction

Source control is currently reducing mass loading to the AP2 groundwater system and implementing a downgradient groundwater extraction system may reduce the time required to attain the GWPS in the UA. However, the groundwater impacts already present in the low permeability PMP may limit the reduction in time to attain the GWPS that can be achieved by a groundwater extraction system.

Groundwater extraction is a widely accepted corrective measure with a long track record of performance and reliability. It is routinely approved by the IEPA. For a corrective measure using groundwater extraction to effectively control off-site flow and/or to remove potentially

contaminated groundwater, horizontal and vertical capture zone(s) must be created. Additionally, the groundwater flow direction and location of the existing former discharge flume may complicate design and may affect performance of a pumping well system. An alternative method for controlling groundwater flow and removing potentially contaminated groundwater could include constructing a discharge trench by lowering the normal water level in the former discharge flume (*i.e.*, dewatering). This approach could passively increase the hydraulic gradient and corresponding groundwater flow velocities between AP2 and the former discharge flume, without the need for groundwater collection or active pumping. More active methods, such as groundwater extraction trenches, collection sumps, or horizontal wells could also be utilized. Cutoff walls (**Section 4.3**) could also be used in conjunction with a pumping system to control potential groundwater movement from the flume.

Implementation of a groundwater extraction system presents design challenges due to heterogeneous, varied nature of the UA. An extraction system in the UA would have to consider the potential for extracting water from the former discharge flume. Extracted groundwater would require management, possibly including treatment, which may require specialized equipment and/or contractors. Construction of an extraction system to intercept the natural groundwater flow to the south and east would introduce challenges related to construction access and relocating compliance wells so that they are not affected by other site features.

There could be some impacts associated with constructing and operating a groundwater extraction system, including altering the groundwater flow system and some limited exposure to extracted groundwater. The construction of trenches could also cause stability impacts to the AP2 dikes and/or adjacent structures. Additional data collection and analyses would be required to design an extraction system. Construction could be completed within 1 year following completion of a final design. Time of implementation is approximately 3 to 4 years after approval of the CAP permit, including characterization, design, permitting, and construction. Timeframes to achieve GWPS are dependent on site-specific conditions. An extraction system may reduce the time to attain GWPS in the UA relative to the post-closure timeframe predicted by the groundwater modeling. However, accelerated attainment of the GWPS may be limited by the heterogeneity of the UA.

Implementing a groundwater extraction system at AP2 would require IEPA approval of the CAP permit, and extracted groundwater could likely be discharged under the NPDES permit. Additional permitting related to construction in wetlands and/or Waters of the United States may be required, if they are determined to be present at the site and in the vicinity of the extraction system. Depending upon the location of the extraction system, an Illinois Department of Natural Resources (IDNR) dam safety modification permit may also be required to construct an extraction system.

Groundwater extraction could be a viable corrective measure for the boron, pH, sulfate, and TDS exceedances at AP2. Implementation of groundwater extraction may require combining an extraction system with a cutoff wall to provide directional control of groundwater flow. Therefore, groundwater extraction is being advanced to the CAAA for further evaluation.

5.2.3 Source Control with Groundwater Cutoff Wall

Source control is reducing mass loading to the groundwater system and implementing additional groundwater corrective measures may reduce the time required to attain the GWPS in the UA. A

low permeability cutoff wall could be used in combination with a groundwater extraction system in the UA to reduce the water management and treatment requirements for an extraction system.

Groundwater cutoff walls are a widely accepted corrective measure used to control and/or isolate impacted groundwater and are routinely approved by the IEPA. Cutoff walls have a long history of reliable performance as hydraulic barriers, provided they are properly designed and constructed. However, if not coupled with a groundwater extraction system, a cutoff wall will provide directional groundwater control only and may result in redistribution of contaminants and potentially GWPS exceedances at new locations.

Cutoff walls are designed to act as hydraulic barriers; as a result, cutoff walls inherently alter the existing groundwater flow system. Changes to the existing groundwater flow system may need to be controlled to maximize the effectiveness of the remedy by, for example, combining a cutoff wall with groundwater extraction to control build-up of hydraulic head upgradient and around the cutoff walls. The effectiveness of a cutoff wall as a hydraulic barrier also relies on the contrast between the hydraulic conductivity of the aquifer and the cutoff wall. The most effective barriers have hydraulic conductivity values that are several orders of magnitude lower than the geologic materials they are in contact with. A cutoff wall designed with hydraulic conductivity of 1×10^{-7} cm/s would two to four orders of magnitude lower than the UA, which has hydraulic conductivities from 1.7×10^{-5} to 9.1×10^{-3} cm/s (NRT, 2017a), and would be an effective containment method in the UA and could improve the performance of a UA extraction system.

Constructing a cutoff wall could result in structural impacts to the AP1 and AP2 embankment dikes, depending on the location of the wall. Specialized construction contractor(s) may be required depending upon the required construction methodology and site access considerations, which could delay implementation.

Additional data collection and analyses would be required to design a cutoff wall. The time to implement a cutoff wall is approximately 4 to 5 years, including characterization, design, permitting and construction. To attain GWPS, cutoff walls require a separate groundwater corrective measure to operate in concert with the cutoff wall(s). Cutoff walls are commonly coupled with groundwater polishing and/or groundwater extraction as groundwater corrective measures. The time to attain GWPS is dependent on the selected groundwater corrective measure or measures that are coupled with the cutoff walls.

Constructing a cutoff wall at AP2 would require IEPA approval of the CAP permit and, depending on the location, an IDNR dam safety modification permit may be required. Construction of a cutoff wall may also require an evaluation and/or permits related to wetlands if they are determined to be present in the area of the proposed remedy.

A cutoff wall alone would not be a viable corrective measure for the boron, pH, sulfate, and TDS exceedances at AP2. However, a cutoff wall may provide directional control, which, when combined with other corrective measures, would reduce the time required to achieve and attain GWPS. Therefore, the cutoff wall is being advanced to the CAAA for further evaluation.

5.2.4 Source Control with In-Situ Chemical Treatment

Source control is reducing mass loading to the groundwater system and implementing additional groundwater corrective measures may reduce the time required to attain the GWPS in the UA.

Use of in-situ treatment, either through targeted injection of reactive media or in PRB systems, to transform contaminants into environmentally acceptable forms to attain the GWPS was considered.

In-situ treatment using ion exchange (IX) to address boron and sulfate exceedances in groundwater is not an established or widely accepted groundwater corrective measure; therefore, its performance and reliability are unknown. Regulatory acceptance of this innovative approach to achieving the GWPS is uncertain.

In-situ treatment presents design and construction challenges due to the heterogeneous and varied nature of the UA. Depending upon the location of a PRB system, construction may affect AP2 embankment and/or final cover system and periodic change-outs of ion exchange resin media may be required.

Additional data collection and analyses would be required to design an in-situ treatment system and bench scale and/or pilot scale testing may be required to demonstrate performance and reliability. Time of implementation is approximately 4 to 6 years after approval of the CAP permit, including characterization, design, permitting, and construction. Timeframes to achieve GWPS are dependent on demonstrations of performance and reliability along with regulatory acceptance. It is not known whether in-situ treatment would reduce the time to attain GWPS in the UA relative to the post-closure timeframe predicted by the groundwater modeling.

Due to the uncertain performance, reliability and potential for regulatory hurdles, in-situ chemical treatment is not a viable corrective measure for the boron and sulfate exceedances at AP2 and is not being advanced to the CAAA for further evaluation.

5.3 Technologies Advanced to CAAA

Based on the evaluations presented above, the following potential corrective technologies are being advanced to the CAAA, individually or in combination, for more detailed evaluations:

- Source control with groundwater polishing;
- Source control and with groundwater extraction; and
- Source control with a groundwater cutoff wall.

6. **REFERENCES**

AECOM, 201. Closure and Post-Closure Care Plan for Coffeen Ash Pond No. 2 at Illinois Power Generating Company Coffeen Power Station. Coffeen, Illinois. January 2017.

D'Appolonia, D.J., and Ryan, C.R., 1979. *Soil-Bentonite Slurry Trench Cut-Off Walls*, Geotechnical Exhibition and Technical Conference, Chicago, Illinois.

Electric Power Research Institute (EPRI), 2006. *Groundwater Remediation of Inorganic Constituents at Coal Combustion Project Management Sites, Technical Report #1012584*, October 2006.

Gavaskar, A.R., N Gupta, B.M. Sass, R.J. Janosy and D. O'Sullivan, 1998. *Permeable Reactive Barriers for Groundwater Remediation: Design, Construction and Monitoring*. Battelle Press.

Geosyntec Consultants, 2023. Alternative Source Demonstration, Coffeen Power Plant Ash Pond No. 2 (Unit ID #102), IEPA ID: W1350150004-02, 35 I.A.C. 845.650. December, 2023.

Golder Associates, Inc., 2021. *Construction Completion and Construction Quality Assurance Report, Coffeen Power Station Ash Pond #2 Closure. March*, 2021.

Interstate Technology & Regulatory Council (ITRC), 2017. *Remediation Management of Complex Sites*. RMCS-1. Washington, D.C.: Interstate Technology & Regulatory Council, Remediation Management of Complex Sites Team. <u>https://rmcs-1.itrcweb.org</u>.

Natural Resource Technology, Inc. (NRT), 2017a. *Hydrogeologic Site Characterization Report,* Ash Pond 2, Coffeen Power Station, Coffeen, Illinois. January 24, 2017.

Natural Resource Technology, Inc. (NRT), 2017b. *Hydrostatic Modeling Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois.* January 24, 2017.

Natural Resource Technology, Inc. (NRT), 2017c. *Groundwater Model Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois.* January 24, 2017.

Ramboll Americas Engineering Solutions, Inc. (Ramboll), 2023. 35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances, Quarter 2, 2023, Ash Pond No. 2, Coffeen Power Plant, Coffeen, Illinois. October 16, 2023.

United States Environmental Protection Agency (USEPA), 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Directive No. 9200.U-17P. Washington, D.C.: EPA, Office of Solid Waste and Emergency Response.

United States Environmental Protection Agency (USEPA), 2007. *Monitored Natural Attenuation of Inorganic Contaminants in Ground Water, Volume 1 – Technical Basis for Assessment. EPA/600/R-07/139*. National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio. October 2007.

United States Environmental Protection Agency (USEPA), 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Directive No.

9283.1-36. U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response. August 2015.

United States Environmental Protection Agency (USEPA), 2022. *Adaptive Site Management – A Framework for Implementing Adaptive Management at Contaminated Sediment Superfund Sites. Directive No. 9200.1-166*. U.S. Environmental Protection Agency. June 2022.

TABLES

TABLE 5-1. CORRECTIVE MEASURES ASSESSMENT MATRIX ASH POND NO. 2 COFEEN POWER PLANT COFFEEN, ILLINOIS June 12, 2024

	Evaluation Factors						
Remedy	Performance	Reliability	Ease of Implementation	Potential Impacts of Remedy (safety impacts, cross-media impacts, control of exposure to any residual contamination)	Time Required to Begin and Implement Remedy ¹	Time to Attain Groundwater Protection Standards	Institutional Requirements (state/local permit requirements, environmental/public health requirements that affect implementation of remedy)
Source Control with Groundwater Polishing	Performs best paired with source control, which was completed by closure in place with an alternate cover system in 2020. Site conditions are favorable for physical processes, while attenuation processes may be limited under normal aquifer conditions.	Ongoing analysis will evaluate if the attenuation mechanism has low reversibility, the aquifer has sufficient capacity, and the hydrogeology is favorable for physical processes.	Evaluation is underway and is expected to be completed in 2024. Long-term monitoring would be required. Implementing would not require extensive specialized equipment or contractors.	None identified.	Approximately 90 days after CAP permit approval.	Dependent on site-specific conditions including source decay rate. Less than the post-closure timeframe predicted by the groundwater model.	IEPA approval of the CAP is required.
Source Control with Groundwater Extraction	Widely accepted and routinely approved technology; variable performance of a pumping system is anticipated in the heterogeneous uppermost aquifer and possibly due to proximity of CPP discharge flume (might capture water from the extraction system). A downgradient extraction trench, or alternately, deepening the discharge flume, combined with a groundwater pumping system, may be more effective that an independent groundwater pumping system.	Reliable if properly designed, constructed and maintained. Heterogeneous, varied nature of uppermost aquifer may present reliability challenges for pumping wells.	Design challenges due to heterogeneous, varied nature of uppermost aquifer. Specialized contractors may be-necessary. Extracted groundwater would require management, possibly including treatment, which may require specialized equipment/contractors. Construction of an extraction system to intercept the natural groundwater flow to the south and east, would introduce challenges related to construction access and relocating compliance wells so that they are not affected by other site features.	Alters groundwater flow system. Potential for some limited exposure to extracted groundwater. Groundwater extraction may induce settlement, which could cause structural impacts to the AP1 or AP2 embankments and/or adjacent structures.	Design, permitting and construction is expected to take 3 to 4 years after CAP permit approval. Additional time may be required to permit a trench and a new compliance monitoring well network.	May be similar to the timeframe predicted by the groundwater model due to the low permeability Upper Confining Unit.	IEPA approval of the CAP permit is required. Extracted groundwater could likely be discharged under the NPDES permit. Approval from IEPA for modifications to the compliance monitoring well network proposed in the operating permit would be required. An IDNR dam safety modification permit might also be required, depending on location of wells and settlement. If an extraction trench is used, additional permitting related to construction in wetlands and/or Waters of the United States may be required, if they are determined to be present in the area of the proposed remedy.
Source Control with Groundwater Cutoff Wall	Widely accepted and routinely approved technology with good performance if properly designed and constructed. If not combined with groundwater extraction, a cutoff wall will provide directional control only, thus redirecting flow to other areas where GWPS may be exceeded.	Reliable for groundwater directional control if properly designed and constructed.	Widely used, established technology. May require specialized contractors depending upon the construction/implementation method.	Alters groundwater flow system but does not provide any treatment. Can result in unintended consequences resulting from redirecting contaminants to areas where they are not currently present. May cause structural impacts to the embankment, depending on the location of the wall.	Design, permitting and construction is expected to take 4 to 5 years after CAP approval. Implementation could potentially be accelerated by combining with closure construction activities.	Provides groundwater directional control only. Combination with other groundwater corrective measure(s), such as groundwater extraction or permeable reactive barrier, would reduce the time required to attain GWPS. Time required may be similar to the groundwater model prediction due to the low permeability Upper Confining Unit.	IEPA approval of the CAP permit is required. An IDNR dam safety permit may also be required depending on the location of the cutoff wall. May also require an evaluation and/or permits related to wetlands, if determined to be present in the area of the proposed remedy.
Source Control with In-Situ Treatment	In-situ treatment using IX resins not well established for sulfate or boron, therefore performance is unknown.	Unknown reliability for sulfate or boron.	Design challenges related to reactive material delivery and due to heterogenous, discontinuous nature of uppermost aquifer. Could require periodic change-outs of resin media.	A permeable reactive barrier may cause structural impacts to the embankment, depending on the location of the barrier.	May require bench scale and/or pilot scale testing as part of design. Design, permitting and construction is expected to take 4 to 6 years after CAP approval.	There is uncertainty regarding whether a in-situ treatment would reduce sulfate or boron concentrations to achieve the GWPS. Dependent on conditions specific to the reactive media used and the site. Treatment technology is not well understood.	IEPA approval of the CAP permit is required. IEPA approval of this innovative and relatively unproved solution may be challenging. An IDNR dam safety permit may also be required depending on the location of the barrier. May also require an evaluation and/or permits related to wetlands, if determined to be present in the area of the proposed remedy.

Notes: ¹ Time required to begin and implement remedy includes design, permitting, and construction. AP1 - Ash Pond No. 1 AP2 - Ash Pond No. 2 CAP - Corrective Action Plan CPS - Coffeen Power Station GWPS - groundwater protection standard IDNR - Illinois Department of Natural Resources IEPA - Illinois Environmental Protection Agency IX - Ion Exchange NPDES - National Pollutant Discharge and Elimination System

FIGURES

NIT)	SITE LOCATION MAP	FIGURE 2-1
	35 I.A.C. § 845 CORRECTIVE MEASURES ASSESSMENT	ENGINEERING SOLO HONS, INC.
	COFFEEN POWER PLANT COFFEEN, ILLINOIS	RAMBOLL

REGULATED UNIT (SUBJECT UN

0 1,000 2,000

REGULATED UNIT (SUBJECT UNIT) SITE FEATURE LIMITS OF FINAL COVER PROPERTY BOUNDARY	SITE MAP	FIGURE 2-2
0 275 550	35 I.A.C. § 845 CORRECTIVE MEASURES ASSESSMENT ASH POND NO.2 COFFEEN POWER PLANT COFFEEN, ILLINOIS	RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

PROJECT: 169000XXXX | DATED: 12/7/2023 | DESIGNER: egreaves

Y:\Mapping\Projects\22\2285\MXD\GW Contours\Round 2023\Coffeen\AP2 102\2023 AP2 102.aprx

- COMPLIANCE MONITORING WELL
- BACKGROUND MONITORING WELL
- HONITORING WELL
- SOURCE SAMPLE LOCATION

650 __ Feet

LEACHATE WELL

325

0

L

- STAFF GAGE; RIVER
- STAFF GAGE, CCR UNIT
- GROUNDWATER ELEVATION — CONTOUR (2-FT CONTOUR INTERVAL, NAVD88)
- INFERRED GROUNDWATER ELEVATION CONTOUR
- GROUNDWATER FLOW DIRECTION
- REGULATED UNIT (SUBJECT UNIT)
- SITE FEATURE
- PROPERTY BOUNDARY

NOTES: 1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING. 2. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)

POTENTIOMETRIC SURFACE MAP APRIL 30, 2023

> 35 I.A.C. § 845 CORRECTIVE MEASURES ASSESSMENT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

FIGURE 2-3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

COMPLIANCE WELL 🖶 BACKGROUND WELL HONITORING WELL STAFF GAGE

REGULATED UNIT (SUBJECT UNIT) SITE FEATURE LIMITS OF FINAL COVER PROPERTY BOUNDARY

MONITORING WELL LOCATION MAP

35 I.A.C. § 845 CORRECTIVE MEASURES ASSESSMENT

FIGURE 2-4

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

ASH POND NO.2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

Appendix D

Nature and Extent Report

Intended for Illinois Power Generating Company 134 CIPS Lane Coffeen, IL 62017 Montgomery County

Date June 12, 2024

Project No. 1940103584-002

NATURE AND EXTENT REPORT COFFEEN POWER PLANT, ASH POND NO. 2, IEPA ID NO. W1350150004-02

NATURE AND EXTENT REPORT COFFEEN POWER PLANT, ASH POND NO. 2, IEPA ID NO. W1350150004-02

Project name Project no. Recipient Document type Revision Date Prepared by Checked by Approved by Coffeen Power Plant Ash Pond No. 2 1940103584-002 Illinois Power Generating Company Nature and Extent Report Final June 12, 2024 Alison O'Connor, PhD and Nathaniel Keller Melanie Conklin Brian G. Hennings, PG

Ramboll 234 W. Florida Street Fifth Floor Milwaukee, WI 53204 USA

T 414-837-3607 F 414-837-3608 https://ramboll.com

Alson Komm

Alison O'Connor, PhD Geochemist

R Kellen

Nathaniel R. Keller Senior Technical Manager

Brian G. Hennings, PG Project Officer, Hydrogeology

CONTENTS

EXECUTI	/E SUMMARY	4
1.	Introduction	6
2.	Unit Background	7
2.1	Site Location and Description	7
2.2	Description of CCR Unit	7
2.3	Geology and Hydrogeology	8
2.3.1	Hydrostratigraphic Units	8
2.3.2	Uppermost Aquifer	9
2.3.3	Potential Migration Pathways	9
2.3.4	Regional Bedrock Geology	10
2.3.5	Water Table Elevation and Groundwater Flow Direction	10
2.3.5.1	Vertical Hydraulic Gradients	11
2.3.5.2	Impact of Surface Water Bodies on Groundwater Flow	12
2.3.6	Hydraulic Conductivities	12
2.3.6.1	Field Hydraulic Conductivities	12
2.3.6.2	Laboratory Hydraulic Conductivities	13
2.4	Groundwater Monitoring	14
2.5	Hydrogeologic Conceptual Site Model	14
3.	Occurrence and Distribution of Groundwater Exceedances	
	(Extent)	16
3.1	Additional Investigation to Define Nature and Extent	16
3.2	Extent in the Uppermost Aquifer	16
3.2.1	Boron	17
3.2.2	рН	17
3.2.3	Sulfate	18
3.2.4	Total Dissolved Solids	19
4.	Geochemical Conceptual Site Model (Nature)	20
5.	Combined Geochemical and Hydrogeologic Conceptual Site	
	Models	21
5.1	Boron	21
5.2	pH Conceptual Site Model	21
5.3	Sulfate and TDS Conceptual Site Model	21
6.	Conclusions and Future Activities	23
7.	References	24

TABLES (ATTACHED)

- Table 2-1
 Summary of Groundwater Elevations
- Table 2-2 Vertical Hydraulic Gradients
- Table 3-1Monitoring Well Construction Details
- Table 3-2
 Exceedance Parameter Statistical Results
- Table 3-3 Summary of Groundwater Data

FIGURES (ATTACHED)

- Figure 2-1 Site Location Map
- Figure 2-2 Monitoring Well Location Map
- Figure 2-3 Base of CCR
- Figure 2-4 Top of Uppermost Aquifer
- Figure 2-5 Uppermost Aquifer Potentiometric Surface Map May 30, 2023 (E001)
- Figure 2-6 Deep Aquifer Potentiometric Surface Map August 8, 2023 (E002)
- Figure 3-1 GWPS Exceedance Map Uppermost Aquifer
- Figure 3-2 GWPS Exceedance Map Lower Confining Unit

APPENDICES

- Appendix A Hydrogeologic Characterization Report Cross-Sections
- Appendix B Site-Wide Groundwater Elevations
- Appendix C Supplemental Vertical Hydraulic Gradients
- Appendix D Historical Field and Laboratory Hydraulic Conductivities
- Appendix E Supplemental Field Hydraulic Conductivities
- Appendix F Surface Water Sampling Locations and Laboratory Analytical Report
- Appendix G Geochemical Conceptual Site Model

ACRONYMS AND ABBREVIATIONS

35 I.A.C.	Title 35 of the Illinois Administrative Code
AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
bgs	below ground surface
CCR	coal combustion residuals
cm/s	centimeters per second
CPP	Coffeen Power Plant
CSM	conceptual site model
DA	deep aquifer
DCU	deep confining unit
E001	Event 1
E002	Event 2
E003	Event 3
ft/ft	feet per foot
GCSM	geochemical conceptual site model
GMF	Gypsum Management Facility
GSP	Gypsum Stack Pond
GWPS	groundwater protection standard
HCR	Hydrogeologic Site Characterization Report
HDPE	high-density polyethylene
IEPA	Illinois Environmental Protection Agency
IPGC	Illinois Power Generating Company
IPCB	Illinois Pollution Control Board
Kd	soil adsorption coefficient
LCL	lower confidence limit
LCU	lower confining unit
LF	Landfill
mg/L	milligrams per liter
NAVD88	North American Vertical Datum of 1988
No.	number
PMP	potential migration pathway
Ramboll	Ramboll Americas Engineering Solutions, Inc.
RP	Recycle Pond
SI	surface impoundment
TDS	total dissolved solids
UA	uppermost aquifer
UCU	upper confining unit
USGS	United States Geological Survey
WPCP	Water Pollution Control Permit

EXECUTIVE SUMMARY

Groundwater samples collected at the Coffeen Power Plant (CPP) Ash Pond Number (No.) 2 (AP2) during May and June 2023 for the Quarter 2, 2023 compliance sampling event (Event 1 [E001]) were evaluated for statistical exceedances of the groundwater protection standards (GWPS) described in Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.600. Statistical exceedances were identified in the following hydrostratigraphic units and wells:

- Detected Uppermost aquifer (UA) Exceedances:
 - Boron at G401, G402, G404, and G405
 - Cobalt at G401
 - pH at G401
 - Sulfate at G401, G402, G404, G405, G406, and G407
 - Total dissolved solids (TDS) at G401, G402, G404, G405, and G407

As a result of the identified E001 statistical exceedances, a Corrective Measures Assessment (CMA) was initiated on January 14, 2024 in accordance with 35 I.A.C. § 845.660 and submitted on June 12, 2024 [1]. The subsequent compliance sampling events for the Quarter 3 and Quarter 4, 2023 sampling events (Event 2 [E002] and Event 3 [E003]) were completed in August and November 2023 and groundwater samples were evaluated for statistical exceedances of the GWPS as described in 35 I.A.C. § 845.600. Statistical exceedances identified during the E002 and E003 events were consistent with those listed above, with the notable exception of a sulfate statistical exceedance absent at G402 during E003.

In accordance with 35 I.A.C. § 845.650(e), Alternative Source Demonstrations (ASD) were completed on December 15, 2023 for sulfate and TDS statistical exceedances at well G407 and the cobalt statistical exceedance at well G401 [2, 3]. The Illinois Environmental Protection Agency (IEPA) provided a non-concurrence letter for both ASDs on January 11, 2024 [4, 5]. The non-concurrences were appealed, and the Illinois Pollution Control Board (IPCB) granted a partial stay on March 7, 2024 [6, 7]. As a result of the IPCB partial stay, GWPS statistical exceedances of cobalt (G401), and sulfate and TDS (G407) will not be discussed in this nature and extent report.

As required by 35 I.A.C. § 845.650(d)(1), this report characterizes the nature and extent of boron, pH, sulfate, and TDS, and relevant site conditions to determine how they may affect the corrective measures ultimately selected for AP2 and documents the additional measures taken in accordance with 35 I.A.C. § 845.650(d).

Statistical exceedances of boron greater than the GWPS were encountered within the UA at multiple monitoring well locations. The lateral extent of boron statistical exceedances are defined to the west by monitoring wells G403 and G406 (and additionally the groundwater divide running north-south across the CPP), to the east by the Unnamed Tributary and Coffeen Lake, and to the south by the former discharge flume. Due to erosion, the UA is absent east of monitoring wells G402 and G404 and boron statistical exceedances are ultimately defined by Coffeen Lake. The boron concentrations in the groundwater system may be attenuated via surface complexation reactions and via interactions with clay minerals, which are present in solids across the UA and lower confining unit (LCU).

The boron concentrations from monitoring wells around AP1, the discharge flume, and Coffeen Lake were used to evaluate risk to Human Health or ecological receptors and findings indicate they do not present unacceptable risk [8]. Comparison of boron concentrations from AP1 used in the analysis (7.5 mg/L) to the maximum measured in G401 and G402 at AP2 (8.1 mg/L) suggests that results for AP2 would also not present an unacceptable risk. At both AP1 and AP2 the vertical extent of boron greater than the GWPS is limited by the presence of low permeability tills.

Measurements of pH less than the lower GWPS were encountered only within the UA at G401. The lateral extent of pH statistical exceedances are defined to the west by G406, to the east by G402, and to the south by the former discharge flume. Vertically, the extent of pH less than the lower GWPS is limited by the presence of low permeability tills.

Statistical exceedances of sulfate and TDS greater than the GWPS were encountered within the UA at multiple monitoring well locations. The extent of sulfate and TDS statistical exceedances greater than the GWPS are laterally defined as follows: to the west of AP2 by the groundwater divide running north-south across the CPP; to the east by the Unnamed Tributary and Coffeen Lake; and to the south by the former discharge flume. Due to erosion, the UA is absent east of monitoring wells G402 and G404 and sulfate and TDS statistical exceedances are ultimately defined by Coffeen Lake. Sulfate and TDS statistical exceedances are not expected to extend a significant distance to the north or west due to observed groundwater flow direction in the vicinity of AP2. The sulfate concentrations in the groundwater system may be attenuated via sulfate, will reduce TDS concentrations as well. Sulfate and TDS concentrations in Coffeen Lake and the former discharge flume were evaluated for AP1 and they do not present unacceptable risk [8]. Vertically, the extent of sulfate and TDS statistical exceedances greater than the GWPS is limited by the presence of low permeability tills.

1. INTRODUCTION

35 I.A.C. § 845.650(d)(1) requires the owner or operator of a coal combustion residuals (CCR) surface impoundment (SI) to characterize the nature and extent of a release and relevant site conditions that may affect the remedy ultimately selected for a CCR SI if any constituent regulated under 35 I.A.C. § 845 is found to exceed the GWPS. This report documents the nature and extent of constituents detected above the GWPS that are attributable to the CPP AP2.

The groundwater data and analysis in this report includes results from historical sampling (initiated in 2015) through E003, which was completed on November 21, 2023. Results of the E001, E002, and E003 events were submitted and placed in the facility's operating record by October 16, 2023; January 20, 2024; and March 10, 2024, respectively, as required by 35 I.A.C. § 845.800(d)(15), within 60 days of receiving final laboratory analytical data [9, 10, 11]. The statistical determination presented in the report identified the following statistical exceedances of the GWPS at compliance groundwater wells in the following hydrostratigraphic unit:

- Detected UA Exceedances:
 - Boron at G401, G402, G404, and G405
 - Cobalt at G401
 - pH at G401
 - Sulfate at G401, G402, G404, G405, G406, and G407
 - TDS at G401, G402, G404, G405, and G407

An ASD, as allowed by 35 I.A.C. § 845.650(e), was completed for the cobalt statistical exceedance at UA monitoring well G401 [2] and an ASD was completed for the sulfate and TDS statistical exceedances at UA monitoring well G407 [3]. The IEPA did not concur with the ASDs. The non-concurrences were appealed, and the IPCB granted partial stays on March 7, 2024 [6] [7]. Therefore, the nature and extent of cobalt at G401, and sulfate and TDS at G407, are not discussed in this document. Evaluations were not conclusive in demonstrating an alternative source for the other identified GWPS statistical exceedances. This Nature and Extent Report discusses in detail the extent of the boron, pH, sulfate, and TDS statistical exceedances as well as a geochemical conceptual site model (GCSM) describing the nature of these statistical exceedances.

2. UNIT BACKGROUND

2.1 Site Location and Description

The CPP is located in Montgomery County in central Illinois, approximately two miles south of the City of Coffeen and about eight miles southeast of the City of Hillsboro (**Figure 2-1**). The CPP was a coal-fired power plant with five CCR units present: AP2 (35 I.A.C. § 845 regulated CCR Unit and subject of this report), Ash Pond No. 1 (AP1), the Gypsum Management Facility (GMF) Gypsum Stack Pond (GSP), GMF Recycle Pond (RP), and Landfill (LF). AP2 is located in Section 11, Township 7 North and Range 3 West. AP2 is located south of the CPP and situated in a predominantly agricultural area (**Figure 2-2**). AP2 is located between two lobes of Coffeen Lake (the western lobe is identified as "Coffeen Lake" and the upper reaches of the eastern lobe are fed by a stream labeled as "Unnamed Tributary" on **Figures 2-1** and **2-2**), which surround the SI to the west, east, and south. The southern edge of AP2 is adjacent to the former discharge flume for the closed generating plant. AP2 is bordered by other CCR units and agricultural land to the north.

2.2 Description of CCR Unit

The CPP was a coal-fired electrical generating plant that began operation in 1964. The plant initially burned bituminous coal from Illinois and CCR from the coal fired units was disposed of in AP1. AP2 was utilized for CCR disposal beginning in the early 1970's and AP1 was reconstructed in 1978. Both of these units were used until the mid-1980's, beginning in 2010 CCR material was placed in the LF and GMF Units.

AP2: AP2 is a closed (IEPA-approved) SI with a surface area of approximately 60 acres and berms 47 feet higher than the surrounding land surface. AP2 was originally removed from service and capped in the mid 1980's. A clay and soil cap was placed on the surface of the pond with contouring and drainage provided to direct storm water to four engineered revetment down drain structures. Prior to capping, this pond was identified as Outfall 004 in the facility National Pollutant Discharge Elimination System operating permit, IL0000108. Additional closure activities include the construction of a geomembrane cover system that began in July 2019 and was completed on November 17, 2020. Construction was completed in accordance with the Closure and Post Closure Care Plan approved by the IEPA on January 30, 2018 [12]. No CCR was sampled in 2021 because the pond was closed and capped [13]. The unit contains bottom ash and fly ash and the base of CCR at AP2 is shown in Figure 2-3.

Water that may come into contact with CCR within the footprint of AP2 becomes CCR source water. Results from CCR source water samples collected from porewater wells and historically from porewater grab samples [13] are used to provide information for groundwater transport modeling¹.

• **AP1:** This SI (also known as the Bottom Ash/Recycle Pond) is a reclaimed ash pond that was reconstructed utilizing the existing earthen berms with reinforcement, as provided by Water

¹ Per Federal Register 80 (21302), which promulgated the final Title 40 of the Code of Federal Regulations. § 257 rule, porewater concentrations should be used to characterize potential leaching from impoundments. As discussed further in USEPA's risk assessment of CCR surface impoundments (USEPA 2014), porewater is "collected from the interstitial water between waste particles in surface impoundments as it occurs in the field," and concentrations within the porewater are "the most representative data available for impoundments because these data are fieldmeasured concentrations of leachate." Therefore, CCR source water collected from porewater wells within the unit, represent the CCR source term.

Pollution Control Permit (WPCP) 1978-EA-389 issued by the IEPA on May 26, 1978. AP1 (existing unlined SI) covers an area of approximately 23 acres, has berms up to 41 feet above the surrounding land surface, and a volume of 300 acre-feet. It primarily received bottom ash and low volume wastes from floor drains in the main power block building. Several years ago, air heater wash and boiler chemical cleaning wastes were directed to AP1, but this practice was discontinued. The bottom ash was periodically removed for beneficial uses by a third-party contractor. Sluicing of waste to AP1 ceased prior to November 4, 2019.

- GMF GSP: The 37-acre GMF GSP received blowdown from the air emission scrubbers and was put into operation in 2010. Construction of the GMF GSP was in accordance with WPCP 2008-EA-4661 and features a composite 60-mil high-density polyethylene (HDPE) liner with 3 feet of recompacted soil with a hydraulic conductivity of 1 x 10⁻⁷ centimeters per second (cm/s) with internal piping and drains to collect contact water. Construction of the unit required excavation to an elevation of approximately 603 feet² and installation of a groundwater underdrain system to eliminate inward pressure on the liner prior to placement of CCR. The GMF GSP underdrain was actively pumped during construction but is no longer used. Illinois Power Generating Company (IPGC) ceased receipt of waste to the GMF GSP prior to April 11, 2021.
- **GMF RP:** The 17-acre GMF RP received blowdown from the air emission scrubbers and was put into operation in 2010. Construction of the GMF RP was in accordance with WPCP 2008-EA-4661 and features a composite 60-mil HDPE liner with 3 feet of recompacted soil with a hydraulic conductivity of 1 x 10⁻⁷ cm/s with internal piping and drains to collect contact water. Construction of the unit required excavation to an elevation of approximately 601 feet and installation of a groundwater underdrain system to eliminate inward pressure on the liner prior to placement of CCR. The GMF RP underdrain is a passive, gravity drained system. IPGC ceased receipt of waste to the GMF RP prior to April 11, 2021.
- **LF:** Fly ash was managed in a permitted composite lined landfill constructed in 2010. The LF has an active groundwater underdrain system that is currently being operated. Additionally, the ash landfill leachate collection system is restricted by rule to no more than one foot of leachate on the composite liner. An IEPA groundwater monitoring program is in effect for the GMF (under Bureau of Water) and Ash Landfill (under Bureau of Land).

2.3 Geology and Hydrogeology

Significant site investigation has been completed at the CPP to characterize the geology, hydrogeology, and groundwater quality. Based on extensive investigation and monitoring, AP2 has been well characterized and detailed in the Hydrogeologic Site Characterization Report (HCR) [13].

2.3.1 Hydrostratigraphic Units

In addition to the CCR, five hydrostratigraphic units have been identified at the CPP based on stratigraphic relationships and common hydrogeologic characteristics, and are summarized as follows:

• **Upper Confining Unit (UCU)**: Consists of the Loess Unit and the upper clayey portion of the Hagarstown Member which has generally lower vertical permeability and generally greater than 60 percent fines. This Unit was encountered across most of the CPP, with the exception

² All elevations in this report are referenced to North American Vertical Datum of 1988 (NAVD88) unless otherwise noted.

of the eastern edges of the SIs near the Unnamed Tributary where the unit was eroded following deposition or locations where it has been excavated for construction.

- **Uppermost Aquifer (UA)**: This unit consists primarily of sand and sandy silts and clays at the base of the Hagarstown Member and, in some locations, the uppermost weathered sandy clay portion of the Vandalia Member. This unit is absent in several locations due to weathering and in others due to excavation during construction of CCR Units. The hydraulic characteristics of the Hagarstown Member are variable due to the different material compositions, but generally indicate the unit has a moderate hydraulic conductivity.
- Lower Confining Unit (LCU): This unit is composed of the sandy clay till of the Vandalia Member, the silt of the Mulberry Grove Formation, and the compacted clay till of the Smithboro Member. The unit underlies the UA and was encountered in all boring locations on the CPP. Results from laboratory tests completed for vertical hydraulic conductivity indicate the Vandalia Member has a very low vertical hydraulic conductivity.
- **Deep Aquifer (DA)**: This unit consists primarily of sandy silt and sands of the Yarmouth Soil, which are thin (less than 5 feet) and discontinuous across the CPP.
- **Deep Confining Unit (DCU)**: This unit underlies the DA and is composed of the Banner Formation, of which the thick Lierle Clay is the first encountered unit. No boring penetrated the full thickness of this formation.

2.3.2 Uppermost Aquifer

The UA has been identified as the base of the Hagarstown Member and, in some locations, the uppermost weathered sandy clay portion of the Vandalia Member. This unit is continuous across the site, but hydraulic characteristics are variable as a result of the unit composition. The UA is likely absent in several locations due to weathering. The UA exhibits a moderate hydraulic conductivity and is the most likely unit to indicate potential impacts from AP2. Based on the geologic information, the top of the aguifer is highest in elevation at the northern side of AP2, with an elevation of approximately 610 feet. Except in areas where the UCU and UA have been eroded (adjacent to the Unnamed Tributary), the top of the UA is typically separated from overlying CCR material by several feet of the low permeability UCU, which consists of the Loess Unit and the upper clayey portion of the Hagarstown Member (Figure 2-4, Appendix A). The base of the UA is the top of the LCU, which contains the low permeability Vandalia Member, Mulberry Grove Member, and Smithboro Till. In 2021, soil borings and monitoring wells (G1001 and G1003) were completed between the eastern edge of AP2 and the Unnamed Tributary. The borings did not identify the presence of either the UCU or UA, indicating that the UA is absent east of AP2. Wells G1001 and G1003 were screened in the LCU to evaluate shallow groundwater quality east of AP2. Only G1001 contains measurable amounts of groundwater that can be collected and analyzed; G1003 is routinely dry.

2.3.3 Potential Migration Pathways

Potential migration pathways (PMP) were interpreted using the lithologic composition and hydrogeologic properties (hydraulic conductivity, hydraulic position with respect to the unit) of the screened materials. In addition to the physical properties, the analytical results from the baseline groundwater monitoring performed in wells screened in the confining units and DA were used to identify PMPs. The UA is the first occurrence of groundwater and therefore the PMPs identified are in geologic units located below the UA. Monitoring wells G1001 and G1003 are
considered LCU PMP monitoring locations. Wells G1001 and G1003 are used to evaluate the potential for migration of impacts through the LCU where the UCU and UA are absent.

2.3.4 Regional Bedrock Geology

Bedrock has not been investigated at the site due to the depth to bedrock and presence of two low permeability confining units underlying the UA and above the bedrock, and the intermittent coal beds found within the bedrock. There are no known monitoring wells or production wells screened within the bedrock at the CPP. Bedrock has not been encountered at any borings onsite. A literature review was completed to supplement the site geology.

Detailed descriptions of the Pennsylvanian strata of Illinois were published by Willman et al. [14] and Kolata [15]. The Bond Formation includes all strata from the base of the Shoal Creek Limestone Member or the LaSalle Limestone Member to the top of the Millersville Limestone Member or the Livingstone Limestone Member. It is overlain by the Mattoon Formation and underlain by the Modesto Formation. It varies from less than 150 feet thick in eastern Illinois to over 300 feet thick in southeastern Illinois, averaging about 250 feet. The Bond Formation is characterized by a high percentage of limestone and calcareous clays and shales. The Bond and Modesto Formations of the McLeansboro Group also contain multiple thin (typically less than 2 feet) intermittent coal beds. The upper formation of the Kewanee Group is the Carbondale Formation which contains multiple coal beds, including the Herrin (No. 6) Coal, of varying thicknesses (up to 7 feet) [16]. It is bound by thick limestone members (up to 50 feet), the thickest and purest limestones in the Pennsylvanian System of Illinois. Gray shales constitute the greatest part of the formation, although thick channel sandstones are developed locally.

Two mines were operated historically in the vicinity of the site. The Hillsboro Mine located east/southeast of the GSP was operated by the Truax-Traer Coal Company from 1964-1970 and by the Consolidation Coal Company from 1971 through 1983. The mine targeted the Herrin Coal at a depth of 500 to 510 feet below ground surface (bgs), and geological reports included roof problems and slight floor heaving. The Clover Leaf No. 4 Mine located north of the GSP was operated by the Clover Leaf Coal Mining company and the Coffeen Coal Mining Company from 1906 through 1924. The mine targeted the Herrin Coal at a depth of 510 to 544 feet bgs. Geologic reports indicate a massive black shale roof, and unmined areas which could be related to water-bearing sandstones above the roof [17].

2.3.5 Water Table Elevation and Groundwater Flow Direction

Porewater (*i.e.*, CCR source water) elevations within AP2 (as observed in AP2-D) are greater than the surrounding areas. The phreatic surface within AP2 in 2023 averaged approximately 624.1 feet, ranging from 623.7 to 624.8 feet (**Appendix B**). As indicated in **Section 2.3.2**, UA groundwater is typically separated from overlying CCR material by several feet of the low permeability soils of the UCU, except along the eastern edge of AP2 where two incised stream gullies were backfilled to construct the eastern berm of AP2.

Overall groundwater flow within the UA is divided towards the two lobes of Coffeen Lake. The groundwater divide runs approximately through the center of the CPP, with groundwater east of the divide flowing east to southeast towards the Unnamed Tributary or the eastern lobe of Coffeen Lake and groundwater west of the divide flowing west to southwest towards the western lobe of Coffeen Lake. Groundwater flows southeast to east across AP2 (**Figure 2-5** and **Table 2-1**) toward the former discharge flume and Unnamed Tributary. Groundwater elevations are

lowest near the Unnamed Tributary and east of AP2 towards the eastern lobe of Coffeen Lake. Based on the elevations of the tributary and groundwater elevations measured east of the tributary (**Appendix B** and **Table 2-1**), the Unnamed Tributary may be a local groundwater receiving body and prevent or reduce groundwater migration east of the Unnamed Tributary. During 2023, groundwater elevations in the UA in the vicinity of AP2 ranged from approximately 601 to 621 feet (**Figure 2-5**). Although elevations vary seasonally, the groundwater flow direction in the UA is consistent and likely controlled by the proximity and hydraulic connection to both the eastern and western lobes of Coffeen Lake.

LCU (PMP) groundwater elevations are slightly lower than those in the UA and exhibit similar variability in seasonal groundwater elevation as the UA. Groundwater elevation within the LCU ranged from about 590 to 623 feet in 2023 (**Figure 2-5** and **Table 2-1**). LCU monitoring wells G1001, G1003, T408, and T409 are nearest AP2 and typically have groundwater elevations ranging from approximately 591 to 618 feet. Monitoring well G1003 was dry for the entirety of 2023 and groundwater elevation could not be established at this location.

DA (PMP) groundwater elevations are generally lower than those in the UA and LCU (PMP) and ranged from about 576 to 618 feet in 2023 (**Figures 2-6** and **Table 2-1**). Monitoring well G275D (south of the GMF RP) is nearest AP2 and typically had groundwater elevations ranging from about 576 to 589 feet during 2023. A groundwater contour map was generated for the DA for the E002 event and groundwater flow within the DA generally follows subsurface topography for the unit (**Figure 2-6**).

No monitoring wells were installed in the UCU during 2021 investigation activities and no wells have historically been installed across solely the UCU because it is not present or is unsaturated where present at the CPP. Groundwater elevations within the DCU and bedrock unit are unknown because no wells are screened within these low hydraulic conductivity units.

2.3.5.1 Vertical Hydraulic Gradients

Vertical hydraulic gradients were calculated using available groundwater elevation data from February 2017 to November 2023 at nested well locations within the UA, LCU (upper and lower), and DA. Vertical hydraulic gradients for AP2 are presented in **Table 2-2** and well locations are shown on **Figure 2-5**. Vertical hydraulic gradients for other nested well locations at the CPP, discussed below, are presented in **Appendix C**. The results of the vertical hydraulic gradient calculations between hydrostratigraphic units are summarized below:

- UA to Upper LCU (Vandalia Member):
 - Vertical gradients at well nest G405/T408, located north of AP2, vary between upward and downward with an average (downward) vertical gradient of 0.02 feet per foot (ft/ft).
 - Vertical gradients at well nest G406/T409, located south of AP2/northwest of AP1, vary between upward and downward with an average (upward) vertical gradient of -0.06 ft/ft. Since 2021, the vertical gradient observed at this well nest has been consistently upward, with the exception of August 2022.
- Upper LCU (Vandalia Member) to Lower LCU (Smithboro Member)
 - Well nest T408/G45D, located north of AP2, has consistently downward vertical gradients, with an average vertical gradient of 0.98 ft/ft. Beginning in 2020, vertical gradients observed at this well nest have become less strongly downward.

- Vertical gradients at well nest G406/T409, located south of AP2/northwest of AP1, are consistently downward, with the exception of August 2022, with an average vertical gradient of 0.64 ft/ft. Beginning in 2020, vertical gradients observed at this well nest have become less strongly downward.
- UA to Lower LCU (Smithboro Member)
 - Well nest G307/G307D, located south of AP1, has consistently downward vertical gradients with an average vertical gradient of 0.13 ft/ft.
 - In well nest G311/G311D gradients are consistently strongly downward, with an average vertical gradient of 0.71 ft/ft.
- LCU to DA
 - Vertical gradients at well nest G314/G314D, located east of AP1, are consistently downward, with an average vertical gradient of 0.69 ft/ft. Beginning in 2022, vertical gradients observed at this well nest have become progressively less strongly downward and the vertical gradient was observed to be upward (-0.01 ft/ft) during December 2023.

Vertical hydraulic gradients indicate there is consistently downward migration of groundwater in most areas of the CPP, with the exception being southwest of AP2, where consistent upward gradients were measured between the UA and upper LCU. However, there has been a decrease in magnitude of downward gradients since approximately 2020, which is likely a result of plant shutdown and placement of a geomembrane on AP2.

2.3.5.2 Impact of Surface Water Bodies on Groundwater Flow

Surface water elevations were measured from various locations along the Unnamed Tributary from March 2021 to December 2023 (**Figure 2-5**). Elevations at SG-04 (near CIPS Trail and determined to be destroyed in October 2023) ranged from 591.94 to 593.38 feet. Surface water elevations near the former discharge flume located between AP1 and AP2 were measured at SG-02 and ranged from 598.34 to 598.75 feet. Surface water elevations from Coffeen Lake at SG-03 (near the outfall east of AP1) ranged from 585.09 to 589.97 feet.

Groundwater contour maps prepared from elevation data measured in monitoring wells indicate groundwater elevations can be variable, but flow directions are generally consistent.

Groundwater near AP2 discharges locally to the former discharge flume to the south and the Unnamed Tributary to the east, which flows south into the eastern lobe of Coffeen Lake. The Unnamed Tributary is a local groundwater receiving body that may prevent or reduce groundwater migration east of the Unnamed Tributary.

Construction of the LF, GMF GSP, and GMF RP required removal of the Hagarstown Member, in effect removing the aquifer beneath the footprint of these units [18]. It is uncertain whether these constructed units significantly limit lateral groundwater flow, either by creating no flow zones, or by capturing groundwater via their dewatering [19].

2.3.6 Hydraulic Conductivities

2.3.6.1 Field Hydraulic Conductivities

Field hydraulic conductivity tests were performed historically by Hanson as part of initial characterization efforts for the CPP [13]. In 2021, additional field hydraulic conductivity tests

were completed by Hanson to support 35 I.A.C. § 845 requirements for AP1, the GMF GSP, and the GMF RP [20, 21, 22]. Historical field hydraulic conductivity test results are included in **Appendix D** and tests completed for other CCR units in 2021 are included in **Appendix E** [13].The results of the tests are summarized as follows:

- **UA:** Historical tests completed in UA monitoring wells (G401, G402, G403, G404, and G405) indicated hydraulic conductivities ranged from 4.3 x 10⁻⁵ to 9.8 x 10⁻⁴ cm/s, with a geometric mean of 2.7 x 10⁻⁴ cm/s.
- LCU: Historical tests completed in the LCU for monitoring wells and temporary piezometers (G45D, G46D, T408, and T409) indicated hydraulic conductivities ranged from 7.5 x 10⁻⁸ to 3.6 x 10⁻⁵ cm/s, with a geometric mean of 5.6 x 10⁻⁶ cm/s.
- **DA:** Geometric mean hydraulic conductivity at DA well G314D, near AP1, was 8.7×10^{-5} cm/s and was slightly lower than tests completed in the northern portion of the CPP in 2009 that estimated hydraulic conductivity values ranged from 1.3×10^{-4} to 1.7×10^{-3} cm/s, with a geometric mean of 4.4×10^{-4} cm/s.
- No monitoring wells are screened only within the DCU, and no field hydraulic conductivity tests have been conducted for the DCU.

2.3.6.2 Laboratory Hydraulic Conductivities

Falling head permeability tests (ASTM D5084 Method F) were performed in the laboratory on samples collected during the 2021 investigations at the CPP [22, 21, 20] and historically [13]. The results are summarized in **Appendix D** and discussed below.

- **CCR:** No laboratory vertical hydraulic conductivity tests were completed during 2021 on CCR materials in AP2.
- UCU:
 - The 2021 sitewide geometric mean of vertical hydraulic conductivities of three samples collected from the UCU is 2.5×10^{-8} cm/s, which is consistent with historically reported values.
 - Geotechnical tests conducted prior to 2017 indicated UCU vertical hydraulic conductivity values ranged from 1.3×10^{-8} to 5.0×10^{-7} cm/s, with a geometric mean of 1.0×10^{-7} cm/s.
- **UA:** One geotechnical sample of UA material was collected from G275D, near the GMF RP and immediately northeast of AP2, with a vertical hydraulic conductivity of 1.6 x 10⁻⁴ cm/s.
- LCU:
 - The 2021 sitewide geometric mean of vertical hydraulic conductivities of three samples collected from the LCU is 1.8×10^{-7} cm/s. Vertical hydraulic conductivities from 2021 are consistent with those observed historically.
 - Intermittently present within the LCU is the Mulberry Grove Member. Historical vertical hydraulic conductivities of the Mulberry Grove Member were measured as 1.6×10^{-6} and 1.9×10^{-6} cm/s.
 - Historical laboratory tests reported LCU vertical hydraulic conductivity values ranged from 6.8×10^{-9} to 4.5×10^{-6} cm/s, with a geometric mean of 3.0×10^{-8} cm/s.

- **DA:** No laboratory vertical hydraulic conductivity tests were completed during 2021 on DA materials.
- **DCU**: No laboratory vertical hydraulic conductivity tests were completed during 2021 on DCU materials. Historical vertical hydraulic conductivity tests were performed on samples collected north and west of the GMF GSP. Vertical hydraulic conductivities of 6.8 x 10^{-9} and 4.5×10^{-6} cm/s were reported.
- Bedrock: No bedrock samples were analyzed for vertical hydraulic conductivity.

2.4 Groundwater Monitoring

The monitoring system for AP2 is shown on **Figure 2-2** and consists of three background monitoring wells (G270, G280, and G281), eight compliance monitoring wells (G401, G402, G403, G404, G405, G406, G407, and G1001), one water level only monitoring well (G1003), and three temporary water level only surface water staff gages (SG-02, SG-03, and SG-04) to monitor potential impacts from AP2 [23]. The monitoring wells are screened within the UA (G270, G280, G281, G401, G402, G403, G404, G405, G406, and G407) and LCU (G1001 and G1003) along the perimeter of AP2. Porewater samples are not regularly collected as part of the groundwater monitoring plan for AP2 (**Figure 2-2**), but porewater samples were collected from dewatering locations in 2016 [13], and a leachate sample was collected from the C102 PumpQbox in 2020 to provide information on the source concentrations. Additional porewater samples are collected as needed from an existing porewater monitoring well (AP2D) (**Figure 2-2**).

2.5 Hydrogeologic Conceptual Site Model

The HCR [13] and information provided above forms the foundation of the AP2 hydrogeological setting. AP2 overlies a potential recharge area for the underlying transmissive geologic media, which are composed of unlithified deposits. Recharge migrates downward into and through the UCU, into the UA, where present.

Groundwater flow in the UA at the CPP is divided towards the two lobes of Coffeen Lake. The loess of the UCU and sands of the UA are hydraulically connected. Groundwater flow in the silts and clays of the UCU and LCU is expected to be primarily vertical. The majority of horizontal groundwater migration is expected to be within the lower Hagarstown Member (*i.e.*, UA). The geologic conceptual model for the site used for closure plan groundwater modeling [24] consists of the following layers:

- Hagarstown Loess Unit (*i.e.*, UCU) Loess Unit and the upper clayey portion of the Hagarstown Member.
- Hagarstown Member (*i.e.*, UA) sand and sandy silts and clays at the base of the Hagarstown Member and, in some locations, the uppermost weathered sandy clay portion of the Vandalia Member.
- Vandalia Member/Mulberry Grove Member (*i.e.*, LCU) unweathered sandy clay till and discontinuous silts.
- Smithboro Till (*i.e.*, LCU) compacted clay till of the Smithboro Member.
- The Deep Aquifer (*i.e.*, DA) and Deep Confining Unit (*i.e.*, DCU) were not included in the model, for consistency with the original model [25].

The United States Geological Survey (USGS) National Map places the CPP within the East Fork Shoal Creek watershed subbasin (Hydrologic Unit Code 071402030303). The CPP conceptual site model (CSM) extent is bounded by a hydrological catchment (watershed) divide to the east based on watershed data from USGS. Along the north, south, and east, the model boundary was placed along known waterbodies as much as possible. As such, it is assumed groundwater inflow from adjacent watersheds is negligible through both the UA and LCU. The Coffeen Lake water levels are managed at an average elevation of 591.0 feet. Coffeen Lake and Unnamed Tributary are the receiving surface water bodies in the area encompassed by the CSM.

Precipitation infiltrates and recharges the groundwater table throughout the site and upgradient of the site. Groundwater in the UCU migrates downward into the sandy material of the lower Hagarstown Formation, or weathered Vandalia Till, which is considered the UA. The sands of the UA are separated from the base of CCR in AP2 by the laterally continuous low permeability UCU. Erosion caused by incised streams has occurred along the eastern side of AP2 which likely results in ash being in contact with the UA. Water that percolates downward from layers overlying the UA is most likely to travel laterally from the site within the UA due to the relatively high permeability (as compared to the underlying LCU) and horizontal gradients present within the UA as described above. Groundwater and surface water elevations indicate groundwater flows towards Coffeen Lake, which is a local receiving body for the UA. Further downward migration is also limited by the relatively thick and low permeability LCU.

Based on the geology and hydrogeology, monitoring wells at AP2 can be separated into two distinct groupings that exhibit similar geologic and hydraulic characteristics. Monitoring well groupings are summarized as follows:

- UA wells: shallow wells (generally less than 20 feet bgs) screened in moderate permeability materials (generally about 10⁻³ cm/s) including G270, G280, G281, G401, G402, G403, G404, G405, G406, and G407.
- LCU wells: shallow wells (less than 15 feet bgs) east of AP2 where the UCU and UA have been eroded (G1001 and G1003). LCU wells are screened across moderate permeability (generally about 10⁻⁴ cm/s) sand lenses within the low permeability till.

3. OCCURRENCE AND DISTRIBUTION OF GROUNDWATER EXCEEDANCES (EXTENT)

Results from groundwater samples collected from AP2 during E001, E002, and E003 were received on August 17, 2023; November 21, 2023; and January 10, 2024, respectively. In accordance with 35 I.A.C. § 845.610(b)(3)(C), comparison of statistically derived values with the GWPSs described in 35 I.A.C. § 845.600 to determine statistical exceedances of the GWPS was completed [9, 10, 11]. Statistical exceedances for which an ASD was not completed include the following parameters and wells by hydrostratigraphic unit:

- UA (Figure 3-1):
 - Boron at G401, G402, G404, and G405
 - pH at G401
 - Sulfate at G401, G402, G404, G405, and G406
 - TDS at G401, G402, G404, and G405

The extents of statistical exceedances discussed below were defined using existing monitoring wells, including wells present on-site (**Table 3-1** and **Figure 3-2**) that may not be included in the 35 I.A.C. § 845 monitoring program.

3.1 Additional Investigation to Define Nature and Extent

Following initial sampling in 2021, potential statistical exceedances of the GWPS were identified for the parameters and locations identified above [9, 10, 11]. A total of three borings were advanced later in 2021 adjacent to locations with potential statistical exceedances (G401 and G1001), and background well (G270). Solids samples were collected and analyzed for the following:

- 6010B for 7-step sequential extraction (arsenic, boron, cobalt, lithium, and molybdenum);
- EPA 6010B for Total Metals (aluminum, arsenic, beryllium, calcium, chromium, cobalt, iron, lead, lithium, manganese, molybdenum, and selenium);
- Bulk Mineralogy by Reitveld x-ray diffraction analysis;
- Bulk elemental composition by X-ray fluorescence
- Cation Exchange Capacity Analysis; and,
- Total Organic Carbon Analysis and Loss on Ignition.

Six surface water samples were collected later in 2021 to characterize the water quality in Coffeen Lake and supplement previous samples collected in 2016 (**Appendix F**) [26]. Surface water samples were analyzed for 35 I.A.C. § 845.600 parameters (total and dissolved), ferrous and ferric iron, major ions, and monitored natural attenuation parameters. Data from surface water sampling has been incorporated into this report where applicable.

3.2 Extent in the Uppermost Aquifer

Groundwater samples are evaluated quarterly and statistical exceedances are identified following comparison of lower confidence limits (LCLs) to the GWPSs described in 35 I.A.C. § 845.600. The

LCLs vary as the dataset is updated to include additional quarterly events (**Table 3-2**). The discussion below includes ranges of concentrations measured in wells with statistical exceedances, because there is no single value for LCLs.

3.2.1 Boron

Boron GWPS (2 milligrams per liter [mg/L]) statistical exceedances were encountered within the UA at monitoring well locations (G401, G402, G404, and G405). Concentrations of boron from locations where the GWPS was exceeded range from 1.1 to 21.2 mg/L (**Table 3-3**) and generally exhibit stable to declining trends except for G404. Concentrations of boron at G404 have increased from approximately 2.8 mg/L in 2020, prior to completion of closure, to 21 mg/L in November 2023. Review of porewater elevations within AP2 (Appendix X) indicate an increase during closure activities that has since stabilized and started to decline after closure was completed. Modeling completed as part of the Closure Plan [27] indicated that water levels beneath the cover system would equilibrate in approximately 46 years, suggesting that concentrations in G404 may be a result of altered flow conditions following placement of the geomembrane and closure of AP2.

The extents of statistical exceedances above the GWPS are defined laterally in the UA to the west by monitoring wells G403 and G406 (and additionally the groundwater divide running northsouth across the CPP), to the east by the Unnamed Tributary and Coffeen Lake, and to the south by the former discharge flume (Figure 3-1). The boring logs from G1001 and G1003, and historical topographic maps, indicate that the UA has been eroded east of AP2 and statistical exceedances are not expected to extend a significant distance in these directions due to the absence of UA materials. The eastern lobe of Coffeen Lake is located approximately 200 feet downgradient of G402. The former discharge flume is located approximately 60 feet downgradient of G401. Comparison of water elevations indicates that groundwater migrates toward Coffeen Lake and the former discharge flume from AP2. The eastern extent of boron is defined downgradient by surface water sample CL-1, collected east of G402 from the eastern lobe of Coffeen Lake, which had a boron concentration of 0.1 mg/L (Appendix F). The southern extent of boron is defined downgradient by surface water samples D-1 and D-2, collected south of G402 from the former discharge flume, which had boron concentrations of 0.33 and 0.3 mg/L, respectively (Appendix F). Concentrations of boron at CL-1, D-1, and D-2 are a similar magnitude to boron concentrations measured in a Coffeen Lake background sample (BKG-1; 0.086 mg/L).

Downward migration of boron in the UA is inhibited by the underlying Vandalia Till, Mulberry Grove Member, and Smithboro Till which are, on average, greater than 15 feet thick at the site. Vertical hydraulic conductivity tests completed on samples of the LCU beneath the UA indicate hydraulic conductivities from 5.5×10^{-8} to 3.7×10^{-7} cm/s. This is very low relative to the horizontal hydraulic conductivity measured within the UA (geometric mean of 2.7×10^{-4} cm/s). The significant contrast in permeability (greater than two orders of magnitude) indicates groundwater will preferentially migrate horizontally toward the Unnamed Tributary and ultimately Coffeen Lake and the elevated boron concentrations will not extend into the underlying hydrostratigraphic units.

3.2.2 pH

Lower limit pH GWPS (6.5 Standard Units [S.U.]) statistical exceedances in the UA are limited to G401. Monitoring well G401 is located south of the south berm between AP2 and the former

discharge flume. Measurements of pH in G401 range from 5.6 to 6.4 S.U. (**Table 3-3**). The extents of measurements less than the lower GWPS are defined laterally in the UA to the west by monitoring well G406, to the east by monitoring well G402, to the north by wells G404 and G405, and to the south by the former discharge flume (**Figure 3-1**). Measurements of pH from the former discharge flume (CLb in 2016) and Coffeen Lake (CL-1 and CL-2 in 2021) were 7.52, 8.90 and 8.13 S.U, respectively (**Appendix F**).

Downward migration of low pH conditions in the UA at G401 is inhibited by the underlying Vandalia Till, Mulberry Grove Member, and Smithboro Till which are, on average, greater than 15 feet thick at the site. Vertical hydraulic conductivity tests completed on samples of the LCU beneath the UA indicate hydraulic conductivities from 5.5×10^{-8} to 3.7×10^{-7} cm/s. This is very low relative to the horizontal hydraulic conductivity measured within the UA (geometric mean of 2.0×10^{-3} cm/s). The significant contrast in permeability (greater than two orders of magnitude) indicates groundwater will preferentially migrate horizontally toward and the former discharge flume and lower limit pH GWPS statistical exceedances will not extend into the underlying hydrostratigraphic units.

3.2.3 Sulfate

Sulfate statistical exceedances in the UA have been measured in monitoring wells G401, G402, G404, G405, and G406 for events E001, E002, and E003. Concentrations of sulfate in these wells ranged from 25 to 4,600 mg/L (**Table 3-3**). The extents of the sulfate statistical exceedances are limited laterally to the west by the groundwater divide, running north-south across the CPP, to the east by the Unnamed Tributary and Coffeen Lake, and to the south by the former discharge flume. Erosion of the UA east of monitoring wells G402 and G404 limits migration of sulfate impacts horizontally as the LCU has a much lower hydraulic conductivity (See **Section 2.3.6**) than the materials in the UA. Migration of potentially impacted groundwater is expected to have a limited extent to the north and west as groundwater tends to flow south and east in the vicinity of AP2.

The eastern extent of sulfate is defined downgradient by surface water sample CL-1, collected east of G402 from the eastern lobe of Coffeen Lake, which had a sulfate concentration of 33 mg/L (**Appendix F**). The southern extent of sulfate is defined downgradient by surface water samples D-1 and D-2, collected south of G402 from the former discharge flume, which had sulfate concentrations of 110 and 69 mg/L, respectively (**Appendix F**). Concentrations of sulfate at CL-1, D-1, and D-2 are a similar magnitude as sulfate concentrations measured in a Coffeen Lake background sample (BKG-1; 36 mg/L).

Downward migration of sulfate in the UA is inhibited by the underlying Vandalia Till, Mulberry Grove Member, and Smithboro Till which are, on average, greater than 15 feet thick at the site. Vertical hydraulic conductivity tests completed on samples of the LCU beneath the UA indicate hydraulic conductivities from 7.5×10^{-8} to 3.6×10^{-5} cm/s. This is very low relative to the horizontal hydraulic conductivity measured within the UA (geometric mean of 2.7×10^{-4} cm/s). The significant contrast in permeability (up to four orders of magnitude) indicates groundwater will preferentially migrate horizontally toward Coffeen Lake and the elevated sulfate concentrations will not extend into the underlying hydrostratigraphic units.

3.2.4 Total Dissolved Solids

TDS results indicate the mass of dissolved material in groundwater and is a representation of multiple constituents present in the groundwater. Typically, major ions (such as sulfate) represent the primary contributors to TDS. TDS statistical exceedances in the UA are coincident with most of the sulfate statistical exceedances except for well G406, which has a sulfate statistical exceedance without a TDS statistical exceedance. TDS statistical exceedances in the UA have been measured in monitoring wells G401, G402, G404, and G405 for events E001, E002, and E003. Concentrations of TDS in these wells ranged from 1,250 to 2,800 mg/L during 2023 compliance sampling events (**Table 3-2**). The extent of the TDS statistical exceedances, similar to sulfate, are limited laterally to the west by the groundwater divide running north-south across the CPP and to the east by the Unnamed Tributary and Coffeen Lake, to the south by the former discharge flume. Erosion of the UA east of monitoring wells G402 and G404 limits migration of sulfate impacts horizontally as the LCU has a much lower hydraulic conductivity (see **Section 2.3.6**) than the materials in the UA. Migration of potentially impacted groundwater is expected to have a limited extent to the north and west as groundwater in the vicinity of AP2 tends to flow south and east.

The eastern extent of TDS is defined downgradient by surface water sample CL-1 collected east of G402 from the eastern lobe of Coffeen Lake, which had a TDS concentration of 120 mg/L (**Appendix F**). The southern extent of sulfate is defined downgradient by surface water samples D-1 and D-2 collected south of G402 from the former discharge flume, which each had a TDS concentration of 240 mg/L (**Appendix F**). Concentrations of TDS at CL-1, D-1, and D-2 are a similar magnitude as TDS concentrations measured in a Coffeen Lake background sample (BKG-1; 72 mg/L).

Downward migration of TDS in the UA is inhibited by the underlying Vandalia Till, Mulberry Grove Member, and Smithboro Till which are, on average, greater than 15 feet thick at the site. Vertical hydraulic conductivity tests completed on samples of the LCU beneath the UA indicate hydraulic conductivities from 7.5×10^{-8} to 3.6×10^{-5} cm/s. This is very low relative to the horizontal hydraulic conductivity measured within the UA (geometric mean of 2.7×10^{-4} cm/s). The significant contrast in permeability (up to four orders of magnitude) indicates groundwater will preferentially migrate horizontally toward Coffeen Lake and the elevated TDS concentrations will not extend into the underlying hydrostratigraphic units.

4. GEOCHEMICAL CONCEPTUAL SITE MODEL (NATURE)

A GCSM was developed to describe the conditions of the groundwater in the vicinity of the CPP AP2 and is summarized here (full analysis presented in **Appendix G**). The GCSM describes the geochemical processes that contribute to the mobilization, distribution, and attenuation of chemicals in the environment. Only parameters that have exceeded the GWPS in AP2 groundwater and will be addressed in the Corrective Action Plan are included in the GCSM. As discussed in previous sections, the statistical exceedances observed at AP2 include boron, pH, sulfate, and TDS.

CCR porewater is water "collected from the interstitial water between waste particles in surface impoundments as it occurs in the field" [28] and represents the material potentially leached from impoundments. CCR materials are the primary source of constituent loading to CCR porewater (*i.e.*, CCR source water). Over an extended period (*e.g.*, months to years), CCR porewater (*i.e.*, water contained within the interstitial pore spaces of CCR that can be sampled by low-flow groundwater sampling methods) reaches equilibrium with the CCR materials. Porewater is therefore representative of the mobile phase constituents capable of migrating into the underlying materials and potentially downgradient in groundwater. AP2 CCR source water is therefore the primary indicator of constituents *available* to groundwater and is considered as the primary source term for environmental investigation and fate and transport modeling.

Conditions within UA groundwater are predicted to favor amorphous iron oxide stability at most locations, which indicates that a portion of the boron and sulfate in the groundwater system may be attenuated via surface complexation reactions. Attenuation of the constituents contributing to TDS, such as sulfate, will reduce TDS concentrations as well. Boron may be further attenuated via interactions with clay minerals, which are present in solids across the UA and LCU. Sitespecific partition coefficients could not be calculated from the results of batch attenuation testing completed with solids from the site. These results indicate that chemical attenuation of boron and sulfate could be minimal. Low pH at one downgradient location is potentially caused by geochemical reactions driven by the mixing of porewater and groundwater, although the specific drivers are still under investigation.

5. COMBINED GEOCHEMICAL AND HYDROGEOLOGIC CONCEPTUAL SITE MODELS

5.1 Boron

The CSM describing current conditions at AP2 combining the hydrogeologic and geochemical CSMs for boron is as follows. Water that may come into contact with CCR in AP2 becomes porewater within the closed and geomembrane capped CCR unit. Porewater containing elevated concentrations of boron is capable of migrating into and mixing with groundwater of the UA. Groundwater within the higher hydraulic conductivity zones of the UA in the vicinity of AP2 travels horizontally south and southeast outward from AP2. The horizontal migration of groundwater outward from AP2 is influenced by groundwater flow gradients towards adjacent receiving water bodies, including the former discharge flume, Unnamed Tributary, and ultimately into the east lobe of Coffeen Lake.

Conditions within the UA are predicted to favor amorphous iron oxide stability at most locations and the presence of iron oxides in some site solids indicates a portion of the boron in the groundwater system may be attenuated via surface complexation reactions. Boron may be further attenuated via interactions with clay minerals, which are present in solids across the UA and LCU. However, batch attenuation testing results indicate that chemical attenuation of boron downgradient of AP2 could be minimal.

5.2 pH Conceptual Site Model

The CSM describing current conditions at AP2 combining the hydrogeologic and geochemical CSMs for pH is as follows. Water that may come into contact with CCR in AP2 becomes porewater within the closed and geomembrane capped CCR unit. Porewater with a geochemical signature distinct from groundwater is capable of migrating into and mixing with groundwater of the UA. Statistical exceedances of sulfate and TDS indicate that AP2 porewater is influencing groundwater at G401. AP2 porewater does not have sufficiently low pH to directly cause the pH values observed at G401, suggesting that geochemical reactions driven by interaction of porewater with the underlying UCU materials and/or mixing of porewater with groundwater may cause a low pH. These reactions may include iron oxidation and precipitation or carbonate mineral precipitation. Geochemical modeling to support evaluation of corrective actions may clarify the drivers of low pH at AP2.

5.3 Sulfate and TDS Conceptual Site Model

The CSM describing current conditions at AP2 combining the hydrogeologic and geochemical CSMs for sulfate and TDS is as follows. Water that may come into contact with CCR in AP2 becomes porewater within the closed and geomembrane capped CCR unit. Porewater containing elevated concentrations of sulfate and TDS is capable of migrating into and mixing with groundwater of the UA. Groundwater within the higher hydraulic conductivity zones of the UA in the vicinity of AP2 travels horizontally south and southeast outward from AP2. The horizontal migration of groundwater south and southeast outward from AP2 is influenced by groundwater flow gradients towards adjacent receiving water bodies, including the former discharge flume, Unnamed Tributary, and ultimately into the east lobe of Coffeen Lake.

Conditions within UA groundwater are predicted to favor amorphous iron oxide stability at most locations and the presence of iron oxides in some site solids indicates a portion of the sulfate in the groundwater system may be attenuated via surface complexation reactions. Attenuation of the constituents contributing to TDS, such as sulfate, will reduce TDS concentrations as well. However, batch attenuation testing results indicate that chemical attenuation of sulfate downgradient of AP2 could be minimal.

Surface water samples collected from the former discharge flume and Coffeen Lake indicate concentrations are below the GWPS. In addition, a screening level human health and ecological risk assessment [8] was performed to characterize potential risks to human and ecological receptors that may be exposed to CCR constituents present in Coffeen Lake that may have originated from AP1. Given the similar CCR constituents and concentrations in AP1 and AP2, and the same local groundwater receiving bodies for each SI, the constituents of concern that were identified in the AP1 risk assessment are appropriate for assessing human health and ecological risks that may be attributable to AP2. The risk assessment evaluation considered contaminants of interest if the maximum detected constituent concentration in groundwater exceeded a human health-based benchmark or a maximum detected constituent concentrations in groundwater exceeded an ecological surface water benchmark protective of aquatic life. Based on the evaluation presented in the risk assessment, no unacceptable risks to human or ecological receptors in Coffeen Lake resulting from CCR exposures associated with AP1 (which has concentrations similar to AP2) were identified. This means that the risks from the site, in particular the migration of constituents in groundwater to Coffeen Lake that are attributable to either AP1 or AP2, are likely indistinguishable from normal background risks.

6. CONCLUSIONS AND FUTURE ACTIVITIES

In accordance with 35 I.A.C. § 845.650(d)(1), the nature and extent of GWPS statistical exceedances of boron, pH, sulfate, and TDS have been described in sufficient detail to support a complete and accurate assessment of the corrective measures necessary to effectively clean up all releases from AP2.

The lateral extents of statistical exceedances in the UA are illustrated in **Figure 3-1**. As discussed in **Sections 3.2.1** through **3.2.4**, boron, pH, sulfate, and TDS statistical exceedances are defined downgradient by surface water samples collected from the former discharge flume to the south of AP2, and by surface water samples collected from the east lobe of Coffeen Lake to the southeast of AP2. GWPS statistical exceedances of boron, pH, sulfate, and TDS are not expected to extend a significant distance to the west due to the north-south groundwater divide or to the north due to groundwater flow directions surrounding AP2. Boron, pH, sulfate, and TDS statistical exceedances are constrained vertically by the underlying Vandalia Till.

Boron was selected for modeling source control as presented in the Closure Plan [12] and Groundwater Modeling Report [25]. For modeling purposes, it was assumed that boron would not significantly sorb or chemically react with aquifer solids in the UA (soil adsorption coefficient [Kd] was set to 0 milliliters per gram), which is a conservative estimate for predicting contaminant transport times in the model. A Kd value of 0.7 cubic centimeters per gram was used for the UCU and LCU.

7. REFERENCES

- Ramboll Americas Engineering Solutions, Inc. (Ramboll), "35 I.A.C. § 845 Corrective Measures Assessment, Ash Pond No. 2, Coffeen Power Plant, Coffeen, Illinois, IEPA ID: W135015004-01," April 24, 2024.
- [2] Geosyntec Consultants, Inc. (Geosyntec), "Alternative Source Demonstration, Coffeen Power Plant Ash Pond No. 2 (Unit ID #102), IEPA ID: W1350150004-02, 35 I.A.C. 845.650," December 15, 2023.
- [3] Geosyntec, "Alternative Source Demonstration G407 Sulfate and Total Dissolved Solids, Coffeen Power Plant Ash Pond No. 2 (Unit ID #102), IEPA ID: W1350150004-02, 35 I.A.C. 845.650," December 15, 2023.
- [4] IEPA, Bureau of Water, Division of Water Pollution Control, "Re: Coffeen Power Plant Ash Pond No. 2; W1350150004-02, Alternative Source Demonstration Submittal," January 11, 2024.
- [5] IEPA, Bureau of Water, Division of Water Pollution Control, "Re: Coffeen Power Plant Ash Pond No. 2; W1350150004-02, Alternative Source Demonstration Submittal," January 11, 2024.
- [6] Illinois Pollution Control Board (IPCB), "PCB 24-55 (Petition for review Alternative Source Demonstration)," April 18, 2024.
- [7] IPCB, "PCB 24-56 (Petition for review Alternative Source Demonstration)," April 18, 2024.
- [8] Gradient, "Human Health and Ecological Risk Assessment, Primary Ash Pond Newton Power Plant, Newton Illinois," July 28, 2022.
- [9] Ramboll, "35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 2, Ash Pond No. 2, Coffeen Power Plant, Coffeen, Illinois," October 16, 2023.
- [10] Ramboll, "35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 3, Ash Pond No. 2, CoffeenPower Plant, Coffeen, Illinois," January 20, 2024.
- [11] Ramboll, "35 I.A.C. § 845.610(b)(3)(D) Groundwater Monitoring Data and Detected Exceedances, 2023 Quarter 4, Ash Pond No. 2, CoffeenPower Plant, Coffeen, Illinois," March 10, 2024.
- [12] AECOM, "Closure and Post-Closure Care Plan for the Coffeen Ash Pond No. 2 at Illinois Power Generating Company, Coffeen Power Station, 134 Cips Lane, Coffeen, IL 62107," July 28, 2022.
- [13] Natural Resource Technology, Inc., "Hydrogeologic Site Characterization Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois," January 24, 2017.
- [14] H. Willman, E. Atherton, T. Buschbach, C. Collinson, J. Frye, M. Hopkins, J. Lineback and J. Simon, Handbook of Illinois Stratigraphy, vol. Bulletin 95, Illinois State Geological Survey, 1975, p. 261.
- [15] D. Kolata, Bedrock Geology of Illinois. Scale 1:500,000, Illinois State Geological Survey Map, 2005.

- [16] Illinois State Geological Survey (ISGS), "ILSTRAT: The Online Handbook of Illinois Stratigraphy," 2020. [Online]. Available: https://ilstratwiki.web.illinois.edu/wiki/Main_Page.
- [17] Illinois State Geological Survey (ISGS), "Directory of Coal Mines in Illinois, Christian County," August 2019. [Online]. Available: https://wikiimage.isgs.illinois.edu/ilmines/webfiles/mines-series/mines-directory/pdffiles/mines-directory-christian.pdf. [Accessed August 2019].
- [18] Hanson Professional Services, Inc. (Hanson), "40 CFR 257.60 Uppermost Aquifer Considerations, Gypsum Pond, Illinois Power Holdings LLC, Coffeen Energy Center, Montgomery County, Illinois," April 2016.
- [19] Natural Resource Technology, Inc., an OBG Company (NRT/OBG), "Hydrogeologic Monitoring Plan," Coffeen Ash Pond No. 1 – CCR Unit ID 101, Coffeen Ash Pond No. 2 – CCR Unit ID 102, Coffeen GMF Gypsum Stack Pond – CCR Unit ID 103, Coffeen GMF Recycle Pond – CCR Unit ID 104, Coffeen Landfill – CCR Unit ID 105, Coffeen Power Plant, Coffeen, Illinois, October 17, 2017.
- [20] Ramboll, "Hydrogeologic Site Characterization Report. Coffeen Power Plant, GMF Recycle Pond, Coffeen, Illinois. Illinois Power Generating Company," October 25, 2021.
- [21] Ramboll, "Hydrogeologic Site Characterization Report. Coffeen Power Plant. GMF Gypsum Stack Pond, Coffeen, Illinois. Illinois Power Generating Company," October 25, 2021.
- [22] Ramboll, "Hydrogeologic Site Characterization Report. Coffeen Power Plant. Ash Pond No. 1. Coffeen, Illinois. Illinois Power Generating Company," October 25, 2021.
- [23] Ramboll, "Groundwater Monitoring Plan, Coffeen Power Plant, Ash Pond No. 2, Coffeen, Illinois, Illinois Power Generating Company," October 25, 2021.
- [24] Ramboll Americas Engineering Solutions, Inc., "Groundwater Monitoring Report, Coffeen Power Plant, Ash Pond No. 2, Coffeen, Illinois. Illinois Power Generating Company.," July 28, 2022.
- [25] NRT, "Groundwater Modeling Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois," January 24, 2017.
- [26] Gradient Corporation, "Human Health and Ecological Risk Assessment, Ash Pond 1, Coffeen Power Plant, Coffeen, Illinois," July 28, 2022.
- [27] Natural Resource Technology, Inc., "Hydrostatic Modeling Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois," January 24, 2017.
- [28] United States Environmental Protection Agency, "Human and Ecological Risk Assessment of Coal Combustion Residuals (2050-AE81)," December 2014.

TABLES

Table 2-1. Summary of Groundwater Elevations

Nature and Extent Report

Coffeen Power Plant Ash Pond No. 2

Coffeen, IL

Well ID	Well Type	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G1001	Compliance	05/30/2023	6.61	590.99
G1003	Water Level	05/30/2023	10.97	599.82
G270	Background	05/30/2023	5.06	620.79
G280	Background	05/30/2023	3.96	621.38
G281	Background	05/30/2023	6.64	619.71
G401	Compliance	05/30/2023	21.72	603.85
G402	Compliance	05/30/2023	10.56	602.80
G403	Compliance	05/30/2023	8.13	618.33
G404	Compliance	05/30/2023	5.42	610.24
G405	Compliance	05/30/2023	6.83	616.79
G406	Compliance	05/30/2023	13.06	612.29
G407	Compliance	05/30/2023	7.35	613.96
SG-02	Water Level	05/30/2023	7.47	598.40
SG-03	Water Level	05/30/2023	9.85	585.09
SG-04	Water Level	05/30/2023	6.41	593.11

Notes:

BMP = below measuring point NAVD88 = North American Vertical Datum of 1988

Table 2-1. Summary of Groundwater Elevations

Nature and Extent Report

Coffeen Power Plant Ash Pond No. 2

Coffeen, IL

Well ID	Well Type	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G1001	Compliance	08/08/2023	6.32	591.29
G1003	Water Level	08/08/2023	D	iry
G270	Background	08/14/2023	[8.52]	[617.34]
G280	Background	08/08/2023	5.80	619.55
G281	Background	08/08/2023	6.39	619.97
G401	Compliance	08/08/2023	21.75	603.82
G402	Compliance	08/08/2023	11.65	601.72
G403	Compliance	08/08/2023	7.45	619.02
G404	Compliance	08/14/2023	[5.62]	[610.05]
G405	Compliance	08/08/2023	6.85	616.78
G406	Compliance	08/08/2023	11.49	613.87
G407	Compliance	08/08/2023	8.79	612.53
SG-03	Water Level	08/08/2023	9.65	585.29

Notes: Only wells with groundwater elevations measured are included.

BMP = below measuring point Bracketing [] indicates that the measurement was obtained outside of the 24-hour period from initiation of depth to groundwater measurements. NAVD88 = North American Vertical Datum of 1988

Table 2-1. Summary of Groundwater Elevations

Nature and Extent Report

Coffeen Power Plant

Ash Pond No. 2 Coffeen, IL

Depth to Groundwater Groundwater Elevation Date Well ID (feet NAVD88) Well Type (feet BMP) 591.12 G1001 Compliance 11/13/2023 6.49 G1003 Water Level 11/13/2023 Dry 614.96 G270 Background 11/13/2023 10.90 Background 8.91 G280 11/13/2023 616.44 Background 8.59 617.77 G281 11/13/2023 G401 Compliance 11/13/2023 13.63 611.94 G402 Compliance 11/13/2023 11.71 601.66 G403 Compliance 8.27 618.20 11/13/2023 G404 Compliance 11/13/2023 6.48 609.19 G405 Compliance 7.73 615.90 11/13/2023 Compliance 13.83 G406 11/13/2023 611.53 G407 Compliance 11/13/2023 8.31 613.01 598.51 SG-02 Water Level 11/13/2023 7.36 SG-03 Water Level 11/13/2023 9.71 585.23 SG-04 Water Level 11/13/2023 Not Measured

Notes:

Only wells with groundwater elevations measured are included.

BMP = below measuring point

NAVD88 = North American Vertical Datum of 1988

Date	G405 Groundwater Elevation (ft NAVD88) UA	T408 Groundwater Elevation (ft NAVD88) LCU (upper)	Head Distance Vertical Change Change ¹ Grac (ft) (ft) (dh		Vertical H Gradio (dh/	Hydraulic lient ² 1/dl)	
2/4/2017	618.47	619.46	-0.99	12.00	-0.08	up	
5/13/2017	618.74	619.00	-0.26	12.00	-0.02	up	
7/8/2017	618.54	619.12	-0.58	12.00	-0.05	up	
10/21/2017	614.47	614.81	-0.34	12.00	-0.03	up	
5/8/2018	618.94	615.82	3.12	12.00	0.26	down	
8/2/2018	617.55	614.45	3.10	12.00	0.26	down	
10/23/2018	616.40	616.30	0.10	12.00	0.01	down	
1/15/2019	616.81	617.01	-0.20	12.00	-0.02	up	
8/5/2019	617.72	617.15	0.57	12.00	0.05	down	
1/20/2020	619.28	619.13	0.15	12.00	0.01	down	
8/10/2020	617.62	617.38	0.24	12.00	0.02	down	
1/20/2021	617.12	616.85	0.27	12.00	0.02	down	
4/20/2021	617.13	616.65	0.48	12.00	0.04	down	
7/26/2021	617.37	617.21	0.16	12.00	0.01	down	
8/16/2021	617.28	617.22	0.06	12.00	0.00	down	
10/25/2021	618.12	615.50	2.62	12.00	0.22	down	
2/7/2022	617.28	616.88	0.40	12.00	0.03	down	
5/9/2022	617.91	617.78	0.13	12.00	0.01	down	
8/23/2022	616.85	616.99	-0.14	12.00	-0.01	up	
2/13/2023	617.50	617.16	0.34	12.00	0.03	down	
5/30/2023	616.79	616.66	0.13	12.00	0.01	down	
8/8/2023	616.78	616.62	0.16	12.00	0.01	down	
10/24/2023	615.79	615.97	-0.18	12.00	-0.02	up	
11/13/2023	615.90	616.06	-0.16	12.00	-0.01	up	
	Middle of screen elevation G405D					610.0	
			Middle	of screen elevation	n T408	598.0	

G406 Groundwater Date Elevation (ft NAVD88)		T409 Groundwater Elevation (ft NAVD88)	Head Change (ft)	Distance Change ¹ (ft)	Vertical H Gradio (dh/	ydraulic ent ² dl)	
	UA	LCU (upper)					
2/4/2017	617.52	615.93	1.59	8.23	0.19	down	
5/13/2017	616.20	616.75	-0.55	8.23	-0.07	up	
7/8/2017	616.29	617.05	-0.76	8.23	-0.09	up	
10/21/2017	611.27	612.16	-0.89	8.23	-0.11	up	
5/8/2018	615.47	616.02	-0.55	8.23	-0.07	up	
8/2/2018	615.75	615.25	0.50	8.23	0.06	down	
10/23/2018	614.11	613.96	0.15	8.23	0.02	down	
1/15/2019	615.36	614.78	0.58	8.23	0.07	down	
8/5/2019	616.50	615.10	1.40	8.23	0.17	down	
1/20/2020	617.48	617.16	0.32	8.23	0.04	down	
8/10/2020	615.54	615.43	0.11	8.23	0.01	down	
1/20/2021	612.97	614.41	-1.44	8.23	-0.17	up	
4/20/2021	613.78	615.33	-1.55	8.23	-0.19	up	
7/26/2021	614.20	615.72	-1.52	8.23	-0.18	up	
8/16/2021	613.82	615.42	-1.60	8.23	-0.19	up	
10/25/2021	614.93	616.43	-1.50	8.23	-0.18	up	
2/7/2022	613.55	614.97	-1.42	8.23	-0.17	up	
5/9/2022	615.36	616.81	-1.45	8.23	-0.18	up	
8/23/2022	613.47	610.73	2.74	8.23	0.33	down	
2/13/2023	614.11	615.65	-1.54	8.23	-0.19	up	
5/30/2023	612.29	613.74	-1.45	8.23	-0.18	up	
8/8/2023	613.87	615.02	-1.15	8.23	-0.14	up	
10/24/2023	611.28	612.55	-1.27	8.23	-0.15	up	
11/13/2023	611.53	613.01	-1.48	8.23	-0.18	up	
			Middle of screen elevation G406				
			Middle	of screen elevation	n T409	597.7	

Date	T408 Groundwater Elevation (ft NAVD88) LCU (upper)	G45D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Distance Vert Change Change ¹ (ft) (ft)		Vertical H Gradio (dh/	al Hydraulic adient ² dh/dl)	
2/4/2017	619.46	587.71	31.75	13.78	2.30	down	
5/13/2017	619.00	586.19	32.81	13.78	2.38	down	
7/8/2017	619.12	586.29	32.83	13.78	2.38	down	
10/21/2017	614.81	584.69	30.12	13.78	2.19	down	
5/8/2018	615.82	587.56	28.26	13.78	2.05	down	
8/2/2018	614.45	585.81	28.64	13.78	2.08	down	
10/23/2018	616.30	584.60	31.70	13.78	2.30	down	
1/15/2019	617.01	586.96	30.05	13.78	2.18	down	
8/5/2019	617.15	588.04	29.11	13.78	2.11	down	
8/10/2020	617.38	614.21	3.17	13.78	0.23	down	
1/20/2021	616.85	614.60	2.25	13.78	0.16	down	
4/20/2021	616.65	614.32	2.33	13.78	0.17	down	
7/26/2021	617.21	613.58	3.63	13.78	0.26	down	
8/16/2021	617.22	613.83	3.39	13.78	0.25	down	
10/25/2021	615.50	614.51	0.99	13.78	0.07	down	
2/7/2022	616.88	615.01	1.87	13.78	0.14	down	
5/9/2022	617.78	614.95	2.83	13.78	0.21	down	
8/23/2022	616.99	614.58	2.41	13.78	0.17	down	
2/13/2023	617.16	614.69	2.47	13.78	0.18	down	
5/30/2023	616.66	613.99	2.67	13.78	0.19	down	
8/8/2023	616.62	613.47	3.15	13.78	0.23	down	
10/24/2023	615.97	613.40	2.57	13.78	0.19	down	
11/13/2023	616.06	613.55	2.51	13.78	0.18	down	
			Middle of screen elevation T408				
			Middle	of screen elevation	n G45D	584.2	

Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

Date	T409 Groundwater Elevation (ft NAVD88) LCU (upper)	G46D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Change (ft)	Distance Change ¹ (ft)	Vertical H Gradio (dh/	ydraulic ent ² dl)
2/4/2017	615.93	586.06	29.87	22.19	1 35	down
5/13/2017	616.75	584.87	31.88	22.19	1.44	down
7/8/2017	617.05	585.22	31.83	22.19	1.43	down
5/8/2018	616.02	585.86	30.16	22.19	1.36	down
8/2/2018	615.25	583.95	31.30	22.19	1.41	down
10/23/2018	613.96	582.05	31.91	22.19	1.44	down
1/15/2019	614.78	583.17	31.61	22.19	1.42	down
8/5/2019	615.10	583.68	31.42	22.19	1.42	down
8/10/2020	615.43	609.00	6.43	22.19	0.29	down
1/20/2021	614.41	610.49	3.92	22.19	0.18	down
4/20/2021	615.33	611.06	4.27	22.19	0.19	down
7/26/2021	615.72	607.21	8.51	22.19	0.38	down
8/16/2021	615.42	608.17	7.25	22.19	0.33	down
10/25/2021	616.43	609.87	6.56	22.19	0.30	down
2/7/2022	614.97	610.71	4.26	22.19	0.19	down
5/9/2022	616.81	611.34	5.47	22.19	0.25	down
8/23/2022	610.73	615.13	-4.40	22.19	-0.20	up
2/13/2023	615.65	610.39	5.26	22.19	0.24	down
5/30/2023	613.74	610.70	3.04	22.19	0.14	down
8/8/2023	615.02	610.14	4.88	22.19	0.22	down
10/24/2023	612.55	609.65	2.90	22.19	0.13	down
11/13/2023	613.01	609.70	3.31	22.19	0.15	down
			Middle	597.7		
Middle of screen elevation G46D						

[O: KLT 6/4/21, C:YMD 6/7/21; U:KLT 8/25/21, C:EDP 8/31/21] [KLT 5/3/24, C: 5/7/24]

Notes:

¹ Distance change was calculated using the midpoint of the piezometer screen and water table surface. If the water table surface was above the top of the monitoring well screen, then distance change was calculated using the midpoint of both screens.

 2 Vertical gradients between ±0.0015 are considered flat, and typically have less than 0.02 foot difference in groundwater elevation between wells.

- - = no data collected on date / no vertical gradient calculated

DA = deep aquifer

dh = head change

dl = distance change

ft = foot/feet

LCU (lower) = lower confining unit (Smithboro)

LCU (upper) = lower confining unit (Vandalia)

NAVD88 = North American Vertical Datum of 1988

PMP = potential migration pathway

UA = uppermost aquifer

Table 3-1. Monitoring Well Construction Details

Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

Measuring Screen Bottom of Top of PVC Point Ground Screen Top Screen Screen Top Bottom Boring **Measuring Point** Well Depth Elevation Elevation Date Elevation Elevation Depth **Bottom Depth** Elevation Elevation Screen Leng Location HSU Constructed (ft) Description (ft bgs) (ft bgs) (ft bgs) (ft) (ft) (ft) (ft) (ft) (ft) G270 UA 02/26/2008 625.43 Top of Disk 623.73 13.13 17.92 610.60 605.81 18.27 605.50 4.8 ---G280 625.35 UA 02/26/2008 Top of Riser 623.11 605.48 4.8 625.26 12.79 17.63 610.32 17.98 605.10 G281 4.7 UA 09/08/2015 626.43 Top of Disk 623.82 15.51 20.16 608.31 603.66 20.3 603.50 ---G401 09/14/2015 625.57 Top of Disk 623.03 14.36 608.67 604.24 19.29 603.70 4.4 UA ---18.79 G402 UA 08/27/2010 613.06 Top of Disk 610.36 10 20 600.36 590.36 20.4 590.00 10 ---G403 4.7 UA 09/11/2015 ---626.24 Top of Disk 623.81 13.11 17.78 610.70 606.03 18.15 605.70 G404 05/01/2007 UA --615.67 Top of Disk 613.57 6.42 11.17 607.15 602.40 11.62 601.60 4.8 G405 UA 05/01/2007 623.41 Top of Disk 621.40 9.01 13.76 612.39 607.64 14.21 607.20 4.8 ---G406 08/19/2016 625.36 608.30 4.8 UA 625.05 Top of PVC 621.86 13.56 18.37 603.49 18.75 603.10 G407 UA 08/16/2016 621.32 620.95 Top of PVC 618.35 13.78 18.61 604.57 599.74 19.04 598.40 4.8 G1001 LCU 04/05/2021 597.61 588.82 583.82 562.82 5 597.78 Top of PVC 594.82 11 11 6 G1003 LCU 05/25/2021 610.791 610.791 Top of PVC 608.01 8 12 600.01 596.01 14.79 587.01 4

Notes:

All elevation data are presented relative to the North American Vertical Datum 1988 (NAVD88), GEOID 12A

-- = not measured/recorded

bgs = below ground surface

ft = foot or feet

HSU = Hydrostratigraphic Unit

LCU = Lower Confining Unit

PVC = polyvinyl chloride

UA = Uppermost Aquifer

gth	Screen Diameter (inches)	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)		
	2	39.0665638	-89.3974031		
	2	39.0672155	-89.3949916		
	2	39.0654052	-89.3993221		
	2	39.0602586	-89.3952949		
	2	39.0602071	-89.3917118		
	2	39.0631666	-89.3987788		
	2	39.0643292	-89.3924931		
	2	39.064345	-89.3962337		
	2	39.0603094	-89.3985078		
	2	39.0615735	-89.4020036		
	4	39.0633242	-89.39123631		
	2	39.06077048	-89.3914461		

Table 3-2. Exceedance Parameter Statistical Results

Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

			Groundwater			
			Protection			
Location	Parameter	Unit	Standard	2023 Q2 LCL	2023 Q3 LCL	2023 Q4 LCL
G401	Boron, total	mg/L	2	3.50	3.50	3.50
G402	Boron, total	mg/L	2	4.43	4.50	5.44
G404	Boron, total	mg/L	2	5.52	6.35	7.42
G405	Boron, total	mg/L	2	9.19	9.25	9.42
G401	Cobalt, total	mg/L	0.006	0.0629	0.0656	0.0692
G401	Sulfate, total	mg/L	400	2,000	2,000	1,410
G402	Sulfate, total	mg/L	400	442	427	393
G404	Sulfate, total	mg/L	400	422	452	478
G405	Sulfate, total	mg/L	400	412	436	442
G406	Sulfate, total	mg/L	400	450	450	450
G407	Sulfate, total	mg/L	400	440	440	830
G401	Total Dissolved Solids	mg/L	1,200	2,800	2,800	2,800
G402	Total Dissolved Solids	mg/L	1,200	1,310	1,300	1,290
G404	Total Dissolved Solids	mg/L	1,200	1,250	1,300	1,320
G405	Total Dissolved Solids	mg/L	1,200	1,530	1,540	1,540
G407	Total Dissolved Solids	mg/L	1,200	1,920	1,910	1,920
G401	pH (field)	SU	6.5/9.0	5.9/6.1	5.9/6.1	5.9/6.1

Notes:

LCL = Lower Confidence Level

mg/L = milligrams per liter

SU = standard units

Table 3-3. Summary of Groundwater Data

						D						
	Location	Darameter	l l mit	Sample Count	Non-Detect	Percent Non-	Eirct Sampla	Last Sampla	Minimum	Madian	Moon	Maximum
		Paran total	ma/l					11/14/2022	0 720		1.04	
	G1001 G1001		mg/L	4	1	25	05/12/2021	11/14/2023	0.720	0.00110	1.04	1.40
	G1001		mg/L	4	1	25	05/12/2021	11/14/2023	140	0.00119	210	620
	G1001	Tatal Dissolved Salida	mg/L	4	0	0	03/12/2021	11/14/2023	140	230	310	030
	G1001	Total Dissolved Solids	mg/L	3	0	0	02/15/2023	11/14/2023	830	900	1,143	1,700
	G1001	ph (field)	SU	3	0	0	02/15/2023	11/14/2023	0.0071	6.97	6.92	7.0
UA	G270	Boron, total	mg/L	39	25	64	01/20/2015	11/1//2023	<0.0071	0.0100	0.0170	0.120
UA	G270	Cobalt, total	mg/L	37	34	92	04/13/2015	11/1//2023	0.000200	0.00200	0.00170	<0.002
UA	G270	Sulfate, total	mg/L	39	0	0	01/20/2015	11/1//2023	48.0	54.0	62.4	140
UA	G270	Total Dissolved Solids	mg/L	39	0	0	01/20/2015	11/17/2023	340	420	436	570
UA	G270	pH (field)	SU	39	0	0	01/20/2015	11/17/2023	6.6	7.10	7.09	7.5
UA	G280	Boron, total	mg/L	40	19	48	01/21/2015	11/20/2023	<0.0071	0.0105	0.0539	1.00
UA	G280	Cobalt, total	mg/L	37	32	86	04/13/2015	11/20/2023	0.000200	0.00200	0.00195	0.00600
UA	G280	Sulfate, total	mg/L	40	0	0	01/21/2015	11/20/2023	43.0	82.0	100	910
UA	G280	Total Dissolved Solids	mg/L	40	0	0	01/21/2015	11/20/2023	350	460	476	1,100
UA	G280	pH (field)	SU	39	0	0	01/21/2015	11/20/2023	6.0	7.26	7.24	7.7
UA	G281	Boron, total	mg/L	35	19	54	11/20/2015	11/20/2023	<0.0071	0.0100	0.0170	0.110
UA	G281	Cobalt, total	mg/L	34	26	76	11/20/2015	11/20/2023	0.000400	0.00200	0.00189	0.00560
UA	G281	Sulfate, total	mg/L	35	0	0	11/20/2015	11/20/2023	140	280	287	380
UA	G281	Total Dissolved Solids	mg/L	35	0	0	11/20/2015	11/20/2023	700	870	866	1,000
UA	G281	pH (field)	SU	35	0	0	11/20/2015	11/20/2023	6.7	7.00	7.0	7.3
UA	G401	Boron, total	mg/L	28	0	0	11/21/2015	11/21/2023	1.10	3.90	3.77	5.37
UA	G401	Cobalt, total	mg/L	27	0	0	11/21/2015	11/21/2023	0.0460	0.240	0.222	0.420
UA	G401	Sulfate, total	mg/L	28	0	0	11/21/2015	11/21/2023	870	2,100	2,345	4,600
UA	G401	Total Dissolved Solids	mg/L	28	0	0	11/21/2015	11/21/2023	1,200	2,920	3,028	6,600
UA	G401	pH (field)	SU	30	0	0	11/21/2015	11/21/2023	5.6	6.00	6.03	6.4
UA	G402	Boron, total	mg/L	28	0	0	11/21/2015	11/21/2023	4.60	5.70	5.84	8.13
UA	G402	Cobalt, total	mg/L	27	5	19	11/21/2015	11/21/2023	0.000930	0.00370	0.00587	0.0190
UA	G402	Sulfate, total	mg/L	28	0	0	11/21/2015	11/21/2023	78.0	840	790	1,200
UA	G402	Total Dissolved Solids	mg/L	28	0	0	11/21/2015	11/21/2023	1,300	1,600	1,554	1,800
UA	G402	pH (field)	SU	28	0	0	11/21/2015	11/21/2023	6.4	6.79	6.76	7.3
UA	G403	Boron, total	mg/L	28	5	18	11/23/2015	11/20/2023	< 0.0023	0.0309	0.0393	0.110
UA	G403	Cobalt. total	mg/L	27	13	48	11/23/2015	11/20/2023	<0.00048	0.00200	0.00201	0.00340
UA	G403	Sulfate, total	mg/L	28	0	0	11/23/2015	11/20/2023	4.90	34.5	34.7	74.0
UA	G403	Total Dissolved Solids	mg/L	28	0	0	11/23/2015	11/20/2023	270	355	369	508
UA	G403	pH (field)	su	28	0	0	11/23/2015	11/20/2023	6.5	6.92	6.92	7.3
UA	G404	Boron, total	mg/L	29	0	0	10/07/2015	11/21/2023	1.40	4.10	5.68	21.2
UA	G404	Cobalt, total	mg/L	28	25	89	10/07/2015	11/21/2023	<0.00048	0.00200	0.00176	0.00330
	G404	Sulfate total	mg/l	29	0	0	10/07/2015	11/21/2023	140	310	375	840
UA	19404	ISullate, total	rng/L	29	U	U	10/07/2015	11/21/2023	140	310	3/5	840

Table 3-3. Summary of Groundwater Data

Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

					Non-Detect	Percent Non-						
HSU	Location	Parameter	Unit	Sample Count	Result Count	Detect Results	First Sample	Last Sample	Minimum	Median	Mean	Maximum
UA	G404	Total Dissolved Solids	mg/L	29	0	0	10/07/2015	11/21/2023	460	950	1,037	1,900
UA	G404	pH (field)	SU	29	0	0	10/07/2015	11/21/2023	6.4	6.80	6.89	7.5
UA	G405	Boron, total	mg/L	29	0	0	10/07/2015	11/21/2023	4.00	10.8	11.3	20.0
UA	G405	Cobalt, total	mg/L	28	14	50	10/07/2015	11/21/2023	0.000790	0.00200	0.00211	0.00440
UA	G405	Sulfate, total	mg/L	29	0	0	10/07/2015	11/21/2023	340	1,000	1,095	1,900
UA	G405	Total Dissolved Solids	mg/L	29	0	0	10/07/2015	11/21/2023	720	1,700	1,763	2,900
UA	G405	pH (field)	SU	29	0	0	10/07/2015	11/21/2023	6.6	6.95	6.92	7.4
UA	G406	Boron, total	mg/L	13	0	0	10/14/2020	11/20/2023	0.170	1.50	1.44	2.29
UA	G406	Cobalt, total	mg/L	13	10	77	10/14/2020	11/20/2023	<0.00048	0.000800	0.00123	<0.002
UA	G406	Sulfate, total	mg/L	13	0	0	10/14/2020	11/20/2023	25.0	480	464	610
UA	G406	Total Dissolved Solids	mg/L	13	0	0	10/14/2020	11/20/2023	920	1,070	1,078	1,200
UA	G406	pH (field)	SU	13	0	0	10/14/2020	11/20/2023	6.4	6.56	6.60	7.0
UA	G407	Boron, total	mg/L	13	0	0	10/14/2020	11/20/2023	0.0614	0.0900	0.0970	0.150
UA	G407	Cobalt, total	mg/L	13	7	54	10/14/2020	11/20/2023	<0.00048	0.00200	0.00170	0.00620
UA	G407	Sulfate, total	mg/L	13	0	0	10/14/2020	11/20/2023	400	960	897	1,100
UA	G407	Total Dissolved Solids	mg/L	13	0	0	10/14/2020	11/20/2023	1,800	2,000	2,022	2,200
UA	G407	pH (field)	SU	13	0	0	10/14/2020	11/20/2023	6.4	6.66	6.65	6.9

Notes:

< = less than the method detection limit

HSU = Hydrostratigraphic Unit

LCU = Lower Confining Unit

mg/L = milligrams per liter

SU = standard units

UA = Uppermost Aquifer

FIGURES

Y:\Mapping\Projects\22\2285\MXD\Nature_and_Extent\COF\Nature_and_Extent_Report\102\Figure 2-1_Site Location Map AP2.mxd

SITE LOCATION MAP

FIGURE 2-1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

550

L Feet

- HONITORING WELL
- STAFF GAGE, RIVER
- PORE WATER WELL

275

0

- REGULATED UNIT (SUBJECT UNIT)
- LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

MONITORING WELL LOCATION MAP

FIGURE 2-2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NOTE: STAFF GAGE SG-04 WAS IDENTIFIED AS DESTROYED DURING OCTOBER 2023. NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

HAGARSTOWN BEDS POTENTIALLY IN CONTACT WITH ASH

REGULATED UNIT (SUBJECT UNIT)

FIGURE 2-3

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

BASE OF CCR

- HAGARSTOWN MEMBER ELEVATION CONTOUR (1-FT INTERVAL, NAVD88)
- INFERRED HAGARSTOWN MEMBER ELEVATION CONTOUR
 - REGULATED UNIT (SUBJECT UNIT)
 - SITE FEATURE

275

0

LIMITS OF FINAL COVER

550

___ Feet

PROPERTY BOUNDARY

TOP OF UPPERMOST AQUIFER

FIGURE 2-4

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

FIGURE 2-5

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

UPPERMOST AQUIFER POTENTIOMETRIC SURFACE MAP MAY 30, 2023 (E001)

> NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

- GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88) COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION REGULATED UNIT (SUBJECT UNIT) SITE FEATURE
 - LIMITS OF FINAL COVER
 - PROPERTY BOUNDARY

0 325 650 - Feet 1

MONITORING WELL

PORE WATER WELL

STAFF GAGE, RIVER

STAFF GAGE, CCR UNIT

LEACHATE WELL

÷

÷

₽

÷ \oplus

L Feet

1

ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

GWPS EXCEEDANCE MAP UPPERMOST AQUIFER

FIGURE 3-1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

COMPLIANCE WELL WITHOUT EXCEEDANCE REGULATED UNIT (SUBJECT UNIT) SITE FEATURE LIMITS OF FINAL COVER PROPERTY BOUNDARY

GWPS EXCEEDANCE MAP LOWER CONFINING UNIT

FIGURE 3-2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

APPENDICES

APPENDIX A Hydrogeologic Characterization Report Cross-Sections

un 11, 2024 8:25am PLOTTED BY: CANRSEAC SAVED BY: CANRSEAG Y:\Mapping\Projects\23\2380\CAD\2-0\Figure 10_Geologic Cross-Section B-B' revdwg Layout1 MAGES:

B-B' CROSS-SECTION TRANSECT CLAY SOIL SAND SILT CLAY	DRAWN BY: AGC DATE: 11/30/16	CHECKED BY: NRK DATE: 12/20/16	APPROVED BY: SJC DATE: 12/20/16	DRAWING NO: Fig 10_Geologic Cross-Section B-B'	REFERENCE: SEE INFO BLOCK
WELL SCREEN WELL SCREEN G276 G275 G274 G404 B=1(d) B=2(s) COF-P010				HYDROGEOLOGIC CHARACTERIZATION REPORT ASH POND 2	COFFEEN POWER STATION COFFEEN, IL
F-P007 B' G302 F-P005		PF	N R T ROJE 238	ATU ESOL ECHI	RAL JRCE NOLOGY IO.
0 250 500 SCALE IN FEET		F	-IGUI	RE NO	D.

spaugh ure 11_ TED BY: (CAD\2-23 23 Ne Cirk

APPENDIX B Site-Wide Groundwater Elevations

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G045D	Water Level	LCU	02/13/2023	9.12	614.69
G045D	Water Level	LCU	05/30/2023	9.82	613.99
G045D	Water Level	LCU	08/08/2023	10.34	613.47
G045D	Water Level	LCU	10/24/2023	10.41	613.40
G045D	Water Level	LCU	11/13/2023	10.26	613.55
G046D	Water Level	LCU	02/13/2023	14.85	610.39
G046D	Water Level	LCU	05/30/2023	14.54	610.70
G046D	Water Level	LCU	08/08/2023	15.10	610.14
G046D	Water Level	LCU	10/24/2023	15.59	609.65
G046D	Water Level	LCU	11/13/2023	15.54	609.70
G1001	Water Level	LCU	02/13/2023	6.12	591.49
G1001	Water Level	LCU	03/30/2023	6.09	591.51
G1001	Water Level	LCU	04/30/2023	6.53	591.07
G1001	Water Level	LCU	05/30/2023	6.61	590.99
G1001	Water Level	LCU	08/08/2023	6.32	591.29
G1001	Water Level	LCU	09/25/2023	6.14	591.46
G1001	Water Level	LCU	10/24/2023	6.20	591.41
G1001	Water Level	LCU	11/13/2023	6.49	591.12
G1001	Water Level	LCU	12/18/2023	5.88	591.73
G1003	Water Level	LCU	02/13/2023	Dry	Dry
G1003	Water Level	LCU	05/30/2023	Dry	Dry
G1003	Water Level	LCU	08/08/2023	Dry	Dry
G1003	Water Level	LCU	10/24/2023	Dry	Dry
G1003	Water Level	LCU	11/13/2023	Dry	Dry
G101	Water Level	UA	02/13/2023	4.71	622.89
G101	Water Level	UA	05/30/2023	6.53	621.07
G101	Water Level	UA	08/08/2023	11.16	616.44
G101	Water Level	UA	10/25/2023	14.15	613.45
G101	Water Level	UA	11/13/2023	13.95	613.65
G102	Water Level	UA	02/13/2023	4.80	624.24
G102	Water Level	UA	08/08/2023	10.34	618.70
G102	Water Level	UA	10/24/2023	12.60	616.44
G102	Water Level	UA	11/13/2023	12.84	616.20
G102	Water Level	UA	12/18/2023	12.82	616.22

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G103	Water Level	UA	02/13/2023	9.59	624.21
G103	Water Level	UA	03/30/2023	7.94	625.85
G103	Water Level	UA	04/30/2023	9.58	624.21
G103	Water Level	UA	05/30/2023	10.49	623.31
G103	Water Level	UA	06/08/2023	11.00	622.80
G103	Water Level	UA	07/08/2023	12.05	621.74
G103	Water Level	UA	08/08/2023	13.53	620.27
G103	Water Level	UA	09/25/2023	14.74	619.06
G103	Water Level	UA	10/25/2023	15.66	618.14
G103	Water Level	UA	11/13/2023	16.00	617.80
G103	Water Level	UA	12/18/2023	16.24	617.56
G105	Water Level	UA	02/13/2023	8.24	623.84
G105	Water Level	UA	08/08/2023	10.84	621.24
G105	Water Level	UA	09/25/2023	15.74	616.34
G105	Water Level	UA	10/25/2023	12.90	619.18
G105	Water Level	UA	11/13/2023	13.46	618.62
G105	Water Level	UA	12/18/2023	13.63	618.45
G106	Water Level	UA	02/13/2023	8.44	622.71
G106	Water Level	UA	03/30/2023	7.82	623.32
G106	Water Level	UA	04/30/2023	9.16	621.98
G106	Water Level	UA	05/30/2023	9.81	621.33
G106	Water Level	UA	06/08/2023	10.39	620.76
G106	Water Level	UA	07/08/2023	10.50	620.65
G106	Water Level	UA	08/08/2023	12.17	618.98
G106	Water Level	UA	09/25/2023	12.97	618.18
G106	Water Level	UA	10/25/2023	14.01	617.14
G106	Water Level	UA	11/13/2023	14.21	616.94
G106	Water Level	UA	12/18/2023	13.87	617.28
G107	Water Level	UA	02/13/2023	9.07	621.15
G107	Water Level	UA	05/30/2023	10.85	619.37
G107	Water Level	UA	08/08/2023	12.76	617.46
G107	Water Level	UA	10/25/2023	14.31	615.91
G107	Water Level	UA	11/13/2023	14.40	615.82
G108	Water Level	UA	02/13/2023	9.67	620.55

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G108	Water Level	UA	05/30/2023	11.65	618.57
G108	Water Level	UA	08/08/2023	13.24	616.98
G108	Water Level	UA	10/25/2023	14.89	615.33
G108	Water Level	UA	11/13/2023	14.96	615.26
G109	Water Level	UA	02/13/2023	9.81	619.95
G109	Water Level	UA	05/30/2023	11.89	617.87
G109	Water Level	UA	08/08/2023	13.64	616.12
G109	Water Level	UA	10/25/2023	14.89	614.87
G109	Water Level	UA	11/13/2023	15.09	614.67
G110	Water Level	UA	02/13/2023	10.80	618.85
G110	Water Level	UA	05/30/2023	12.70	616.95
G110	Water Level	UA	08/08/2023	14.16	615.49
G110	Water Level	UA	10/25/2023	15.31	614.34
G110	Water Level	UA	11/13/2023	15.43	614.22
G111	Water Level	UA	02/13/2023	12.91	616.99
G111	Water Level	UA	05/30/2023	13.70	616.20
G111	Water Level	UA	08/08/2023	14.95	614.95
G111	Water Level	UA	10/25/2023	16.00	613.90
G111	Water Level	UA	11/13/2023	16.09	613.81
G119	Water Level	UA	02/13/2023	14.64	616.91
G119	Water Level	UA	05/30/2023	15.08	616.47
G119	Water Level	UA	08/08/2023	15.65	615.90
G119	Water Level	UA	10/25/2023	16.40	615.15
G119	Water Level	UA	11/13/2023	16.25	615.30
G120	Water Level	UA	02/13/2023	14.43	617.44
G120	Water Level	UA	05/30/2023	14.86	617.01
G120	Water Level	UA	08/08/2023	16.31	615.56
G120	Water Level	UA	10/25/2023	17.18	614.69
G120	Water Level	UA	11/13/2023	17.08	614.79
G121	Water Level	UA	02/13/2023	14.72	618.11
G121	Water Level	UA	05/30/2023	15.38	617.45
G121	Water Level	UA	08/08/2023	18.40	614.43
G121	Water Level	UA	10/25/2023	19.45	613.38
G121	Water Level	UA	11/13/2023	18.96	613.87

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G122	Water Level	UA	02/13/2023	13.89	618.80
G122	Water Level	UA	05/30/2023	14.00	618.69
G122	Water Level	UA	08/08/2023	19.54	613.15
G122	Water Level	UA	10/25/2023	21.21	611.48
G122	Water Level	UA	11/13/2023	20.40	612.29
G123	Water Level	UA	02/13/2023	11.80	621.16
G123	Water Level	UA	05/30/2023	12.68	620.28
G123	Water Level	UA	08/08/2023	18.57	614.39
G123	Water Level	UA	10/25/2023	20.09	612.87
G123	Water Level	UA	11/13/2023	19.94	613.02
G124	Water Level	UA	02/13/2023	12.14	621.25
G124	Water Level	UA	05/30/2023	13.43	619.96
G124	Water Level	UA	08/08/2023	18.49	614.90
G124	Water Level	UA	10/25/2023	21.05	612.34
G124	Water Level	UA	11/13/2023	Dry	Dry
G125	Water Level	UA	02/13/2023	11.99	621.52
G125	Water Level	UA	05/30/2023	13.54	619.97
G125	Water Level	UA	08/08/2023	18.53	614.98
G125	Water Level	UA	10/25/2023	21.21	612.30
G125	Water Level	UA	11/13/2023	Dry	Dry
G126	Water Level	UA	02/13/2023	8.92	616.47
G126	Water Level	UA	05/30/2023	10.04	615.35
G126	Water Level	UA	08/08/2023	10.93	614.46
G126	Water Level	UA	10/25/2023	11.85	613.54
G126	Water Level	UA	11/13/2023	11.91	613.48
G151	Water Level	UA	02/13/2023	10.88	615.05
G151	Water Level	UA	05/30/2023	11.58	614.35
G151	Water Level	UA	08/08/2023	12.22	613.71
G151	Water Level	UA	10/25/2023	12.99	612.94
G151	Water Level	UA	11/13/2023	12.97	612.96
G152	Water Level	UA	02/13/2023	10.25	616.27
G152	Water Level	UA	05/30/2023	11.11	615.41
G152	Water Level	UA	08/08/2023	12.40	614.12
G152	Water Level	UA	10/25/2023	13.42	613.10

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G152	Water Level	UA	11/13/2023	13.07	613.45
G153	Water Level	UA	02/13/2023	12.24	614.16
G153	Water Level	UA	05/30/2023	11.40	615.00
G153	Water Level	UA	08/08/2023	13.08	613.32
G153	Water Level	UA	10/25/2023	14.81	611.59
G153	Water Level	UA	11/13/2023	14.90	611.50
G154	Water Level	UA	02/13/2023	10.91	615.44
G154	Water Level	UA	05/30/2023	13.15	613.20
G154	Water Level	UA	08/08/2023	14.60	611.75
G154	Water Level	UA	10/25/2023	15.90	610.45
G154	Water Level	UA	11/13/2023	15.76	610.59
G155	Water Level	UA	02/13/2023	11.56	614.30
G155	Water Level	UA	05/30/2023	12.44	613.42
G155	Water Level	UA	08/08/2023	13.21	612.65
G155	Water Level	UA	10/25/2023	14.01	611.85
G155	Water Level	UA	11/13/2023	13.92	611.94
G200	Water Level	UA	02/13/2023	2.91	623.03
G200	Water Level	UA	03/30/2023	3.01	622.92
G200	Water Level	UA	04/30/2023	4.51	621.42
G200	Water Level	UA	05/30/2023	5.89	620.04
G200	Water Level	UA	06/08/2023	6.44	619.49
G200	Water Level	UA	08/08/2023	9.21	616.73
G200	Water Level	UA	09/25/2023	10.61	615.33
G200	Water Level	UA	10/25/2023	11.51	614.43
G200	Water Level	UA	11/13/2023	11.88	614.06
G200	Water Level	UA	12/18/2023	11.48	614.46
G206	Water Level	UA	02/13/2023	9.20	623.62
G206	Water Level	UA	03/30/2023	9.12	623.69
G206	Water Level	UA	04/30/2023	10.27	622.54
G206	Water Level	UA	05/30/2023	11.17	621.64
G206	Water Level	UA	07/08/2023	12.13	620.69
G206	Water Level	UA	08/08/2023	13.89	618.93
G206	Water Level	UA	09/25/2023	14.74	618.08
G206	Water Level	UA	10/25/2023	15.71	617.11

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G206	Water Level	UA	11/13/2023	16.16	616.66
G206	Water Level	UA	12/18/2023	15.85	616.97
G206D	Water Level	DA	02/13/2023	9.92	624.22
G206D	Water Level	DA	02/16/2023	[29.69]	[604.16]
G206D	Water Level	DA	03/30/2023	32.14	601.99
G206D	Water Level	DA	04/30/2023	30.53	603.60
G206D	Water Level	DA	05/30/2023	30.22	603.91
G206D	Water Level	DA	07/08/2023	30.10	604.04
G206D	Water Level	DA	08/08/2023	30.04	604.10
G206D	Water Level	DA	09/25/2023	30.08	604.06
G206D	Water Level	DA	10/25/2023	30.34	603.80
G206D	Water Level	DA	11/13/2023	30.40	603.74
G206D	Water Level	DA	12/18/2023	30.32	603.82
G207	Water Level	UA	02/13/2023	10.25	622.96
G207	Water Level	UA	03/30/2023	9.67	623.53
G207	Water Level	UA	04/30/2023	10.55	622.65
G207	Water Level	UA	05/30/2023	11.47	621.73
G207	Water Level	UA	07/08/2023	12.45	620.76
G207	Water Level	UA	08/08/2023	14.20	619.01
G207	Water Level	UA	09/25/2023	15.27	617.94
G207	Water Level	UA	10/25/2023	16.24	616.97
G207	Water Level	UA	11/13/2023	16.67	616.54
G207	Water Level	UA	12/18/2023	16.31	616.90
G208	Water Level	UA	02/13/2023	10.28	622.88
G208	Water Level	UA	03/30/2023	9.65	623.50
G208	Water Level	UA	04/30/2023	10.30	622.85
G208	Water Level	UA	05/30/2023	11.10	622.05
G208	Water Level	UA	06/08/2023	12.38	620.78
G208	Water Level	UA	07/08/2023	12.32	620.83
G208	Water Level	UA	08/08/2023	14.08	619.08
G208	Water Level	UA	09/25/2023	15.31	617.84
G208	Water Level	UA	10/25/2023	16.25	616.91
G208	Water Level	UA	11/13/2023	16.66	616.50
G208	Water Level	UA	12/18/2023	16.24	616.92

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G209	Water Level	UA	02/13/2023	10.01	622.90
G209	Water Level	UA	03/30/2023	9.63	623.27
G209	Water Level	UA	04/30/2023	10.25	622.65
G209	Water Level	UA	05/30/2023	11.07	621.83
G209	Water Level	UA	07/08/2023	11.82	621.08
G209	Water Level	UA	08/08/2023	13.79	619.12
G209	Water Level	UA	09/25/2023	14.78	618.13
G209	Water Level	UA	10/25/2023	15.60	617.31
G209	Water Level	UA	11/13/2023	16.24	616.67
G209	Water Level	UA	12/18/2023	16.04	616.87
G210	Water Level	UA	02/13/2023	10.49	622.50
G210	Water Level	UA	03/30/2023	9.73	623.25
G210	Water Level	UA	04/30/2023	10.36	622.62
G210	Water Level	UA	05/30/2023	11.09	621.89
G210	Water Level	UA	06/08/2023	11.76	621.23
G210	Water Level	UA	07/08/2023	12.29	620.70
G210	Water Level	UA	08/08/2023	13.75	619.24
G210	Water Level	UA	09/25/2023	14.67	618.32
G210	Water Level	UA	10/25/2023	15.52	617.47
G210	Water Level	UA	11/13/2023	15.82	617.17
G210	Water Level	UA	12/18/2023	15.99	617.00
G211	Water Level	UA	02/13/2023	9.90	622.74
G211	Water Level	UA	03/30/2023	9.18	623.45
G211	Water Level	UA	04/30/2023	9.99	622.64
G211	Water Level	UA	05/30/2023	10.54	622.09
G211	Water Level	UA	06/08/2023	11.76	620.88
G211	Water Level	UA	07/08/2023	12.43	620.21
G211	Water Level	UA	08/08/2023	13.44	619.20
G211	Water Level	UA	09/25/2023	14.74	617.90
G211	Water Level	UA	10/25/2023	15.15	617.49
G211	Water Level	UA	11/13/2023	15.61	617.03
G211	Water Level	UA	12/18/2023	15.93	616.71
G212	Water Level	UA	02/13/2023	10.38	622.51
G212	Water Level	UA	03/30/2023	9.77	623.11

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G212	Water Level	UA	04/30/2023	10.89	621.99
G212	Water Level	UA	05/30/2023	11.64	621.24
G212	Water Level	UA	06/08/2023	12.80	620.08
G212	Water Level	UA	07/08/2023	13.48	619.41
G212	Water Level	UA	08/08/2023	14.61	618.28
G212	Water Level	UA	09/25/2023	15.97	616.92
G212	Water Level	UA	10/25/2023	16.46	616.43
G212	Water Level	UA	11/13/2023	16.92	615.97
G212	Water Level	UA	12/18/2023	17.00	615.89
G213	Water Level	UA	02/13/2023	10.83	621.98
G213	Water Level	UA	03/30/2023	10.15	622.65
G213	Water Level	UA	04/30/2023	11.04	621.76
G213	Water Level	UA	05/30/2023	11.96	620.84
G213	Water Level	UA	06/08/2023	12.80	620.00
G213	Water Level	UA	07/08/2023	13.50	619.31
G213	Water Level	UA	08/08/2023	15.05	617.76
G213	Water Level	UA	09/25/2023	15.90	616.91
G213	Water Level	UA	10/25/2023	16.81	616.00
G213	Water Level	UA	11/13/2023	17.41	615.40
G213	Water Level	UA	12/18/2023	17.34	615.47
G214	Water Level	UA	02/13/2023	14.53	618.32
G214	Water Level	UA	03/30/2023	13.04	619.80
G214	Water Level	UA	04/30/2023	13.98	618.86
G214	Water Level	UA	05/30/2023	14.73	618.11
G214	Water Level	UA	06/08/2023	15.56	617.29
G214	Water Level	UA	07/08/2023	16.44	616.41
G214	Water Level	UA	08/08/2023	17.64	615.21
G214	Water Level	UA	09/25/2023	18.42	614.43
G214	Water Level	UA	10/25/2023	19.14	613.71
G214	Water Level	UA	11/13/2023	19.35	613.50
G214	Water Level	UA	12/18/2023	19.23	613.62
G215	Water Level	UA	02/13/2023	14.38	618.68
G215	Water Level	UA	03/30/2023	13.16	619.89
G215	Water Level	UA	04/30/2023	14.03	619.02

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G215	Water Level	UA	05/30/2023	14.76	618.29
G215	Water Level	UA	06/08/2023	15.46	617.59
G215	Water Level	UA	07/08/2023	16.06	616.99
G215	Water Level	UA	08/08/2023	17.22	615.84
G215	Water Level	UA	09/25/2023	18.06	614.99
G215	Water Level	UA	10/25/2023	18.41	614.65
G215	Water Level	UA	11/13/2023	19.03	614.03
G215	Water Level	UA	12/18/2023	18.75	614.31
G216	Water Level	UA	02/13/2023	13.54	619.22
G216	Water Level	UA	03/30/2023	12.27	620.48
G216	Water Level	UA	04/30/2023	12.94	619.81
G216	Water Level	UA	05/30/2023	13.63	619.12
G216	Water Level	UA	06/08/2023	14.99	617.77
G216	Water Level	UA	07/08/2023	15.42	617.33
G216	Water Level	UA	08/08/2023	16.51	616.25
G216	Water Level	UA	09/25/2023	17.38	615.38
G216	Water Level	UA	10/25/2023	17.86	614.90
G216	Water Level	UA	11/13/2023	18.21	614.55
G216	Water Level	UA	12/18/2023	18.00	614.76
G217	Water Level	UA	02/13/2023	14.72	618.38
G217	Water Level	UA	08/08/2023	18.29	614.81
G217	Water Level	UA	10/25/2023	19.51	613.59
G217	Water Level	UA	11/13/2023	19.68	613.42
G217	Water Level	UA	12/18/2023	19.33	613.77
G218	Water Level	UA	02/13/2023	13.71	619.40
G218	Water Level	UA	03/30/2023	12.50	620.60
G218	Water Level	UA	04/30/2023	12.98	620.12
G218	Water Level	UA	05/30/2023	13.72	619.38
G218	Water Level	UA	06/08/2023	15.11	618.00
G218	Water Level	UA	07/08/2023	15.80	617.31
G218	Water Level	UA	08/08/2023	16.98	616.13
G218	Water Level	UA	09/25/2023	17.95	615.16
G218	Water Level	UA	10/25/2023	18.48	614.63
G218	Water Level	UA	11/13/2023	18.67	614.44

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G218	Water Level	UA	12/18/2023	18.38	614.73
G270	Water Level	UA	02/13/2023	2.53	623.33
G270	Water Level	UA	03/30/2023	2.41	623.44
G270	Water Level	UA	04/30/2023	2.83	623.02
G270	Water Level	UA	05/30/2023	5.06	620.79
G270	Water Level	UA	08/14/2023	[8.52]	[617.34]
G270	Water Level	UA	10/25/2023	10.92	614.94
G270	Water Level	UA	11/13/2023	10.90	614.96
G270	Water Level	UA	12/18/2023	9.84	616.02
G271	Water Level	UA	02/13/2023	8.93	616.64
G271	Water Level	UA	03/30/2023	7.12	618.44
G271	Water Level	UA	04/30/2023	8.97	616.59
G271	Water Level	UA	05/30/2023	9.28	616.28
G271	Water Level	UA	06/08/2023	9.57	615.99
G271	Water Level	UA	07/08/2023	9.83	615.73
G271	Water Level	UA	08/08/2023	11.20	614.37
G271	Water Level	UA	09/25/2023	12.44	613.13
G271	Water Level	UA	10/25/2023	12.95	612.62
G271	Water Level	UA	11/13/2023	13.00	612.57
G271	Water Level	UA	12/18/2023	12.79	612.78
G272	Water Level	UA	02/13/2023	8.55	615.26
G272	Water Level	UA	03/30/2023	6.96	616.84
G272	Water Level	UA	04/30/2023	9.20	614.60
G272	Water Level	UA	05/30/2023	9.48	614.32
G272	Water Level	UA	08/08/2023	10.55	613.26
G272	Water Level	UA	09/25/2023	11.63	612.18
G272	Water Level	UA	10/25/2023	12.03	611.78
G272	Water Level	UA	11/13/2023	12.01	611.80
G272	Water Level	UA	12/18/2023	11.81	612.00
G273	Water Level	UA	02/13/2023	8.95	614.07
G273	Water Level	UA	03/30/2023	7.80	615.21
G273	Water Level	UA	04/30/2023	10.09	612.92
G273	Water Level	UA	05/30/2023	10.41	612.60
G273	Water Level	UA	08/08/2023	11.56	611.46

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G273	Water Level	UA	09/25/2023	12.39	610.63
G273	Water Level	UA	10/25/2023	12.78	610.24
G273	Water Level	UA	11/13/2023	12.71	610.31
G273	Water Level	UA	12/18/2023	12.40	610.62
G274	Water Level	UA	02/13/2023	13.22	610.82
G274	Water Level	UA	03/30/2023	11.96	612.07
G274	Water Level	UA	04/30/2023	13.85	610.18
G274	Water Level	UA	05/30/2023	14.16	609.87
G274	Water Level	UA	06/08/2023	14.41	609.63
G274	Water Level	UA	07/08/2023	14.33	609.70
G274	Water Level	UA	08/08/2023	14.99	609.05
G274	Water Level	UA	09/25/2023	15.46	608.57
G274	Water Level	UA	10/25/2023	Dry	Dry
G274	Water Level	UA	11/13/2023	15.77	608.27
G274	Water Level	UA	12/18/2023	15.53	608.51
G275	Water Level	UA	02/13/2023	13.02	605.24
G275	Water Level	UA	05/30/2023	13.38	604.88
G275	Water Level	UA	08/08/2023	Dry	Dry
G275	Water Level	UA	11/13/2023	Dry	Dry
G275D	Water Level	DA	02/13/2023	39.49	580.82
G275D	Water Level	DA	08/08/2023	31.27	589.04
G275D	Water Level	DA	09/25/2023	42.29	578.02
G275D	Water Level	DA	10/25/2023	39.74	580.57
G275D	Water Level	DA	12/18/2023	43.46	576.85
G276	Water Level	UA	02/13/2023	27.37	604.63
G276	Water Level	UA	03/30/2023	25.78	606.21
G276	Water Level	UA	04/30/2023	26.04	605.95
G276	Water Level	UA	05/30/2023	26.60	605.39
G276	Water Level	UA	06/08/2023	26.84	605.16
G276	Water Level	UA	07/08/2023	27.27	604.73
G276	Water Level	UA	08/08/2023	27.75	604.25
G276	Water Level	UA	10/25/2023	28.49	603.51
G276	Water Level	UA	11/13/2023	28.59	603.41
G276	Water Level	UA	12/18/2023	28.71	603.29

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G277	Water Level	UA	02/13/2023	19.67	603.41
G277	Water Level	UA	05/30/2023	18.21	604.87
G277	Water Level	UA	08/08/2023	19.76	603.32
G277	Water Level	UA	11/13/2023	Dry	Dry
G278	Water Level	UA	02/13/2023	19.95	611.22
G278	Water Level	UA	05/30/2023	21.75	609.42
G278	Water Level	UA	08/08/2023	20.98	610.19
G278	Water Level	UA	10/25/2023	23.48	607.69
G278	Water Level	UA	11/13/2023	24.23	606.94
G279	Water Level	UA	02/13/2023	20.83	611.21
G279	Water Level	UA	05/30/2023	22.73	609.31
G279	Water Level	UA	08/08/2023	23.69	608.35
G279	Water Level	UA	10/25/2023	24.56	607.48
G279	Water Level	UA	11/13/2023	23.39	608.65
G280	Water Level	UA	02/13/2023	3.01	622.34
G280	Water Level	UA	03/30/2023	2.74	622.60
G280	Water Level	UA	04/30/2023	3.52	621.82
G280	Water Level	UA	05/30/2023	3.96	621.38
G280	Water Level	UA	08/08/2023	5.80	619.55
G280	Water Level	UA	09/25/2023	7.42	617.92
G280	Water Level	UA	10/25/2023	8.56	616.79
G280	Water Level	UA	11/13/2023	8.91	616.44
G280	Water Level	UA	12/18/2023	9.04	616.31
G281	Water Level	UA	02/13/2023	4.63	621.73
G281	Water Level	UA	03/30/2023	3.94	622.41
G281	Water Level	UA	04/30/2023	6.44	619.91
G281	Water Level	UA	05/30/2023	6.64	619.71
G281	Water Level	UA	08/08/2023	6.39	619.97
G281	Water Level	UA	10/24/2023	8.64	617.72
G281	Water Level	UA	11/13/2023	8.59	617.77
G281	Water Level	UA	12/18/2023	6.83	619.53
G283	Water Level	LCU	02/13/2023	4.61	606.14
G283	Water Level	LCU	03/30/2023	3.55	607.19
G283	Water Level	LCU	04/30/2023	4.71	606.03

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G283	Water Level	LCU	05/30/2023	5.60	605.14
G283	Water Level	LCU	08/14/2023	[7.45]	[603.30]
G283	Water Level	LCU	10/24/2023	7.79	602.96
G283	Water Level	LCU	11/13/2023	7.22	603.53
G283	Water Level	LCU	12/18/2023	6.49	604.26
G284	Water Level	UA	02/13/2023	9.72	608.70
G284	Water Level	UA	03/30/2023	8.65	609.76
G284	Water Level	UA	04/30/2023	11.62	606.79
G284	Water Level	UA	05/30/2023	12.43	605.98
G284	Water Level	UA	08/14/2023	[12.28]	[606.14]
G284	Water Level	UA	10/24/2023	Dry	Dry
G284	Water Level	UA	11/13/2023	Dry	Dry
G284	Water Level	UA	12/18/2023	12.91	605.51
G285	Water Level	LCU	02/13/2023	6.12	607.40
G285	Water Level	LCU	03/30/2023	4.18	609.33
G285	Water Level	LCU	04/30/2023	5.80	607.71
G285	Water Level	LCU	05/30/2023	6.71	606.80
G285	Water Level	LCU	07/08/2023	8.14	605.37
G285	Water Level	LCU	08/08/2023	8.25	605.26
G285	Water Level	LCU	08/14/2023	[8.44]	[605.08]
G285	Water Level	LCU	09/25/2023	8.47	605.05
G285	Water Level	LCU	10/24/2023	8.96	604.56
G285	Water Level	LCU	11/13/2023	9.38	604.14
G285	Water Level	LCU	12/18/2023	8.03	605.49
G286	Water Level	UA	02/13/2023	6.18	606.95
G286	Water Level	UA	08/10/2023	[Dry]	[Dry]
G286	Water Level	UA	10/24/2023	Dry	Dry
G286	Water Level	UA	11/13/2023	Dry	Dry
G286	Water Level	UA	12/18/2023	Dry	Dry
G287	Water Level	UA	02/13/2023	5.75	611.70
G288	Water Level	UA	02/13/2023	9.78	610.29
G288	Water Level	UA	03/30/2023	4.70	615.37
G288	Water Level	UA	04/30/2023	6.66	613.41
G288	Water Level	UA	05/30/2023	7.40	612.67

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G288	Water Level	UA	06/08/2023	8.05	612.02
G288	Water Level	UA	07/08/2023	7.65	612.42
G288	Water Level	UA	08/08/2023	8.62	611.45
G288	Water Level	UA	08/11/2023	[8.70]	[611.37]
G288	Water Level	UA	09/25/2023	9.57	610.50
G288	Water Level	UA	10/24/2023	9.95	610.12
G288	Water Level	UA	11/13/2023	9.84	610.23
G288	Water Level	UA	12/18/2023	8.56	611.51
G301	Water Level	UA	02/13/2023	5.30	617.35
G301	Water Level	UA	06/08/2023	7.70	614.94
G301	Water Level	UA	07/08/2023	7.82	614.82
G301	Water Level	UA	08/08/2023	8.11	614.54
G301	Water Level	UA	10/24/2023	8.51	614.14
G301	Water Level	UA	11/13/2023	8.43	614.22
G301	Water Level	UA	12/18/2023	8.00	614.65
G302	Water Level	UA	02/13/2023	7.16	612.88
G302	Water Level	UA	03/30/2023	4.68	615.35
G302	Water Level	UA	04/30/2023	9.10	610.93
G302	Water Level	UA	05/30/2023	11.04	608.99
G302	Water Level	UA	06/08/2023	11.57	608.46
G302	Water Level	UA	07/08/2023	12.07	607.96
G302	Water Level	UA	08/08/2023	12.68	607.36
G302	Water Level	UA	09/25/2023	13.12	606.92
G302	Water Level	UA	11/13/2023	13.16	606.88
G302	Water Level	UA	12/18/2023	12.47	607.57
G303	Water Level	UA	02/13/2023	4.20	617.82
G303	Water Level	UA	03/30/2023	3.62	618.39
G303	Water Level	UA	04/30/2023	4.62	617.39
G303	Water Level	UA	05/30/2023	5.92	616.09
G303	Water Level	UA	08/08/2023	8.40	613.62
G303	Water Level	UA	09/25/2023	9.18	612.83
G303	Water Level	UA	10/24/2023	9.71	612.31
G303	Water Level	UA	11/13/2023	9.32	612.70
G303	Water Level	UA	12/18/2023	8.22	613.80

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G305	Water Level	UA	02/13/2023	6.08	619.59
G305	Water Level	UA	03/30/2023	5.81	619.85
G305	Water Level	UA	04/30/2023	6.59	619.07
G305	Water Level	UA	05/30/2023	7.63	618.03
G305	Water Level	UA	06/08/2023	8.35	617.31
G305	Water Level	UA	07/08/2023	8.23	617.43
G305	Water Level	UA	08/08/2023	9.19	616.48
G305	Water Level	UA	10/24/2023	9.95	615.72
G305	Water Level	UA	11/13/2023	8.50	617.17
G305	Water Level	UA	12/18/2023	8.24	617.43
G306	Water Level	UA	02/13/2023	5.80	620.11
G306	Water Level	UA	03/30/2023	5.41	620.49
G306	Water Level	UA	04/30/2023	6.64	619.26
G306	Water Level	UA	05/30/2023	8.13	617.77
G306	Water Level	UA	06/08/2023	9.18	616.72
G306	Water Level	UA	07/08/2023	8.60	617.30
G306	Water Level	UA	08/08/2023	9.70	616.21
G306	Water Level	UA	10/24/2023	10.81	615.10
G306	Water Level	UA	11/13/2023	10.13	615.78
G306	Water Level	UA	12/18/2023	7.56	618.35
G307	Water Level	UA	02/13/2023	Above Top of Casing	Above Top of Casing
G307	Water Level	UA	08/08/2023	0.70	623.90
G307	Water Level	UA	11/13/2023	1.96	622.64
G307D	Water Level	LCU	02/13/2023	2.75	622.13
G307D	Water Level	LCU	03/30/2023	2.32	622.55
G307D	Water Level	LCU	04/30/2023	2.41	622.46
G307D	Water Level	LCU	05/30/2023	2.48	622.39
G307D	Water Level	LCU	08/08/2023	7.89	616.99
G307D	Water Level	LCU	10/24/2023	11.33	613.55
G307D	Water Level	LCU	11/13/2023	12.36	612.52
G307D	Water Level	LCU	12/18/2023	7.55	617.33
G308	Water Level	UA	02/13/2023	3.88	620.71
G308	Water Level	UA	03/30/2023	3.79	620.79
G308	Water Level	UA	04/30/2023	4.84	619.74

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G308	Water Level	UA	05/30/2023	5.56	619.02
G308	Water Level	UA	06/08/2023	5.93	618.66
G308	Water Level	UA	07/08/2023	5.37	619.22
G308	Water Level	UA	08/08/2023	5.09	619.50
G308	Water Level	UA	09/25/2023	6.16	618.42
G308	Water Level	UA	10/24/2023	6.19	618.40
G308	Water Level	UA	11/13/2023	6.00	618.59
G308	Water Level	UA	12/18/2023	4.71	619.88
G309	Water Level	UA	02/13/2023	9.64	616.24
G309	Water Level	UA	08/08/2023	8.04	617.84
G309	Water Level	UA	09/25/2023	8.24	617.64
G309	Water Level	UA	10/24/2023	8.69	617.19
G309	Water Level	UA	11/13/2023	8.32	617.56
G309	Water Level	UA	12/18/2023	7.60	618.28
G310	Water Level	UA	02/13/2023	7.09	615.78
G310	Water Level	UA	03/30/2023	6.42	616.44
G310	Water Level	UA	04/30/2023	8.94	613.92
G310	Water Level	UA	05/30/2023	9.57	613.29
G310	Water Level	UA	06/08/2023	9.96	612.90
G310	Water Level	UA	08/08/2023	10.30	612.57
G310	Water Level	UA	09/25/2023	10.73	612.14
G310	Water Level	UA	10/24/2023	10.82	612.05
G310	Water Level	UA	11/13/2023	10.56	612.31
G310	Water Level	UA	12/18/2023	9.95	612.92
G311	Water Level	UA	05/30/2023	8.26	612.78
G311	Water Level	UA	08/08/2023	9.08	611.96
G311	Water Level	UA	10/24/2023	9.29	611.75
G311	Water Level	UA	11/13/2023	9.38	611.66
G311D	Water Level	LCU	02/13/2023	23.66	597.58
G311D	Water Level	LCU	05/30/2023	23.26	597.98
G311D	Water Level	LCU	08/08/2023	23.52	597.72
G311D	Water Level	LCU	10/24/2023	23.51	597.73
G311D	Water Level	LCU	11/13/2023	24.15	597.09
G312	Water Level	UA	03/30/2023	8.28	611.49

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G312	Water Level	UA	04/30/2023	10.81	608.96
G312	Water Level	UA	05/30/2023	12.42	607.35
G312	Water Level	UA	06/08/2023	12.87	606.91
G312	Water Level	UA	07/08/2023	13.42	606.36
G312	Water Level	UA	08/08/2023	14.00	605.78
G312	Water Level	UA	10/24/2023	Dry	Dry
G312	Water Level	UA	11/13/2023	Dry	Dry
G312	Water Level	UA	12/18/2023	14.45	605.33
G313	Water Level	UA	02/13/2023	3.24	611.06
G313	Water Level	UA	08/08/2023	3.01	611.29
G313	Water Level	UA	10/24/2023	3.08	611.22
G313	Water Level	UA	11/13/2023	3.36	610.94
G313	Water Level	UA	12/18/2023	3.48	610.82
G314	Water Level	LCU	02/13/2023	6.14	607.74
G314	Water Level	LCU	03/30/2023	8.96	604.91
G314	Water Level	LCU	04/30/2023	5.53	608.34
G314	Water Level	LCU	05/30/2023	4.81	609.06
G314	Water Level	LCU	06/08/2023	9.43	604.44
G314	Water Level	LCU	07/08/2023	5.67	608.20
G314	Water Level	LCU	08/08/2023	4.88	609.00
G314	Water Level	LCU	09/25/2023	4.96	608.92
G314	Water Level	LCU	10/24/2023	5.30	608.58
G314	Water Level	LCU	11/13/2023	5.67	608.21
G314	Water Level	LCU	12/18/2023	7.39	606.49
G314D	Water Level	DA	02/13/2023	16.40	597.30
G314D	Water Level	DA	03/30/2023	9.98	603.71
G314D	Water Level	DA	04/30/2023	7.48	606.21
G314D	Water Level	DA	05/30/2023	6.69	607.00
G314D	Water Level	DA	06/08/2023	11.80	601.90
G314D	Water Level	DA	07/08/2023	7.25	606.45
G314D	Water Level	DA	08/08/2023	7.78	605.92
G314D	Water Level	DA	09/25/2023	8.50	605.20
G314D	Water Level	DA	10/24/2023	8.56	605.14
G314D	Water Level	DA	11/13/2023	7.97	605.73

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G314D	Water Level	DA	12/18/2023	7.04	606.66
G315	Water Level	UA	02/13/2023	2.08	621.44
G315	Water Level	UA	08/08/2023	3.50	620.02
G315	Water Level	UA	10/24/2023	4.04	619.48
G315	Water Level	UA	11/13/2023	4.11	619.41
G315	Water Level	UA	12/18/2023	2.55	620.97
G316	Water Level	LCU	02/13/2023	11.53	591.06
G316	Water Level	LCU	05/30/2023	12.28	590.31
G316	Water Level	LCU	08/08/2023	11.70	590.89
G316	Water Level	LCU	10/24/2023	12.54	590.05
G316	Water Level	LCU	11/13/2023	12.46	590.13
G317	Water Level	UA	02/13/2023	34.52	607.41
G317	Water Level	UA	08/08/2023	Dry	Dry
G317	Water Level	UA	09/25/2023	37.42	604.51
G317	Water Level	UA	10/24/2023	Dry	Dry
G317	Water Level	UA	11/13/2023	Dry	Dry
G317	Water Level	UA	12/18/2023	38.02	603.91
G401	Water Level	UA	02/13/2023	21.17	604.40
G401	Water Level	UA	05/30/2023	21.72	603.85
G401	Water Level	UA	08/08/2023	21.75	603.82
G401	Water Level	UA	10/24/2023	21.66	603.91
G401	Water Level	UA	11/13/2023	13.63	611.94
G402	Water Level	UA	02/13/2023	8.83	604.54
G402	Water Level	UA	03/30/2023	8.23	605.13
G402	Water Level	UA	04/30/2023	9.59	603.77
G402	Water Level	UA	05/30/2023	10.56	602.80
G402	Water Level	UA	06/08/2023	10.94	602.43
G402	Water Level	UA	07/08/2023	11.08	602.29
G402	Water Level	UA	08/08/2023	11.65	601.72
G402	Water Level	UA	10/24/2023	12.01	601.36
G402	Water Level	UA	11/13/2023	11.71	601.66
G402	Water Level	UA	12/18/2023	11.48	601.89
G403	Water Level	UA	02/13/2023	6.05	620.42
G403	Water Level	UA	03/30/2023	5.81	620.65

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G403	Water Level	UA	04/30/2023	7.09	619.37
G403	Water Level	UA	05/30/2023	8.13	618.33
G403	Water Level	UA	06/08/2023	8.74	617.73
G403	Water Level	UA	07/08/2023	7.21	619.26
G403	Water Level	UA	08/08/2023	7.45	619.02
G403	Water Level	UA	09/25/2023	8.82	617.64
G403	Water Level	UA	10/24/2023	8.62	617.85
G403	Water Level	UA	11/13/2023	8.27	618.20
G403	Water Level	UA	12/18/2023	6.64	619.83
G404	Water Level	UA	02/13/2023	3.46	612.21
G404	Water Level	UA	03/30/2023	3.24	612.42
G404	Water Level	UA	04/30/2023	4.64	611.02
G404	Water Level	UA	05/30/2023	5.42	610.24
G404	Water Level	UA	08/14/2023	[5.62]	[610.05]
G404	Water Level	UA	10/24/2023	7.09	608.58
G404	Water Level	UA	11/13/2023	6.48	609.19
G404	Water Level	UA	12/18/2023	4.70	610.97
G405	Water Level	UA	02/13/2023	6.13	617.50
G405	Water Level	UA	03/30/2023	5.87	617.75
G405	Water Level	UA	04/30/2023	6.53	617.09
G405	Water Level	UA	05/30/2023	6.83	616.79
G405	Water Level	UA	06/08/2023	7.08	616.55
G405	Water Level	UA	07/08/2023	6.59	617.04
G405	Water Level	UA	08/08/2023	6.85	616.78
G405	Water Level	UA	09/25/2023	7.59	616.04
G405	Water Level	UA	10/24/2023	7.84	615.79
G405	Water Level	UA	11/13/2023	7.73	615.90
G405	Water Level	UA	12/18/2023	6.55	617.08
G406	Water Level	UA	02/13/2023	11.25	614.11
G406	Water Level	UA	03/30/2023	9.94	615.41
G406	Water Level	UA	04/30/2023	12.48	612.87
G406	Water Level	UA	05/30/2023	13.06	612.29
G406	Water Level	UA	06/08/2023	13.75	611.61
G406	Water Level	UA	07/08/2023	11.92	613.44

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
G406	Water Level	UA	08/08/2023	11.49	613.87
G406	Water Level	UA	09/25/2023	13.95	611.41
G406	Water Level	UA	10/24/2023	14.08	611.28
G406	Water Level	UA	11/13/2023	13.83	611.53
G406	Water Level	UA	12/18/2023	12.03	613.33
G407	Water Level	UA	02/13/2023	5.60	615.72
G407	Water Level	UA	03/30/2023	5.49	615.82
G407	Water Level	UA	04/30/2023	6.91	614.40
G407	Water Level	UA	05/30/2023	7.35	613.96
G407	Water Level	UA	06/08/2023	8.75	612.57
G407	Water Level	UA	07/08/2023	8.22	613.10
G407	Water Level	UA	08/08/2023	8.79	612.53
G407	Water Level	UA	10/24/2023	8.39	612.93
G407	Water Level	UA	11/13/2023	8.31	613.01
G407	Water Level	UA	12/18/2023	6.76	614.56
G410	Water Level	UA	02/13/2023	7.44	612.35
G410	Water Level	UA	05/30/2023	8.99	610.80
G410	Water Level	UA	08/08/2023	9.66	610.13
G410	Water Level	UA	10/24/2023	10.88	608.91
G410	Water Level	UA	11/13/2023	10.68	609.11
G411	Water Level	UA	02/13/2023	6.15	617.10
G411	Water Level	UA	05/30/2023	8.52	614.73
G411	Water Level	UA	08/08/2023	8.69	614.56
G411	Water Level	UA	10/24/2023	11.33	611.92
G411	Water Level	UA	11/13/2023	11.20	612.05
MW03D	Water Level	DA	02/13/2023	30.75	598.26
MW03D	Water Level	DA	03/30/2023	30.43	598.57
MW03D	Water Level	DA	04/30/2023	30.00	599.01
MW03D	Water Level	DA	05/30/2023	30.11	598.90
MW03D	Water Level	DA	06/08/2023	30.17	598.83
MW03D	Water Level	DA	07/08/2023	30.39	598.62
MW03D	Water Level	DA	08/08/2023	30.65	598.36
MW03D	Water Level	DA	09/25/2023	29.29	599.72
MW03D	Water Level	DA	10/25/2023	29.64	599.37

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
MW03D	Water Level	DA	11/13/2023	32.01	597.00
MW03D	Water Level	DA	12/18/2023	32.08	596.93
MW04S	Water Level	UA	02/13/2023	4.30	621.59
MW04S	Water Level	UA	05/30/2023	6.63	619.26
MW04S	Water Level	UA	08/08/2023	9.80	616.09
MW04S	Water Level	UA	11/13/2023	12.20	613.69
MW05S	Water Level	UA	02/13/2023	5.22	620.73
MW05S	Water Level	UA	05/30/2023	7.25	618.70
MW05S	Water Level	UA	08/08/2023	9.35	616.60
MW05D	Water Level	DA	02/13/2023	19.65	606.26
MW05D	Water Level	DA	05/30/2023	18.29	607.62
MW05D	Water Level	DA	08/08/2023	21.12	604.79
MW06S	Water Level	UA	02/13/2023	4.51	621.64
MW06S	Water Level	UA	05/30/2023	6.45	619.70
MW06S	Water Level	UA	08/08/2023	8.72	617.43
MW06S	Water Level	UA	10/24/2023	9.94	616.21
MW06S	Water Level	UA	11/13/2023	8.91	617.24
MW07S	Water Level	UA	02/13/2023	3.15	624.45
MW07S	Water Level	UA	05/30/2023	5.23	622.37
MW07S	Water Level	UA	08/08/2023	7.79	619.81
MW07S	Water Level	UA	10/24/2023	9.37	618.23
MW07S	Water Level	UA	11/13/2023	8.48	619.12
MW09S	Water Level	UA	02/13/2023	3.14	624.48
MW09S	Water Level	UA	05/30/2023	5.45	622.17
MW09S	Water Level	UA	08/08/2023	8.11	619.51
MW09D	Water Level	LCU	05/30/2023	13.91	613.70
MW09D	Water Level	LCU	08/08/2023	14.73	612.88
MW10S	Water Level	UA	05/30/2023	5.44	619.01
MW10S	Water Level	UA	08/08/2023	8.67	615.78
MW10D	Water Level	LCU	02/14/2023	3.41	621.06
MW10D	Water Level	LCU	05/30/2023	15.73	608.74
MW10D	Water Level	LCU	08/08/2023	18.69	605.78
MW11S	Water Level	UA	02/14/2023	3.78	621.49
MW11S	Water Level	UA	08/08/2023	8.00	617.27

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
MW11D	Water Level	LCU	02/14/2023	4.73	620.79
MW11D	Water Level	LCU	03/30/2023	3.97	621.55
MW11D	Water Level	LCU	04/30/2023	4.00	621.51
MW11D	Water Level	LCU	05/30/2023	4.76	620.75
MW11D	Water Level	LCU	06/08/2023	6.52	618.99
MW11D	Water Level	LCU	07/08/2023	7.38	618.14
MW11D	Water Level	LCU	08/08/2023	8.57	616.95
MW12S	Water Level	UA	02/14/2023	5.30	620.01
MW12S	Water Level	UA	05/30/2023	7.36	617.95
MW12S	Water Level	UA	08/08/2023	10.87	614.44
MW12S	Water Level	UA	10/25/2023	12.51	612.80
MW12S	Water Level	UA	11/13/2023	12.80	612.51
MW12D	Water Level	DA	02/14/2023	13.63	611.58
MW12D	Water Level	DA	03/30/2023	13.17	612.04
MW12D	Water Level	DA	04/30/2023	12.69	612.52
MW12D	Water Level	DA	05/30/2023	12.71	612.50
MW12D	Water Level	DA	06/08/2023	12.80	612.41
MW12D	Water Level	DA	07/08/2023	13.31	611.90
MW12D	Water Level	DA	08/08/2023	13.93	611.28
MW12D	Water Level	DA	09/25/2023	14.86	610.35
MW12D	Water Level	DA	10/25/2023	15.32	609.89
MW12D	Water Level	DA	11/13/2023	15.64	609.57
MW12D	Water Level	DA	12/18/2023	16.00	609.21
MW13S	Water Level	UA	02/13/2023	8.55	617.41
MW13S	Water Level	UA	05/30/2023	10.19	615.77
MW13S	Water Level	UA	08/08/2023	11.34	614.62
MW13S	Water Level	UA	10/25/2023	12.79	613.17
MW13S	Water Level	UA	11/13/2023	12.33	613.63
MW13D	Water Level	DA	02/13/2023	1.20	624.66
MW13D	Water Level	DA	05/30/2023	13.52	612.34
MW13D	Water Level	DA	08/08/2023	12.86	613.00
MW13D	Water Level	DA	10/25/2023	12.75	613.11
MW13D	Water Level	DA	11/13/2023	12.45	613.41
MW16S	Water Level	UA	02/14/2023	6.61	622.86

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
MW16S	Water Level	UA	03/30/2023	3.70	625.77
MW16S	Water Level	UA	04/30/2023	5.10	624.37
MW16S	Water Level	UA	05/30/2023	6.89	622.57
MW16S	Water Level	UA	06/08/2023	8.31	621.16
MW16S	Water Level	UA	07/08/2023	9.95	619.52
MW16S	Water Level	UA	08/08/2023	11.63	617.84
MW16D	Water Level	DA	02/14/2023	14.63	614.75
MW16D	Water Level	DA	03/30/2023	13.05	616.33
MW16D	Water Level	DA	04/30/2023	12.09	617.29
MW16D	Water Level	DA	05/30/2023	11.83	617.55
MW16D	Water Level	DA	06/08/2023	11.85	617.53
MW16D	Water Level	DA	07/08/2023	12.34	617.04
MW16D	Water Level	DA	08/08/2023	12.97	616.41
MW17S	Water Level	UA	05/30/2023	6.91	623.65
MW17S	Water Level	UA	08/08/2023	10.81	619.75
MW17D	Water Level	DA	02/14/2023	19.92	610.37
MW17D	Water Level	DA	05/30/2023	13.33	616.96
MW17D	Water Level	DA	08/08/2023	14.58	615.71
MW20S	Water Level	UA	02/13/2023	8.21	614.69
MW20S	Water Level	UA	03/30/2023	6.59	616.31
MW20S	Water Level	UA	04/30/2023	8.97	613.93
MW20S	Water Level	UA	05/30/2023	9.28	613.61
MW20S	Water Level	UA	06/08/2023	9.56	613.33
MW20S	Water Level	UA	07/08/2023	9.63	613.26
MW20S	Water Level	UA	08/08/2023	10.60	612.30
MW20S	Water Level	UA	09/25/2023	11.53	611.37
MW20S	Water Level	UA	10/25/2023	11.74	611.16
MW20S	Water Level	UA	11/13/2023	11.96	610.94
MW20S	Water Level	UA	12/18/2023	11.60	611.30
R104	Water Level	UA	02/14/2023	7.44	625.40
R104	Water Level	UA	03/30/2023	6.14	626.69
R104	Water Level	UA	04/30/2023	7.47	625.36
R104	Water Level	UA	05/30/2023	8.02	624.81
R104	Water Level	UA	06/08/2023	8.41	624.43

Well ID Well Type		Monitored Unit Date		Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)	
R104	Water Level	UA	07/08/2023	8.92	623.92	
R104	Water Level	UA	08/08/2023	10.45	622.39	
R104	Water Level	UA	09/25/2023	11.50	621.34	
R104	Water Level	UA	10/25/2023	12.52	620.32	
R104	Water Level	UA	11/13/2023	12.91	619.93	
R104	Water Level	UA	12/18/2023	12.81	620.03	
R201	Water Level	UA	02/14/2023	2.80	623.54	
R201	Water Level	UA	03/30/2023	2.56	623.77	
R201	Water Level	UA	04/30/2023	3.95	622.38	
R201	Water Level	UA	05/30/2023	5.31	621.02	
R201	Water Level	UA	06/08/2023	6.13	620.21	
R201	Water Level	UA	07/08/2023	6.75	619.59	
R201	Water Level	UA	08/08/2023	11.61	614.73	
R201	Water Level	UA	09/25/2023	10.12	616.22	
R201	Water Level	UA	10/24/2023	11.20	615.14	
R201	Water Level	UA	11/13/2023	11.73	614.61	
R201	Water Level	UA	12/18/2023	11.37	614.97	
R205	Water Level	UA	02/13/2023	7.49	617.03	
R205	Water Level	UA	08/08/2023	9.69	614.83	
R205	Water Level	UA	10/25/2023	11.16	613.36	
R205	Water Level	UA	11/13/2023	11.48	613.04	
R205	Water Level	UA	12/18/2023	11.16	613.36	
T127	Water Level	UA	02/13/2023	14.15	616.81	
T127	Water Level	UA	05/30/2023	14.56	616.40	
T127	Water Level	UA	08/08/2023	15.20	615.76	
T127	Water Level	UA	10/25/2023	15.99	614.97	
T127	Water Level	UA	11/13/2023	15.95	615.01	
T128	Water Level	UA	02/13/2023	13.97	616.96	
T128	Water Level	UA	05/30/2023	14.26	616.67	
T128	Water Level	UA	08/08/2023	14.80	616.13	
T128	Water Level	UA	10/25/2023	15.54	615.39	
T128	Water Level	UA	11/13/2023	15.50	615.43	
T202	Water Level	UA	02/13/2023	5.04	623.59	
T202	Water Level	UA	05/30/2023	5.80	622.83	

Well ID Well Type		Monitored Unit Date		Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)	
T202	Water Level	UA	08/08/2023	9.23	619.40	
T202	Water Level	UA	10/24/2023	11.02	617.61	
T202	Water Level	UA	11/13/2023	11.66	616.97	
T408	Water Level	LCU	02/13/2023	6.92	617.16	
T408	Water Level	LCU	05/30/2023	7.42	616.66	
T408	Water Level	LCU	08/08/2023	7.46	616.62	
T408	Water Level	LCU	10/24/2023	8.11	615.97	
T408	Water Level	LCU	11/13/2023	8.02	616.06	
T409	Water Level	LCU	02/13/2023	9.36	615.65	
T409	Water Level	LCU	05/30/2023	11.27	613.74	
T409	Water Level	LCU	08/08/2023	9.99	615.02	
T409	Water Level	LCU	10/24/2023	12.46	612.55	
T409	Water Level	LCU	11/13/2023	12.00	613.01	
TA31	Water Level	UA	02/13/2023	5.00	621.55	
TA31	Water Level	UA	05/30/2023	7.06	619.49	
TA31	Water Level	UA	08/08/2023	11.98	614.57	
TA31	Water Level	UA	10/24/2023	14.65	611.90	
TA31	Water Level	UA	11/13/2023	14.31	612.24	
TA33	Water Level	UA	02/13/2023	8.04	617.23	
TA33	Water Level	UA	05/30/2023	8.42	616.85	
TA33	Water Level	UA	08/08/2023	12.10	613.17	
TA33	Water Level	UA	10/24/2023	13.86	611.41	
TA33	Water Level	UA	11/13/2023	13.98	611.29	
TA34	Water Level	UA	02/13/2023	8.03	618.49	
TA34	Water Level	UA	05/30/2023	9.48	617.04	
TA34	Water Level	UA	08/08/2023	18.31	608.21	
TA34	Water Level	UA	10/24/2023	12.98	613.54	
TA34	Water Level	UA	11/13/2023	12.60	613.92	
TR32	Water Level	UA	02/13/2023	6.11	615.57	
TR32	Water Level	UA	05/30/2023	6.18	615.50	
TR32	Water Level	UA	10/24/2023	9.02	612.66	
TR32	Water Level	UA	11/13/2023	9.67	612.01	
X201	Water Level	S	02/14/2023		614.71	
X201	Water Level	S	03/30/2023		614.53	

Well ID Well Type Mon		Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
X201	Water Level	S	04/30/2023		614.69
X201	Water Level	S	05/30/2023		614.93
X201	Water Level	S	08/08/2023		615.31
X201	Water Level	S	11/13/2023	[34.00]	[584.47]
X201	Water Level	S	12/12/2023		617.10
XPW01	Water Level	CCR	02/13/2023	4.51	630.06
XPW01	Water Level	CCR	03/30/2023	3.99	630.57
XPW01	Water Level	CCR	04/30/2023	4.24	630.32
XPW01	Water Level	CCR	05/30/2023	4.56	630.00
XPW01	Water Level	CCR	08/08/2023	5.29	629.28
XPW01	Water Level	CCR	10/24/2023	6.03	628.54
XPW01	Water Level	CCR	11/13/2023	6.32	628.25
XPW01	Water Level	CCR	12/18/2023	6.11	628.46
XPW02	Water Level	CCR	02/13/2023	9.38	630.31
XPW02	Water Level	CCR	03/30/2023	8.87	630.81
XPW02	Water Level	CCR	04/30/2023	9.11	630.57
XPW02	Water Level	CCR	05/30/2023	9.40	630.28
XPW02	Water Level	CCR	08/08/2023	10.30	629.39
XPW02	Water Level	CCR	09/25/2023	10.71	628.98
XPW02	Water Level	CCR	10/24/2023	10.93	628.76
XPW02	Water Level	CCR	11/13/2023	11.12	628.57
XPW02	Water Level	CCR	12/18/2023	11.02	628.67
NE Riser	Water Level	S	02/14/2023		625.24
XSG-01	Water Level	CCR	02/13/2023	5.40	630.12
XSG-01	Water Level	CCR	05/30/2023	5.45	630.07
XSG-01	Water Level	CCR	08/08/2023	6.25	629.27
XSG-01	Water Level	CCR	10/24/2023	7.02	628.50
XSG-01	Water Level	CCR	11/13/2023	10.38	625.14
XSG-01	Water Level	CCR	12/18/2023	7.04	628.48
SG-02	Water Level	SW	02/13/2023	7.25	598.62
SG-02	Water Level	SW	05/30/2023	7.47	598.40
SG-02	Water Level	SW	10/24/2023	7.49	598.38
SG-02	Water Level	SW	11/13/2023	7.36	598.51
SG-02	Water Level	SW	12/18/2023	7.31	598.56

Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

Well ID	Well Type	Monitored Unit	Date	Depth to Groundwater (feet BMP)	Groundwater Elevation (feet NAVD88)
SG-03	Water Level	SW	02/13/2023	9.55	585.39
SG-03	Water Level	SW	05/30/2023	9.85	585.09
SG-03	Water Level	SW	08/08/2023	9.65	585.29
SG-03	Water Level	SW	10/24/2023	8.96	585.98
SG-03	Water Level	SW	11/13/2023	9.71	585.23
SG-03	Water Level	SW	12/18/2023	8.92	586.02
SG-04	Water Level	SW	02/13/2023	6.27	593.25
SG-04	Water Level	SW	05/30/2023	6.41	593.11

Notes:

Bracketing [] indicates that the measurement was obtained outside of the 24-hour period from initiaion of depth to groundwater measurements.

BMP = below measuring point

CCR = coal combustion residuals

DA = deep aquifer

LCU = lower confining unit

NAVD88 = North American Vertical Datum of 1988

S = source

SW = surface water

		Monitored Unit	Date	Depth to	Groundwater
Well ID	Well Type			Groundwater	Elevation
				(feet BMP)	(feet NAVD88)
OW-1	Water Level	Porewater	1/23/2023	17.38	624.34
OW-1	Water Level	Porewater	2/21/2023	17.06	624.30
OW-1	Water Level	Porewater	3/15/2023	17.32	624.35
OW-1	Water Level	Porewater	4/19/2023	17.19	624.17
OW-1	Water Level	Porewater	5/24/2023	17.29	623.90
OW-1	Water Level	Porewater	6/22/2023	17.34	623.76
OW-1	Water Level	Porewater	7/24/2023	17.41	624.08
OW-1	Water Level	Porewater	8/18/2023	17.49	623.82
OW-1	Water Level	Porewater	9/14/2023	17.58	623.95
OW-1	Water Level	Porewater	10/18/2023	17.47	623.85
OW-1	Water Level	Porewater	11/17/2023	17.55	623.80
OW-1	Water Level	Porewater	12/15/2023	17.56	623.73
OW-2	Water Level	Porewater	1/23/2023	17.73	624.37
OW-2	Water Level	Porewater	2/21/2023	17.42	624.28
OW-2	Water Level	Porewater	3/15/2023	17.72	624.35
OW-2	Water Level	Porewater	4/19/2023	17.55	624.17
OW-2	Water Level	Porewater	5/24/2023	17.65	623.90
OW-2	Water Level	Porewater	6/22/2023	17.71	623.77
OW-2	Water Level	Porewater	7/24/2023	17.80	624.08
OW-2	Water Level	Porewater	8/18/2023	17.90	623.78
OW-2	Water Level	Porewater	9/14/2023	17.89	623.95
OW-2	Water Level	Porewater	10/18/2023	17.83	623.85
OW-2	Water Level	Porewater	11/17/2023	17.91	623.79
OW-2	Water Level	Porewater	12/15/2023	17.91	623.70
OW-3	Water Level	Porewater	1/23/2023	28.39	624.38
OW-3	Water Level	Porewater	2/21/2023	27.30	624.27
OW-3	Water Level	Porewater	3/15/2023	28.36	624.41
OW-3	Water Level	Porewater	4/19/2023	28.19	624.10
OW-3	Water Level	Porewater	5/24/2023	28.31	624.45
OW-3	Water Level	Porewater	6/22/2023	28.33	623.71
OW-3	Water Level	Porewater	7/24/2023	28.45	624.80
OW-3	Water Level	Porewater	8/18/2023	28.55	623.74
OW-3	Water Level	Porewater	9/14/2023	28.53	623.91
OW-3	Water Level	Porewater	10/18/2023	28.47	623.79
OW-3	Water Level	Porewater	11/17/2023	28.57	623.77
OW-3	Water Level	Porewater	12/15/2023	28.53	623.65
OW-5	Water Level	Porewater	1/23/2023	17.73	624.64
OW-5	Water Level	Porewater	2/21/2023	17.57	624.65

Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

		Monitorod		Depth to	Groundwater
Well ID	Well Type	lunit	Date	Groundwater	Elevation
		Onit		(feet BMP)	(feet NAVD88)
OW-5	Water Level	Porewater	3/15/2023	17.90	624.70
OW-5	Water Level	Porewater	4/19/2023	17.70	624.32
OW-5	Water Level	Porewater	5/24/2023	17.79	624.41
OW-5	Water Level	Porewater	6/22/2023	17.84	624.27
OW-5	Water Level	Porewater	7/24/2023	17.84	624.43
OW-5	Water Level	Porewater	8/18/2023	17.86	624.10
OW-5	Water Level	Porewater	9/14/2023	17.92	624.30
OW-5	Water Level	Porewater	10/18/2023	18.02	624.21
OW-5	Water Level	Porewater	11/17/2023	18.07	624.16
OW-5	Water Level	Porewater	12/15/2023	18.22	624.16
AP2-D	Water Level	Porewater	1/23/2023	20.20	623.90
AP2-D	Water Level	Porewater	2/21/2023	19.86	624.24
AP2-D	Water Level	Porewater	3/15/2023	20.19	623.91
AP2-D	Water Level	Porewater	4/19/2023	20.01	624.09
AP2-D	Water Level	Porewater	5/24/2023	20.10	624.00
AP2-D	Water Level	Porewater	6/22/2023	20.17	623.93
AP2-D	Water Level	Porewater	7/24/2023	20.25	623.85
AP2-D	Water Level	Porewater	8/18/2023	20.36	623.74
AP2-D	Water Level	Porewater	9/14/2023	20.33	623.77
AP2-D	Water Level	Porewater	10/18/2023	20.28	623.82
AP2-D	Water Level	Porewater	11/17/2023	20.34	623.76
AP2-D	Water Level	Porewater	12/15/2023	20.35	623.75

Notes:

BMP = below measuring point

NAVD88 = North American Vertical Datum of 1988
APPENDIX C Supplemental Vertical Hydraulic Gradients

Date	G405 Groundwater Elevation (ft NAVD88) UA	T408 Groundwater Elevation (ft NAVD88) LCU (upper)	Head Distance Change Change ¹ (ft) (ft)		Vertical Hydraulic Gradient ² (dh/dl)	
2/4/2017	618.47	619.46	-0.99	12.00	-0.08	up
5/13/2017	618.74	619.00	-0.26	12.00	-0.02	up
7/8/2017	618.54	619.12	-0.58	12.00	-0.05	up
10/21/2017	614.47	614.81	-0.34	12.00	-0.03	up
5/8/2018	618.94	615.82	3.12	12.00	0.26	down
8/2/2018	617.55	614.45	3.10	12.00	0.26	down
10/23/2018	616.40	616.30	0.10	12.00	0.01	down
1/15/2019	616.81	617.01	-0.20	12.00	-0.02	up
8/5/2019	617.72	617.15	0.57	12.00	0.05	down
1/20/2020	619.28	619.13	0.15	12.00	0.01	down
8/10/2020	617.62	617.38	0.24	12.00	0.02	down
1/20/2021	617.12	616.85	0.27	12.00	0.02	down
4/20/2021	617.13	616.65	0.48	12.00	0.04	down
7/26/2021	617.37	617.21	0.16	12.00	0.01	down
8/16/2021	617.28	617.22	0.06	12.00	0.00	down
10/25/2021	618.12	615.50	2.62	12.00	0.22	down
2/7/2022	617.28	616.88	0.40	12.00	0.03	down
5/9/2022	617.91	617.78	0.13	12.00	0.01	down
8/23/2022	616.85	616.99	-0.14	12.00	-0.01	up
2/13/2023	617.50	617.16	0.34	12.00	0.03	down
5/30/2023	616.79	616.66	0.13	12.00	0.01	down
8/8/2023	616.78	616.62	0.16	12.00	0.01	down
10/24/2023	615.79	615.97	-0.18	12.00	-0.02	up
11/13/2023	615.90	616.06	-0.16	12.00	-0.01	up
Middle of screen elevation G405D				610.0		
			Middle	of screen elevation	n T408	598.0

Date	G406 Groundwater Elevation (ft NAVD88) UA	T409 Groundwater Elevation (ft NAVD88) LCU (upper)	Head Distance Change Change ¹ (ft) (ft)		Vertical Hydraulic Gradient ² (dh/dl)	
2/4/2017	617.52	615.93	1.59	8.23	0.19	down
5/13/2017	616.20	616.75	-0.55	8.23	-0.07	up
7/8/2017	616.29	617.05	-0.76	8.23	-0.09	up
10/21/2017	611.27	612.16	-0.89	8.23	-0.11	up
5/8/2018	615.47	616.02	-0.55	8.23	-0.07	up
8/2/2018	615.75	615.25	0.50	8.23	0.06	down
10/23/2018	614.11	613.96	0.15	8.23	0.02	down
1/15/2019	615.36	614.78	0.58	8.23	0.07	down
8/5/2019	616.50	615.10	1.40	8.23	0.17	down
1/20/2020	617.48	617.16	0.32	8.23	0.04	down
8/10/2020	615.54	615.43	0.11	8.23	0.01	down
1/20/2021	612.97	614.41	-1.44	8.23	-0.17	up
4/20/2021	613.78	615.33	-1.55	8.23	-0.19	up
7/26/2021	614.20	615.72	-1.52	8.23	-0.18	up
8/16/2021	613.82	615.42	-1.60	8.23	-0.19	up
10/25/2021	614.93	616.43	-1.50	8.23	-0.18	up
2/7/2022	613.55	614.97	-1.42	8.23	-0.17	up
5/9/2022	615.36	616.81	-1.45	8.23	-0.18	up
8/23/2022	613.47	610.73	2.74	8.23	0.33	down
2/13/2023	614.11	615.65	-1.54	8.23	-0.19	up
5/30/2023	612.29	613.74	-1.45	8.23	-0.18	up
8/8/2023	613.87	615.02	-1.15	8.23	-0.14	up
10/24/2023	611.28	612.55	-1.27	8.23	-0.15	up
11/13/2023	611.53	613.01	-1.48	8.23	-0.18	up
			Middle	of screen elevation	n G406	605.9
			Middle	597.7		

Date	T408 Groundwater Elevation (ft NAVD88) LCU (upper)	G45D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Distance Vertic Change Change ¹ Gr (ft) (ft) (Vertical H Gradic (dh/	Hydraulic dient ² h/dl)	
2/4/2017	619.46	587.71	31.75	13.78	2.30	down	
5/13/2017	619.00	586.19	32.81	13.78	2.38	down	
7/8/2017	619.12	586.29	32.83	13.78	2.38	down	
10/21/2017	614.81	584.69	30.12	13.78	2.19	down	
5/8/2018	615.82	587.56	28.26	13.78	2.05	down	
8/2/2018	614.45	585.81	28.64	13.78	2.08	down	
10/23/2018	616.30	584.60	31.70	13.78	2.30	down	
1/15/2019	617.01	586.96	30.05	13.78	2.18	down	
8/5/2019	617.15	588.04	29.11	13.78	2.11	down	
8/10/2020	617.38	614.21	3.17	13.78	0.23	down	
1/20/2021	616.85	614.60	2.25	13.78	0.16	down	
4/20/2021	616.65	614.32	2.33	13.78	0.17	down	
7/26/2021	617.21	613.58	3.63	13.78	0.26	down	
8/16/2021	617.22	613.83	3.39	13.78	0.25	down	
10/25/2021	615.50	614.51	0.99	13.78	0.07	down	
2/7/2022	616.88	615.01	1.87	13.78	0.14	down	
5/9/2022	617.78	614.95	2.83	13.78	0.21	down	
8/23/2022	616.99	614.58	2.41	13.78	0.17	down	
2/13/2023	617.16	614.69	2.47	13.78	0.18	down	
5/30/2023	616.66	613.99	2.67	13.78	0.19	down	
8/8/2023	616.62	613.47	3.15	13.78	0.23	down	
10/24/2023	615.97	613.40	2.57	13.78	0.19	down	
11/13/2023	616.06	613.55	2.51	13.78	0.18	down	
			Middle	598.0			
	Middle of screen elevation G45D					584.2	

Date	T409 Groundwater Elevation (ft NAVD88) LCU (upper)	G46D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Distance Vertical H Change Change ¹ Gradi (ft) (ft) (dh/		ydraulic ent ² dl)	
2/4/2017	615.93	586.06	29.87	22.19	1.35	down
5/13/2017	616.75	584.87	31.88	22.19	1.44	down
7/8/2017	617.05	585.22	31.83	22.19	1.43	down
5/8/2018	616.02	585.86	30.16	22.19	1.36	down
8/2/2018	615.25	583.95	31.30	22.19	1.41	down
10/23/2018	613.96	582.05	31.91	22.19	1.44	down
1/15/2019	614.78	583.17	31.61	22.19	1.42	down
8/5/2019	615.10	583.68	31.42	22.19	1.42	down
8/10/2020	615.43	609.00	6.43	22.19	0.29	down
1/20/2021	614.41	610.49	3.92	22.19	0.18	down
4/20/2021	615.33	611.06	4.27	22.19	0.19	down
7/26/2021	615.72	607.21	8.51	22.19	0.38	down
8/16/2021	615.42	608.17	7.25	22.19	0.33	down
10/25/2021	616.43	609.87	6.56	22.19	0.30	down
2/7/2022	614.97	610.71	4.26	22.19	0.19	down
5/9/2022	616.81	611.34	5.47	22.19	0.25	down
8/23/2022	610.73	615.13	-4.40	22.19	-0.20	up
2/13/2023	615.65	610.39	5.26	22.19	0.24	down
5/30/2023	613.74	610.70	3.04	22.19	0.14	down
8/8/2023	615.02	610.14	4.88	22.19	0.22	down
10/24/2023	612.55	609.65	2.90	22.19	0.13	down
11/13/2023	613.01	609.70	3.31	22.19	0.15	down
			Middle of screen elevation T409			
Middle of screen elevation G46D						575.5

Date	G307 Groundwater Elevation (ft NAVD88) UA	G307D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Change (ft)	Distance Change ¹ (ft)	Vertical H Gradi (dh/	lydraulic ent ² ′dl)
4/20/2021	624.50	622.48	2.02	38.06	0.05	down
5/17/2021	624.45	622.44	2.01	38.06	0.05	down
7/12/2021	624.45	622.59	1.86	38.06	0.05	down
8/16/2021	624.46	621.49	2.97	38.06	0.08	down
2/7/2022	624.60	622.32	2.28	38.06	0.06	down
5/9/2022	624.60	616.31	8.29	38.06	0.22	down
8/23/2022	624.60	615.09	9.51	38.06	0.25	down
2/13/2023	624.60	622.13	2.47	38.06	0.06	down
8/8/2023	623.90	616.99	6.91	38.06	0.18	down
11/13/2023	622.64	612.52	10.12	38.06	0.27	down
			Middle	of screen elevation	n G307	606.7
			Middle	568.6		

Date	G311 Groundwater Elevation (ft NAVD88) UA	G311D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Change (ft)	Distance Change ¹ (ft)	Vertical H Gradi (dh/	lydraulic ent ² ′dl)
3/29/2021	616.54	575.42	41.12	43.41	0.95	down
4/22/2021	613.68	575.74	37.94	43.41	0.87	down
5/3/2021	614.01	573.09	40.92	43.41	0.94	down
5/17/2021	613.86	572.40	41.46	43.41	0.96	down
6/9/2021	613.13	573.85	39.28	43.41	0.90	down
6/15/2021	612.78	575.25	37.53	43.41	0.86	down
6/23/2021	612.45	571.74	40.71	43.41	0.94	down
7/12/2021	613.75	571.63	42.12	43.41	0.97	down
7/26/2021	613.05	569.74	43.31	43.41	1.00	down
8/16/2021	613.30	570.34	42.96	43.41	0.99	down
10/25/2021	615.13	583.70	31.43	43.41	0.72	down
2/7/2022	614.28	593.14	21.14	43.41	0.49	down
5/9/2022	615.74	596.43	19.31	43.41	0.44	down
8/23/2022	613.19	597.46	15.73	43.41	0.36	down
5/30/2023	612.78	597.98	14.80	43.41	0.34	down
8/8/2023	611.96	597.72	14.24	43.41	0.33	down
10/24/2023	611.75	597.73	14.02	43.41	0.32	down
11/13/2023	611.66	597.09	14.57	43.41	0.34	down
			Middle	of screen elevatio	n G311	606.7
			Middle	563.3		

Nature and Extent Report Coffeen Ash Pond No. 1 Coffeen Power Plant Coffeen, IL

	G314	G314D				
	Groundwater	Groundwater	Head	Distance	Vertical H	ydraulic
Date	Elevation	Elevation	Change	Change ¹	Gradie	ent ²
	(ft NAVD88)	(ft NAVD88)	(ft)	(ft)	(dh/	dl)
	LCU (upper)	DA (PMP)	<i>ل</i> ــــــــــــــــــــــــــــــــــــ			
3/29/2021	596.40	572.75	23.65	29.76	0.79	down
4/20/2021	603.16	571.76	31.40	27.40	1.15	down
5/3/2021	604.66	568.77	35.89	27.40	1.31	down
5/17/2021	605.61	566.84	38.77	27.40	1.42	down
6/9/2021	607.54	567.45	40.09	27.40	1.46	down
6/14/2021	608.16	568.60	39.56	27.40	1.44	down
6/23/2021	605.19	566.77	38.42	27.40	1.40	down
7/12/2021	605.32	566.88	38.44	27.40	1.40	down
7/26/2021	606.66	566.65	40.01	27.40	1.46	down
8/16/2021	608.60	567.28	41.32	27.40	1.51	down
10/25/2021	610.36	581.05	29.31	27.40	1.07	down
2/7/2022	607.85	590.46	17.39	27.40	0.63	down
5/9/2022	609.11	594.81	14.30	27.40	0.52	down
8/23/2022	610.58	595.70	14.88	27.40	0.54	down
2/13/2023	607.74	597.30	10.44	27.40	0.38	down
3/30/2023	604.91	603.71	1.20	27.40	0.04	down
4/30/2023	608.34	606.21	2.13	27.40	0.08	down
5/30/2023	609.06	607.00	2.06	27.40	0.08	down
6/8/2023	604.44	601.90	2.54	27.40	0.09	down
7/8/2023	608.20	606.45	1.75	27.40	0.06	down
8/8/2023	609.00	605.92	3.08	27.40	0.11	down
9/25/2023	608.92	605.20	3.72	27.40	0.14	down
10/24/2023	608.58	605.14	3.44	27.40	0.13	down
11/13/2023	608.21	605.73	2.48	27.40	0.09	down
12/18/2023	606.49	606.66	-0.17	27.40	-0.01	up
		i	Middle	of screen elevation	n G314	594.0
			Middle (of screen elevation	G314D	566.6

[O: KLT 6/4/21, C:YMD 6/7/21; U:KLT 8/25/21, C:EDP 8/31/21] [KLT 5/3/24, C: SSW 5/7/24]

Notes:

¹ Distance change was calculated using the midpoint of the piezometer screen and water table surface. If the water table surface was above the top of the monitoring well screen, then distance change was calculated using the midpoint of both screens.

 2 Vertical gradients between ±0.0015 are considered flat, and typically have less than 0.02 foot difference in groundwater elevation between wells.

- - = no data collected on date / no vertical gradient calculated

DA = deep aquifer

dh = head change

dl = distance change

ft = foot/feet

LCU (lower) = lower confining unit (Smithboro)

LCU (upper) = lower confining unit (Vandalia)

NAVD88 = North American Vertical Datum of 1988

PMP = potential migration pathway

UA = uppermost aquifer

Nature and Extent Report Coffeen GMF Gypsum Stack Pond Coffeen Power Plant Coffeen, IL

Date	G206 Groundwater Elevation (ft NAVD88) UA	G206D Groundwater Elevation (ft NAVD88) DA (PMP)	Head Change (ft)	Distance Change ¹ (ft)	Vertical H Gradio (dh/	ydraulic ent ² dl)	
4/20/2021	622.07	585.96	36.11	33.51	1.08	down	
5/3/2021	622.60	587.42	35.18	33.51	1.05	down	
5/17/2021	622.31	587.81	34.50	33.51	1.03	down	
6/9/2021	621.71	584.19	37.52	33.51	1.12	down	
6/23/2021	620.54	589.66	30.88	33.51	0.92	down	
7/12/2021	622.39	590.72	31.67	33.51	0.95	down	
7/26/2021	622.00	591.14	30.86	33.51	0.92	down	
8/16/2021	622.08	592.00	30.08	33.51	0.90	down	
10/25/2021	622.94	595.04	27.90	33.51	0.83	down	
2/7/2022	622.37	598.22	24.15	33.51	0.72	down	
5/9/2022	623.70	601.30	22.40	33.51	0.67	down	
8/23/2022	621.61	602.86	18.75	33.51	0.56	down	
3/30/2023	623.69	601.99	21.70	33.51	0.65	down	
4/30/2023	622.54	603.60	18.94	33.51	0.57	down	
5/30/2023	621.64	603.91	17.73	33.51	0.53	down	
7/8/2023	620.69	604.04	16.65	33.51	0.50	down	
8/8/2023	618.93	604.10	14.83	33.51	0.44	down	
9/25/2023	618.08	604.06	14.02	33.51	0.42	down	
10/25/2023	617.11	603.80	13.31	33.51	0.40	down	
11/13/2023	616.66	603.74	12.92	33.51	0.39	down	
12/18/2023	616.97	603.82	13.15	33.51	0.39	down	
			Middle of screen elevation G206 61				
			Middle o	of screen elevation	G206D	577.3	

 Middle of screen elevation G206D
 577.3

 [O: KLT 6/4/21, C:YMD 6/7/21][U:KLT 8/25/21, C:EDP 8/31/21]
 [KLT 5/3/24, C: SSW 5/7/24]

Notes:

¹ Distance change was calculated using the midpoint of the piezometer screen and water table surface. If the water table surface was above the top of the monitoring well screen, then distance change was calculated using the midpoint of both screens.

 2 Vertical gradients between ± 0.0015 are considered flat, and typically have less than 0.02 foot difference in groundwater elevation between wells.

-- = no data collected on date / no vertical gradient calculated

DA = deep aquifer

dh = head change

dl = distance change

ft = foot/feet

NAVD88 = North American Vertical Datum of 1988

PMP = potential migration pathway

UA = uppermost aquifer

Nature and Extent Report Coffeen GMF Recycle Pond Coffeen Power Plant Coffeen, IL

Date	G405 Groundwater Elevation (ft NAVD88) UA	T408 Groundwater Elevation (ft NAVD88) LCU (upper)	08 Iwater ation VD88) (ft) Ipper)		Ver Hydraulic (dh	tical Gradient ² /dl)
2/4/2017	618.47	619.46	-0.99	12.00	-0.08	up
5/13/2017	618.74	619.00	-0.26	12.00	-0.02	up
7/8/2017	618.54	619.12	-0.58	12.00	-0.05	up
10/21/2017	614.47	614.81	-0.34	12.00	-0.03	up
5/8/2018	618.94	615.82	3.12	12.00	0.26	down
8/2/2018	617.55	614.45	3.10	12.00	0.26	down
10/23/2018	616.40	616.30	0.10	12.00	0.01	down
1/15/2019	616.81	617.01	-0.20	12.00	-0.02	up
8/5/2019	617.72	617.15	0.57	12.00	0.05	down
1/20/2020	619.28	619.13	0.15	12.00	0.01	down
8/10/2020	617.62	617.38	0.24	12.00	0.02	down
1/20/2021	617.12	616.85	0.27	12.00	0.02	down
4/20/2021	617.13	616.65	0.48	12.00	0.04	down
7/26/2021	617.37	617.21	0.16	12.00	0.01	down
8/16/2021	617.28	617.22	0.06	12.00	0.005	down
10/25/2021	618.12	615.50	2.62	12.00	0.218	down
2/7/2022	617.28	616.88	0.40	12.00	0.033	down
5/9/2022	617.91	617.78	0.13	12.00	0.011	down
8/23/2022	616.85	616.99	-0.14	12.00	-0.012	up
2/13/2023	617.50	617.16	0.34	12.00	0.028	down
5/30/2023	616.79	616.66	0.13	12.00	0.011	down
8/8/2023	616.78	616.62	0.16	12.00	0.013	down
10/24/2023	615.79	615.97	-0.18	12.00	-0.015	up
11/13/2023	615.90	616.06	-0.16	12.00	-0.013	up
			Middle of screen elevation G405D 610			610.0
		Middle of	screen elevatio	on T408	598.0	

Nature and Extent Report Coffeen GMF Recycle Pond Coffeen Power Plant Coffeen, IL

Date	G275 Groundwater Elevation (ft NAVD88) UA	G275D Groundwater Elevation (ft NAVD88) DA (PMP)	Head Change (ft)	Distance Change ¹ (ft)	Ver Hydraulic (dh	tical Gradient ² /dl)
4/20/21-4/21/20	605.00	568.33	36.67	42.14	0.87	down
7/12/21-7/13/21	605.63	570.43	35.20	42.77	0.82	down
7/26/2021	605.05	570.35	34.70	42.18	0.82	down
8/16/2021	605.09	571.48	33.61	42.23	0.80	down
10/25/2021	605.17	578.52	26.65	42.30	0.63	down
2/7/2022	605.10	580.46	24.64	42.24	0.58	down
5/9/2022	605.67	581.11	24.56	42.80	0.57	down
2/13/2023	605.24	580.82	24.42	42.38	0.58	down
			Middle of	screen elevatio	n G275	605.7
			Middle of screen elevation G275D 562			562.9

Nature and Extent Report Coffeen GMF Recycle Pond Coffeen Power Plant Coffeen, IL

Date	T408 Groundwater Elevation (ft NAVD88) LCU (upper)	G45D Groundwater Elevation (ft NAVD88) LCU (lower)	Head Change (ft)	Distance Change ¹ (ft)	Distance Vert Change ¹ Hydraulic (ft) (dh	
2/4/2017	619.46	587.71	31.75	13.78	2.30	down
5/13/2017	619.00	586.19	32.81	13.78	2.38	down
7/8/2017	619.12	586.29	32.83	13.78	2.38	down
10/21/2017	614.81	584.69	30.12	13.78	2.19	down
5/8/2018	615.82	587.56	28.26	13.78	2.05	down
8/2/2018	614.45	585.81	28.64	13.78	2.08	down
10/23/2018	616.30	584.60	31.70	13.78	2.30	down
1/15/2019	617.01	586.96	30.05	13.78	2.18	down
8/5/2019	617.15	588.04	29.11	13.78	2.11	down
8/10/2020	617.38	614.21	3.17	13.78	0.23	down
1/20/2021	616.85	614.60	2.25	13.78	0.16	down
4/20/2021	616.65	614.32	2.33	13.78	0.17	down
7/26/2021	617.21	613.58	3.63	13.78	0.26	down
8/16/2021	617.22	613.83	3.39	13.78	0.25	down
10/25/2021	615.50	614.51	0.99	13.78	0.07	down
2/7/2022	616.88	615.01	1.87	13.78	0.14	down
5/9/2022	617.78	614.95	2.83	13.78	0.21	down
8/23/2022	616.99	614.58	2.41	13.78	0.17	down
2/13/2023	617.16	614.69	2.47	13.78	0.18	down
5/30/2023	616.66	613.99	2.67	13.78	0.19	down
8/8/2023	616.62	613.47	3.15	13.78	0.23	down
10/24/2023	615.97	613.40	2.57	13.78	0.19	down
11/13/2023	616.06	613.55	2.51	13.78	0.18	down
			Middle of screen elevation T408			
	Middle of	screen elevatio	n G45D	584.2		

[O: KLT 6/4/21, C:YMD 6/7/21][U:KLT 8/25/21, C:EDP 8/31/21] [KLT 5/3/24, C: 5/7/24]

Notes:

¹ Distance change was calculated using the midpoint of the piezometer screen and water table surface. If the water table surface was above the top of the monitoring well screen, then distance change was calculated using the midpoint of both screens.

 2 Vertical gradients between ±0.0015 are considered flat, and typically have less than 0.02 foot difference in groundwater elevation between wells.

-- = no data collected on date / no vertical gradient calculated

DA = deep aquifer

dh = head change

- dl = distance change
- ft = foot/feet

LCU (lower) = lower confining unit (Smithboro)

LCU (upper) = lower confining unit (Vandalia)

NAVD88 = North American Vertical Datum of 1988

PMP = potential migration pathway UA = uppermost aquifer APPENDIX D Historical Field and Laboratory Hydraulic Conductivities

Appendix D. Historical Field and Laboratory Hydraulic Conductivities

Nature and Extent Report

Coffeen Power Plant

Ash Pond No. 2

Coffeen, IL

Well ID	Unit	Method (fh)	Method (rh)	K (fh)	K (rh)	Well Geometric Mean	Approximate Screened Elevation (ft)	Interpreted Unit		
	Upper-most Anuifer									
R104		KGS	B-R	7.0E-05	2.8E-04	1.4E-04	614.4-609.7			
G105		KGS	KGS	1.5E-04	5.7E-05	9.2E-05	613.2-608.4			
G106		B-R	B-R	4.0E-05	7.4E-04	1.7E-04	614.0-609.4			
G107	E	KGS	KGS	6.3E-05	8.9E-05	7.5E-05	613.9-609.3			
G110	pu	KGS	KGS	4.7E-05	2.0E-05	3.1E-05	612.0-607.4	Hagarstown Beds		
G119	Ľ	KGS	KGS	8.6E-05	8.2E-05	8.4E-05	611.6-607			
G120		low water e	evation; no t	est conducte	d		614.2-609.7			
G125		KGS	KGS	4.8E-05	4.1E-05	4.4E-05	613.7-609.1			
T127		KGS	KGS	1.2E-03	1.7E-05	1.4E-04	610.5-606			
		1/00		Unit Geome	etric Mean	8.5E-05	611 0 600 G			
1202		KGS	KGS	4.5E-04	5.5E-04	5.0E-04	614.0-609.6			
G206	P	B-R	KGS	3.0E-04	1.6E-04	2.2E-04	613.0-608.6			
G208	Pol	KGS	KGS	6.0E-05	2.1E-05	3.5E-05	613.0-608.5			
G209 G210	Ę	KGS	KGS	2.0E-04	1.0E-04	1.8E-04	612.8-608.3	Hagarstown Beds		
G210	sd/	KGS	KGS	1 3E-04	4.8L-04	4.9L-04	613 9-609 3			
G212	ତି	KGS	KGS	5.0E-04	3 5E-04	1.3L-04	611 1-606 7			
G218	KGS		KGS	4 1F-04	4 1F-04	4.2E-04	610 3-605 9			
		1100		Unit Geom	etric Mean	2.3E-04	01010 00010			
G270		KGS	KGS	5.5E-04	4.8E-04	5.1E-04	609.8-605.0			
G271	Ð	KGS	KGS	1.6E-04	1.1E-03	4.2E-04	612.9-608.6	Hagarstown Beds		
G273	Por	KGS	KGS	1.0E-03	8.3E-04	9.1E-04	611.1-605.6	_		
G276	<u>e</u>	low	water				606.7-601.9	Hagarstown Beds, v. thin		
G279	cy	KGS	KGS	1.7E-03	1.5E-03	1.6E-03	606.8-602.4			
G280	ž	KGS	KGS	1.3E-03	1.3E-03	1.3E-03	610.2-605.3	Hagarstown Beds		
G281		KGS	KGS	2.1E-03	8.9E-04	1.4E-03	608.3-603.7			
		-		Unit Geome	etric Mean	9.0E-04				
G301	d 1	KGS	KGS	2.7E-04	5.0E-04	3.7E-04	609-604.3	Upper Vandalia Till		
G302	Pon	KGS	KGS	4.9E-04	6.3E-04	5.6E-04	604.7-600.1			
G303	- us	KGS	KGS	5.6E-05	3.1E-05	4.2E-05	609.1-599.1	Hagarstown/Vandalia Till Contact		
G304	۲	KGS	KGS	8.9E-04	1.0E-03	9.4E-04	613.5-603.5	Hagarstown Beds		
G401		B-P	B-P	1 8E-04	2 8F-04	3.0E-04	608 7-603 7	Hagarstown Beds		
G402	d 2	KGS	KGS	4 5E-04	1.9E-04	2.2E-04	600.6-590.6	Linner Vandalia Till		
G402	o	KGS	KGS	4 3E-05	7 2E-05	5.6E-05	610 7-606 0	Hagarstown Beds y thin		
G404	hF	KGS	KGS	4.2E-04	3.8E-04	4.0E-04	606.7-601.9	Hagaistonn beas) in ann		
G405	Ÿ	KGS	KGS	9.8E-04	9.7E-04	9.7E-04	611.9-607.1	Hagarstown Beds		
				Unit Geome	etric Mean	2.7E-04				
G153	SW Pond	KGS	KGS	2.5E-04	5.4E-04	3.7E-04	607.5-603.0	Hagarstown Beds		
				Unit Geome	etric Mean	3.7E-04				
MW03S	est.	B-R	B-R	6.0E-04	1.1E-03	8.1E-04	613.7-608.6			
MW04S	nve	B-R	B-R	1.3E-03	8.0E-04	1.0E-03	612.6-607.6			
MW10S	ö	B-R	B-R	8.0E-04	8.0E-04	8.0E-04	610.9-604.9			
MW13S	oge	B-R	B-R	1.0E-03	2.0E-04	4.5E-04	611.3-606.1	Hagarstown Beds		
MW14S	ydr	B-R B D	B-K B. P	1.UE-U3	5.UE-04	7.1E-04	609 3.604 3			
MW16S	H 6	B-R	B-R	1.3E-04 6.0F-04	0.1E-05 4 5E-04	1.1E-04 5.2E-04	611 5-606 3			
MW17S	200	B-R	B-R	5.8E-04	5.5E-04	5.6E-04	613.1-603			
				Unit Geom	etric Mean	5.4E-04				

	Lower Confining Unit (Vandalia and Smithboro Till)											
T408	12	KGS	KGS	2.15E-06 7.50E-08	9.02E-07	600.4-595.2	Vandalia Till					
T409	ouo	KGS	KGS	3.6E-05 3.20E-05	3.41E-05	600.1-594.9	Vandalia Till (sand seam)					
G405D	Å Å	KGS	KGS		4.90E-07	589.1-579	Casible and Till					
G406D	Asl	KGS	KGS		4.00E-08	580.3-570.3	Smithboro IIII					
Unit Geometric Mean 5.55E-06												

Notes:

fh = Falling head test

rh = Rising head test

Hydraulic Conductivity tests analyzed using Aqtesolv® Pro version 4.50 (HydroSOLVE, Inc.)

Test Methods

B-R Bouwer and Rice, 1976. "A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifer with Completely or Partially Penetrating Wells", Water Resources Research v.12, no. 3. American Geophysical Union, Washington, DC. pp. 423-428. Hyder, Z., J.J. Butler, C.D. McElwee, and W. Liu, 1974. "Slug tests in partially penetrating wells", Water Resources Research, v. 30, no. 11.

KGS American Geophysical Union, Washington, DC. pp. 2945-2957.

Appendix D. Historical Field and Laboratory Hydraulic Conductivities Nature and Extent Report Coffeen Power Plant Ash Pond No. 2 Coffeen, IL

		Laboratory Tests	
Well/ Soil Boring ID	Approximate Sample Elevation (ft)	Hydraulic Conductivity (cm/sec)	Interpreted Unit
COF-B001	613.0	1.3E-08	
COF-B003	606.5	2.2E-07	Looss Upper Confining Unit
COF-B004	610.5	5.0E-07	Loess - Opper Comming Onit
COF-B007	615.0	7.0E-08	
	Geometric Mean	1.0E-07	
G46D	599.2	4.5E-06	
T408	597.6	1.5E-07	
SB-12	577.7-572.7	6.8E-09	Vandalia Till
SB-13	598-593	7.0E-09	
SB-18	603.5-603	8.8E-09	
	Geometric Mean	4.9E-08	
SB-09	598.5-598	1.9E-06	
SB-16	589-588.5	1.6E-06	Mulberry Grove Silt
	Geometric Mean	1.7E-06	
G45D	586.4	1.0E-07	
G46D	578.9	2.1E-08	Smithboro Till
SB-07	572-571.5	1.1E-09	
	Geometric Mean	1.3E-08	
SB-19	569-564	3.4E-09	Doon Confining Unit
SB-16	548-547.5	1.3E-08	
	Geometric Mean	6.6E-09	

APPENDIX E Supplemental Field Hydraulic Conductivities

Appendix E. Supplemental Field Hydraulic Conductivities

Nature and Extent Report Coffeen Ash Pond No. 1 Coffeen Power Plant

Coffeen, IL

Well ID	Gradient Position	Bottom of Screen Elevation (ft NAVD88)	Screen Length ¹ (ft)	Field Identified Screened Material	Slug Type	Analysis Method	Falling Head (Slug In) Hydraulic Conductivity (cm/s)	Rising Head (Slug Out) Hydraulic Conductivity (cm/s)	Minimum Hydraulic Conductivity (cm/s)	Maximum Hydraulic Conductivity (cm/s)	Hydraulic Conductivity Geometric Mean (cm/s)
Uppermost	t Aquifer										
G301	D	604.31	4.65	(ML)s	solid	Kansas Geological Survey	1.1E-03	1.2E-03			
G303	D	599.07	10	CL	solid	Kansas Geological Survey	2.8E-04	2.6E-04			
G308	D	606.70	4.79	s(ML), s(CL), (CL)s	solid	Kansas Geological Survey	5.5E-03	1.6E-03			
G309	D	605.02	4.78	SP, s(CL), (ML)s	solid	Kansas Geological Survey	9.1E-03	8.8E-04			
G310	D	604.86	4.79	SM, s(ML)	solid	Kansas Geological Survey	7.5E-03	5.9E-03	2.6E-04	9.1E-03	2.0E-03
G311	D	604.28	4.77	s(ML), s(CL)	solid	Bouwer-Rice	1.5E-03				
G312	D	602.34	4.79	s(ML), s(CL)	solid	Kansas Geological Survey	1.1E-03	1.1E-03			
G313	D	600.40	4.81	SP, s(ML), (CL)s	solid	Kansas Geological Survey	2.7E-03	3.5E-03			
G315	D	606.46	4.79	s(CL)	solid	Kansas Geological Survey	6.6E-03	5.8E-03			
Lower Con	fining Unit										
G307D	D	563.76	9.77	(CL)s	solid	Kansas Geological Survey	3.2E-04	1.2E-04			
G311D	D	558.29	9.94	CL	solid	Kansas Geological Survey	3.8E-04	2.1E-04	1.2E-04	2.3E-03	5.0E-04
G316	D	584.82	4.80	SP, s(ML), (CL)s	solid	Kansas Geological Survey	2.3E-03	2.3E-03			
Deep Aqui	fer (PMP)										
G314D	D	561.76	9.77	SP, s(CL)	solid	Bouwer-Rice	3.3E-04	2.3E-05	2.3E-05	3.3E-04	8.7E-05
										[O: KLT 07/0	9/21; C:EDP 8/31/21]

Notes:

1. All wells are constructed from 2 inch PVC with 0.01 inch slotted screens.

- - = Test not analyzed/performed

cm/s = centimeters per second

D = downgradient

ft = foot/feet

NAVD88 = North American Vertical Datum of 1988

PMP= potential migration pathway

PVC = polyvinyl chloride

USCS = Unified Soil Classification System CL = Lean Clay s(CL) = Sandy Lean Clay (CL)s = Lean Clay with Sand s(ML) = Sandy Silt (ML)s = Silt with Sand SP = Poorly-Graded Sand

Appendix E. Supplemental Field Hydraulic Conductivities

Nature and Extent Report

GMF Gypsum Stack Pond

Coffeen Power Plant

Coffeen, Il

Well ID	Gradient Position	Bottom of Screen Elevation (ft NAVD88)	Screen Length ¹ (ft)	Field Identified Screened Material	Slug Type	Analysis Method	Falling Head (Slug In) Hydraulic Conductivity (cm/s)	Rising Head (Slug Out) Hydraulic Conductivity (cm/s)	Minimum Hydraulic Conductivity (cm/s)	Maximum Hydraulic Conductivity (cm/s)	Hydraulic Conductivity Geometric Mean (cm/s)
Uppermost	t Aquifer										
G206	D	608.61	4.41	SM, s(CL), CL	solid	Kansas Geological Survey	5.0E-04	4.9E-04			
G209	D	608.29	4.54	CL	solid	Kansas Geological Survey		2.5E-04			
G212	D	609.30	4.55	SM, s(CL), CL	solid	Kansas Geological Survey	2.1E-03	1.8E-03	2.5E-04	4.0E-03	1.4E-03
G215	D	606.68	4.39	SM, s(CL), ML	solid	Kansas Geological Survey	4.0E-03	3.5E-03			
G218	D	605.87	4.44	SM, SC, CL	solid	Kansas Geological Survey	2.6E-03	2.4E-03			
										[C): KLT, C:EDP 8/31/21]

Notes:

1. All wells are constructed from 2 inch PVC with 0.01 inch slotted screens.

- - = Test not analyzed/performed

cm/s = centimeters per second

D = downgradient ft = foot/feet

NAVD88 = North American Vertical Datum of 1988

PVC = polyvinyl chloride

USCS = Unified Soil Classification System CL = Lean Clay s(CL) = Sandy Lean Clay ML = Silt SC = Clayey Sand SM = Silty Sand

RAMBOLL

Appendix E. Supplemental Field Hydraulic Conductivities

Nature and Extent Report GMF Recycle Pond

Coffeen Power Plant

Coffeen, IL

Well ID	Gradient Position	Bottom of Screen Elevation (ft NAVD88)	Screen Length ¹ (ft)	Field Identified Screened Material	Slug Type	Analysis Method	Falling Head (Slug In) Hydraulic Conductivity (cm/s)	Rising Head (Slug Out) Hydraulic Conductivity (cm/s)	Minimum Hydraulic Conductivity (cm/s)	Maximum Hydraulic Conductivity (cm/s)	Hydraulic Conductivity Geometric Mean (cm/s)
Uppermos	t Aquifer										
G272	D	606.74	4.87	SP to ML, (CL)s	solid	Kansas Geological Survey	1.7E-03				
G284	D	602.48	4.77	ML	solid	Kansas Geological Survey	1.2E-03	7.8E-04		1 75 02	1 15 02
G286	D	601.81	4.79	SP, ML, CL	solid	Kansas Geological Survey	1.2E-03		7.0E-04	1.72-03	1.12-05
G287	D	604.09	4.82	SP, ML, CL	solid	Kansas Geological Survey	1.1E-03	1.1E-03			
Lower Con	fining Unit	(PMP)									
G283	D	590.13	9.78	SP, ML	solid	Kansas Geological Survey	4.2E-03	4.5E-03		4 55 02	
G285	D	587.09	9.77	CL	solid	Bouwer-Rice	2.7E-04	4.3E-04	2.75-04	4.5E-03	1.2E-03
B	-	-	-			•	•			[(: KLT, C:EDP 8/31/21]

Notes:

1. All wells are constructed from 2 inch PVC with 0.01 inch slotted screens.

- - = Test not analyzed/performed

cm/s = centimeters per second

D = downgradient

ft = foot/feet

NAVD88 = North American Vertical Datum of 1988

PVC = polyvinyl chloride

PMP = potential migration pathway

USCS = Unified Soil Classification System

CL = Lean Clay (CL)s = Lean Clay with Sand ML = Silt SP = Poorly-Graded Sand

RAMBOLL

APPENDIX F Surface Water Sampling Locations and Laboratory Analytical Report

GSI Surface Water Sample

Background Surface Water Sample

Figure adapted by Ramboll from Geosyntec-provided figure

Notes: Locations are approximate

Ð

S:\Company\Projects_post_2014\GLP8005_Coffeen MNA\GIS\Porewater and Sediment Sampling Loactions.mxd 7/22/2021 8:27:18 AM

N	Surface Wa	ter Sampling Locati 134 Cips Lane Coffeen, Illinois	ons
5	Geosy	ntec <a>>	Figure
520 Feet	St. Louis	July 2021	
			-

🛟 eurofins

Environment Testing America

ANALYTICAL REPORT

Eurofins TestAmerica, Chicago 2417 Bond Street University Park, IL 60484 Tel: (708)534-5200

Laboratory Job ID: 500-203343-1

Client Project/Site: GLP8029 Coffeen, IL

For:

Geosyntec Consultants, Inc. 2100 Commonwealth Blvd. Suite 100 Ann Arbor, Michigan 48105

Attn: Brian Ares

Robin M Kull

Authorized for release by: 8/20/2021 1:48:27 PM

Robin Kintz, Project Manager II (708)534-5200 Robin.Kintz@Eurofinset.com

The test results in this report meet all 2003 NELAC, 2009 TNI, and 2016 TNI requirements for accredited parameters, exceptions are noted in this report. This report may not be reproduced except in full, and with written approval from the laboratory. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

This report has been electronically signed and authorized by the signatory. Electronic signature is intended to be the legally binding equivalent of a traditionally handwritten signature.

Results relate only to the items tested and the sample(s) as received by the laboratory.

..... Links **Review your project** results through **Total** Access Have a Question? Ask-The Expert Visit us at:

www.eurofinsus.com/Env

Table of Contents

Cover Page	1
Table of Contents	2
Case Narrative	3
Detection Summary	4
Method Summary	8
Sample Summary	9
Client Sample Results	10
Definitions	17
QC Association	18
QC Sample Results	22
Chronicle	27
Certification Summary	31
Chain of Custody	32
Receipt Checklists	33

Laboratory: Eurofins TestAmerica, Chicago

Narrative

Job Narrative 500-203343-1

Case Narrative

Comments

No additional comments.

Receipt

The samples were received on 8/5/2021 9:45 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperatures of the 2 coolers at receipt time were 1.1° C and 2.5° C.

Metals

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

Field Service / Mobile Lab

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

General Chemistry

Methods 300.0, 9056A: Due to the high concentration of Chloride, the matrix spike / matrix spike duplicate (MS/MSD) for analytical batch 500-614638 could not be evaluated for accuracy and precision. The associated laboratory control sample (LCS) met acceptance criteria.

Method 9060A: One of the CCV replicates failed to meet criteria at 89% recovery for DOC. The average was within control; therefore, the data have been reported. The RPD was within control as well. The following samples are affected: D-2-20210803 (500-203343-1), D-1-20210803 (500-203343-2), BKG-1-20210803 (500-203343-3), CL-1-20210803 (500-203343-4), DUP-20210803 (500-203343-5), CL-2-20210803 (500-203343-6), CL-3-20210803 (500-203343-7), (CCB 500-613783/21) and (CCV 500-613783/20).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Client Sample ID: D-2-20210803

Lab Sample ID: 500-203343-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Boron	0.30		0.050	0.0056	mg/L	1	6010B	Total/NA
Calcium	45		0.20	0.053	mg/L	1	6010B	Total/NA
Iron	0.24		0.20	0.082	mg/L	1	6010B	Total/NA
Magnesium	13	В	0.10	0.049	mg/L	1	6010B	Total/NA
Manganese	0.20		0.010	0.0023	mg/L	1	6010B	Total/NA
Potassium	3.2	В	0.50	0.066	mg/L	1	6010B	Total/NA
Sodium	13	В	1.0	0.097	mg/L	1	6010B	Total/NA
Boron, Dissolved	0.30		0.050	0.0056	mg/L	1	6010B	Dissolved
Calcium, Dissolved	46		0.20	0.053	mg/L	1	6010B	Dissolved
Iron, Dissolved	0.15	J	0.20	0.082	mg/L	1	6010B	Dissolved
Magnesium, Dissolved	13	В	0.10	0.049	mg/L	1	6010B	Dissolved
Manganese, Dissolved	0.20		0.010	0.0023	mg/L	1	6010B	Dissolved
Potassium, Dissolved	3.2	В	0.50	0.066	mg/L	1	6010B	Dissolved
Sodium, Dissolved	13	В	1.0	0.097	mg/L	1	6010B	Dissolved
Chloride	7.2		0.20	0.17	mg/L	1	9056A	Total/NA
Sulfate	69		4.0	1.9	mg/L	20	9056A	Total/NA
Alkalinity	100		5.0	3.7	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	240		10	4.3	mg/L	1	SM 2540C	Total/NA
Ferric Iron	0.24		0.20	0.10	mg/L	1	SM 3500	Total/NA
Phosphorus as PO4	0.24		0.15	0.073	mg/L	1	SM 4500 P E	Total/NA
Sulfide	0.25	J	1.0	0.23	mg/L	1	SM 4500 S2 F	Total/NA
Dissolved Organic Carbon - Duplicate	3.6		1.0	0.47	mg/L	1	9060A	Dissolved

Client Sample ID: D-1-20210803

Lab Sample ID: 500-203343-2

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Boron	0.33		0.050	0.0056	mg/L	1	6010B	Total/NA
Calcium	53		0.20	0.053	mg/L	1	6010B	Total/NA
Iron	0.23		0.20	0.082	mg/L	1	6010B	Total/NA
Magnesium	16	В	0.10	0.049	mg/L	1	6010B	Total/NA
Manganese	0.030		0.010	0.0023	mg/L	1	6010B	Total/NA
Potassium	2.5	В	0.50	0.066	mg/L	1	6010B	Total/NA
Sodium	19	В	1.0	0.097	mg/L	1	6010B	Total/NA
Boron, Dissolved	0.32		0.050	0.0056	mg/L	1	6010B	Dissolved
Calcium, Dissolved	52		0.20	0.053	mg/L	1	6010B	Dissolved
Iron, Dissolved	0.13	J	0.20	0.082	mg/L	1	6010B	Dissolved
Magnesium, Dissolved	16	В	0.10	0.049	mg/L	1	6010B	Dissolved
Manganese, Dissolved	0.024		0.010	0.0023	mg/L	1	6010B	Dissolved
Potassium, Dissolved	2.5	В	0.50	0.066	mg/L	1	6010B	Dissolved
Sodium, Dissolved	18	В	1.0	0.097	mg/L	1	6010B	Dissolved
Chloride	9.1		0.40	0.34	mg/L	2	9056A	Total/NA
Sulfate	110		5.0	2.4	mg/L	25	9056A	Total/NA
Alkalinity	100		5.0	3.7	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	240		10	4.3	mg/L	1	SM 2540C	Total/NA
Ferric Iron	0.23		0.20	0.10	mg/L	1	SM 3500	Total/NA
Phosphorus as PO4	0.13	J	0.15	0.073	mg/L	1	SM 4500 P E	Total/NA
Dissolved Organic Carbon - Duplicate	3.3		1.0	0.47	mg/L	1	9060A	Dissolved
Client Sample ID: BKG-1-20	210803					Lab Sa	mple ID: 50	0-203343-3
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type

7 mary to	Roodit	quanner			• · · · ·	Diriao	-	mounou	
Boron	0.082		0.050	0.0056	mg/L	1	_	6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Chicago

Client Sample ID: BKG-1-20210803 (Continued)

Lab Sample ID: 500-203343-3

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Calcium	20		0.20	0.053	mg/L	1	6010B	Total/NA	4
Iron	0.27		0.20	0.082	mg/L	1	6010B	Total/NA	
Magnesium	10	В	0.10	0.049	mg/L	1	6010B	Total/NA	5
Manganese	0.037		0.010	0.0023	mg/L	1	6010B	Total/NA	
Potassium	4.9	В	0.50	0.066	mg/L	1	6010B	Total/NA	
Sodium	12	В	1.0	0.097	mg/L	1	6010B	Total/NA	
Boron, Dissolved	0.079		0.050	0.0056	mg/L	1	6010B	Dissolved	
Calcium, Dissolved	20		0.20	0.053	mg/L	1	6010B	Dissolved	
Iron, Dissolved	0.19	J	0.20	0.082	mg/L	1	6010B	Dissolved	8
Magnesium, Dissolved	10	В	0.10	0.049	mg/L	1	6010B	Dissolved	U
Potassium, Dissolved	4.9	В	0.50	0.066	mg/L	1	6010B	Dissolved	0
Sodium, Dissolved	12	В	1.0	0.097	mg/L	1	6010B	Dissolved	3
Chloride	12		2.0	1.7	mg/L	10	9056A	Total/NA	
Sulfate	36		2.0	0.95	mg/L	10	9056A	Total/NA	
Alkalinity	65		5.0	3.7	mg/L	1	SM 2320B	Total/NA	
Total Dissolved Solids	72		10	4.3	mg/L	1	SM 2540C	Total/NA	
Ferric Iron	0.27		0.20	0.10	mg/L	1	SM 3500	Total/NA	
Phosphorus as PO4	0.12	J	0.15	0.073	mg/L	1	SM 4500 P E	Total/NA	
Dissolved Organic Carbon - Duplicate	5.0		1.0	0.47	mg/L	1	9060A	Dissolved	4.0
Client Sample ID: CL-1-202	10803					Lab Sa	mple ID: 50	0-203343-4	13
Analyto	Posult	Qualifier	DI	МП	Unit	Dil Eac	D Method	Pron Type	

Client Sample ID: CL-1-20210803

 Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type
Boron	0.10		0.050	0.0056	mg/L	1	6010B	Total/NA
Calcium	23		0.20	0.053	mg/L	1	6010B	Total/NA
Iron	0.38		0.20	0.082	mg/L	1	6010B	Total/NA
Magnesium	11	В	0.10	0.049	mg/L	1	6010B	Total/NA
Manganese	0.037		0.010	0.0023	mg/L	1	6010B	Total/NA
Potassium	4.5	В	0.50	0.066	mg/L	1	6010B	Total/NA
Sodium	11	В	1.0	0.097	mg/L	1	6010B	Total/NA
Boron, Dissolved	0.12		0.050	0.0056	mg/L	1	6010B	Dissolved
Calcium, Dissolved	26		0.20	0.053	mg/L	1	6010B	Dissolved
Iron, Dissolved	0.68		0.20	0.082	mg/L	1	6010B	Dissolved
Magnesium, Dissolved	11	В	0.10	0.049	mg/L	1	6010B	Dissolved
Manganese, Dissolved	0.062		0.010	0.0023	mg/L	1	6010B	Dissolved
Potassium, Dissolved	4.7	В	0.50	0.066	mg/L	1	6010B	Dissolved
Sodium, Dissolved	12	В	1.0	0.097	mg/L	1	6010B	Dissolved
Chloride	11		0.40	0.34	mg/L	2	9056A	Total/NA
Sulfate	33		2.0	0.95	mg/L	10	9056A	Total/NA
Alkalinity	68		5.0	3.7	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	120		10	4.3	mg/L	1	SM 2540C	Total/NA
Ferric Iron	0.38		0.20	0.10	mg/L	1	SM 3500	Total/NA
Phosphorus as PO4	0.21		0.15	0.073	mg/L	1	SM 4500 P E	Total/NA
Dissolved Organic Carbon - Duplicate	5.4		1.0	0.47	mg/L	1	9060A	Dissolved

Client Sample ID: DUP-20210803

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.086		0.050	0.0056	mg/L	1	_	6010B	Total/NA
Calcium	21		0.20	0.053	mg/L	1		6010B	Total/NA
Iron	0.39		0.20	0.082	mg/L	1		6010B	Total/NA
Magnesium	10	В	0.10	0.049	mg/L	1		6010B	Total/NA

This Detection Summary does not include radiochemical test results.

Lab Sample ID: 500-203343-5

Eurofins TestAmerica, Chicago

Client Sample ID: DUP-20210803 (Continued)

Lab Sample ID: 500-203343-5

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	
Manganese	0.052		0.010	0.0023	mg/L	1	6010B	Total/NA	4
Potassium	4.7	В	0.50	0.066	mg/L	1	6010B	Total/NA	
Sodium	11	В	1.0	0.097	mg/L	1	6010B	Total/NA	5
Boron, Dissolved	0.086		0.050	0.0056	mg/L	1	6010B	Dissolved	
Calcium, Dissolved	21		0.20	0.053	mg/L	1	6010B	Dissolved	
Iron, Dissolved	0.087	J	0.20	0.082	mg/L	1	6010B	Dissolved	
Magnesium, Dissolved	10	В	0.10	0.049	mg/L	1	6010B	Dissolved	
Potassium, Dissolved	4.7	В	0.50	0.066	mg/L	1	6010B	Dissolved	
Sodium, Dissolved	11	В	1.0	0.097	mg/L	1	6010B	Dissolved	8
Chloride	11		0.40	0.34	mg/L	2	9056A	Total/NA	U
Sulfate	33		2.0	0.95	mg/L	10	9056A	Total/NA	0
Alkalinity	65		5.0	3.7	mg/L	1	SM 2320B	Total/NA	3
Total Dissolved Solids	110		10	4.3	mg/L	1	SM 2540C	Total/NA	
Ferric Iron	0.39		0.20	0.10	mg/L	1	SM 3500	Total/NA	
Phosphorus as PO4	0.14	J	0.15	0.073	mg/L	1	SM 4500 P E	Total/NA	
Dissolved Organic Carbon - Duplicate	4.9		1.0	0.47	mg/L	1	9060A	Dissolved	
Client Sample ID: CL-2-202	10803					Lab Sa	mple ID: 50	0-203343-6	
Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D Method	Prep Type	13
Boron	0.086		0.050	0.0056	mg/L	1	6010B	Total/NA	
Calcium	21		0.20	0.053	mg/L	1	6010B	Total/NA	

Client Sample ID: CL-2-20210803

Lab Sample ID: 500-203343-6

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	Method	Prep Type
Boron	0.086		0.050	0.0056	mg/L	1	6010B	Total/NA
Calcium	21		0.20	0.053	mg/L	1	6010B	Total/NA
Iron	0.38		0.20	0.082	mg/L	1	6010B	Total/NA
Magnesium	10	В	0.10	0.049	mg/L	1	6010B	Total/NA
Manganese	0.051		0.010	0.0023	mg/L	1	6010B	Total/NA
Potassium	4.7	В	0.50	0.066	mg/L	1	6010B	Total/NA
Sodium	11	В	1.0	0.097	mg/L	1	6010B	Total/NA
Boron, Dissolved	0.087		0.050	0.0056	mg/L	1	6010B	Dissolved
Calcium, Dissolved	22		0.20	0.053	mg/L	1	6010B	Dissolved
Iron, Dissolved	0.13	J	0.20	0.082	mg/L	1	6010B	Dissolved
Magnesium, Dissolved	10	В	0.10	0.049	mg/L	1	6010B	Dissolved
Potassium, Dissolved	4.7	В	0.50	0.066	mg/L	1	6010B	Dissolved
Sodium, Dissolved	11	В	1.0	0.097	mg/L	1	6010B	Dissolved
Chloride	11		0.40	0.34	mg/L	2	9056A	Total/NA
Sulfate	31		2.0	0.95	mg/L	10	9056A	Total/NA
Alkalinity	65		5.0	3.7	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	160		10	4.3	mg/L	1	SM 2540C	Total/NA
Ferric Iron	0.38		0.20	0.10	mg/L	1	SM 3500	Total/NA
Phosphorus as PO4	0.12	J	0.15	0.073	mg/L	1	SM 4500 P E	Total/NA
Dissolved Organic Carbon - Duplicate	4.9		1.0	0.47	mg/L	1	9060A	Dissolved

Client Sample ID: CL-3-20210803

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac	D	Method	Prep Type
Boron	0.086		0.050	0.0056	mg/L	1	_	6010B	Total/NA
Calcium	21		0.20	0.053	mg/L	1		6010B	Total/NA
Iron	0.31		0.20	0.082	mg/L	1		6010B	Total/NA
Magnesium	11	В	0.10	0.049	mg/L	1		6010B	Total/NA
Manganese	0.046		0.010	0.0023	mg/L	1		6010B	Total/NA
Potassium	4.9	В	0.50	0.066	mg/L	1		6010B	Total/NA
Sodium	11	В	1.0	0.097	mg/L	1		6010B	Total/NA
Boron, Dissolved	0.084		0.050	0.0056	mg/L	1		6010B	Dissolved

This Detection Summary does not include radiochemical test results.

Eurofins TestAmerica, Chicago

Lab Sample ID: 500-203343-7

Client: Geosyntec Consultants, Inc. Project/Site: GLP8029 Coffeen, IL

Client Sample ID: CL-3-20210803 (Continued)

Lab Sample ID: 500-203343-7

Job ID: 500-203343-1

Analyte	Result	Qualifier	RL	MDL	Unit	Dil Fac D	Method	Prep Type
Calcium, Dissolved	21		0.20	0.053	mg/L	1	6010B	Dissolved
Magnesium, Dissolved	10	В	0.10	0.049	mg/L	1	6010B	Dissolved
Potassium, Dissolved	4.6	В	0.50	0.066	mg/L	1	6010B	Dissolved
Sodium, Dissolved	11	В	1.0	0.097	mg/L	1	6010B	Dissolved
Chloride	11		0.40	0.34	mg/L	2	9056A	Total/NA
Sulfate	32		2.0	0.95	mg/L	10	9056A	Total/NA
Alkalinity	63		5.0	3.7	mg/L	1	SM 2320B	Total/NA
Total Dissolved Solids	150		10	4.3	mg/L	1	SM 2540C	Total/NA
Ferric Iron	0.31		0.20	0.10	mg/L	1	SM 3500	Total/NA
Phosphorus as PO4	0.095	J	0.15	0.073	mg/L	1	SM 4500 P E	Total/NA
Dissolved Organic Carbon - Duplicate	4.9		1.0	0.47	mg/L	1	9060A	Dissolved

This Detection Summary does not include radiochemical test results.

Method Summary

Client: Geosyntec Consultants, Inc. Project/Site: GLP8029 Coffeen, IL Job ID: 500-203343-1

Method	Method Description	Protocol	Laboratory
6010B	Metals (ICP)	SW846	TAL CHI
9056A	Anions, Ion Chromatography	SW846	TAL CHI
9060A	Organic Carbon, Dissolved (DOC)	SW846	TAL CHI
SM 2320B	Alkalinity	SM	TAL CHI
SM 2540C	Solids, Total Dissolved (TDS)	SM	TAL CHI
SM 3500	Iron, Ferric	SM	TAL CHI
SM 3500 Fe B	Iron, Ferrous	SM	TAL CHI
SM 4500 P E	Phosphorus	SM	TAL CHI
SM 4500 S2 F	Sulfide, Total	SM	TAL CHI
3010A	Preparation, Total Metals	SW846	TAL CHI
SM 4500 P B	Phosphorous, Total and Ortho	SM	TAL CHI

Protocol References:

SM = "Standard Methods For The Examination Of Water And Wastewater" SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

Sample Summary

Client: Geosyntec Consultants, Inc. Project/Site: GLP8029 Coffeen, IL Job ID: 500-203343-1

5 6

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
500-203343-1	D-2-20210803	Water	08/03/21 10:15	08/05/21 09:45
500-203343-2	D-1-20210803	Water	08/03/21 10:50	08/05/21 09:45
500-203343-3	BKG-1-20210803	Water	08/03/21 12:45	08/05/21 09:45
500-203343-4	CL-1-20210803	Water	08/03/21 13:20	08/05/21 09:45
500-203343-5	DUP-20210803	Water	08/03/21 13:30	08/05/21 09:45
500-203343-6	CL-2-20210803	Water	08/03/21 13:50	08/05/21 09:45
500-203343-7	CL-3-20210803	Water	08/03/21 14:20	08/05/21 09:45

Client Sample Results

Client: Geosyntec Consultants, Inc. Project/Site: GLP8029 Coffeen, IL

Client Sample ID: D-2-20210803 Date Collected: 08/03/21 10:15 Date Received: 08/05/21 09:45

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.30		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:27	1
Calcium	45		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:27	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:27	1
Iron	0.24		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:27	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:27	1
Magnesium	13	в	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:27	1
Manganese	0.20		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:27	1
Potassium	3.2	в	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:27	1
Sodium	13	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:27	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.30		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:31	1
Calcium, Dissolved	46		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:31	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:31	1
Iron, Dissolved	0.15	J	0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:31	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:31	1
Magnesium, Dissolved	13	в	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:31	1
Manganese, Dissolved	0.20		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:31	1
Potassium, Dissolved	3.2	в	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:31	1
Sodium, Dissolved	13	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:31	1
General Chemistry									
Analyte	Result	Qualifier	RI	МО	Unit	р	Prenared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	7.2		0.20	0.17	mg/L			08/17/21 16:12	1
Sulfate	69		4.0	1.9	mg/L			08/18/21 12:53	20
Alkalinity	100		5.0	3.7	mg/L			08/15/21 19:00	1
Total Dissolved Solids	240		10	4.3	mg/L			08/09/21 09:49	1
Ferric Iron	0.24		0.20	0.10	mg/L			08/19/21 14:42	1
Ferrous Iron	<0.050	HF	0.050	0.050	mg/L			08/11/21 04:46	1
Phosphorus as PO4	0.24		0.15	0.073	mg/L		08/15/21 12:30	08/18/21 12:20	1
Sulfide	0.25	J	1.0	0.23	mg/L			08/10/21 00:05	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon - Duplicate	3.6		1.0	0.47	mg/L			08/09/21 23:09	1

Lab Sample ID: 500-203343-1

Matrix: Water

5

7

Eurofins TestAmerica, Chicago

Client Sample Results

Client Sample ID: D-1-20210803 Date Collected: 08/03/21 10:50 Date Received: 08/05/21 09:45

Lab Sample	ID:	500-203343-2

Matrix: Water

5

7

Job ID: 500-203343-1

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.33		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:34	1
Calcium	53		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:34	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:34	1
Iron	0.23		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:34	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:34	1
Magnesium	16	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:34	1
Manganese	0.030		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:34	1
Potassium	2.5	В	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:34	1
Sodium	19	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:34	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.32		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:38	1
Calcium, Dissolved	52		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:38	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:38	1
Iron, Dissolved	0.13	J	0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:38	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:38	1
Magnesium, Dissolved	16	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:38	1
Manganese, Dissolved	0.024		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:38	1
Potassium, Dissolved	2.5	В	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:38	1
Sodium, Dissolved	18	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:38	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	9.1		0.40	0.34	mg/L			08/19/21 11:37	2
Sulfate	110		5.0	2.4	mg/L			08/18/21 13:07	25
Alkalinity	100		5.0	3.7	mg/L			08/15/21 19:07	1
Total Dissolved Solids	240		10	4.3	mg/L			08/09/21 09:51	1
Ferric Iron	0.23		0.20	0.10	mg/L			08/19/21 14:42	1
Ferrous Iron	<0.050	HF	0.050	0.050	mg/L			08/11/21 04:55	1
Phosphorus as PO4	0.13	J	0.15	0.073	mg/L		08/15/21 12:30	08/18/21 12:21	1
Sulfide	<1.0		1.0	0.23	mg/L			08/10/21 00:08	1
General Chemistry - Dissolve	d								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon - Duplicate	3.3		1.0	0.47	mg/L			08/09/21 23:16	1

Eurofins TestAmerica, Chicago

Client: Geosyntec Consultants, Inc. Project/Site: GLP8029 Coffeen, IL

Client Sample ID: BKG-1-20210803 Date Collected: 08/03/21 12:45 Date Received: 08/05/21 09:45

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.082		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:42	1
Calcium	20		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:42	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:42	1
Iron	0.27		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:42	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:42	1
Magnesium	10	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:42	1
Manganese	0.037		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:42	1
Potassium	4.9	В	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:42	1
Sodium	12	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:42	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.079		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:46	1
Calcium, Dissolved	20		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:46	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:46	1
Iron, Dissolved	0.19	J	0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:46	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:46	1
Magnesium, Dissolved	10	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:46	1
Manganese, Dissolved	<0.010		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:46	1
Potassium, Dissolved	4.9	В	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:46	1
Sodium, Dissolved	12	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:46	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	12		2.0	1.7	mg/L			08/17/21 17:48	10
Sulfate	36		2.0	0.95	mg/L			08/18/21 13:48	10
Alkalinity	65		5.0	3.7	mg/L			08/15/21 19:14	1
Total Dissolved Solids	72		10	4.3	mg/L			08/09/21 09:54	1
Ferric Iron	0.27		0.20	0.10	mg/L			08/19/21 14:42	1
Ferrous Iron	<0.050	HF	0.050	0.050	mg/L			08/11/21 04:58	1
Phosphorus as PO4	0.12	J	0.15	0.073	mg/L		08/15/21 12:30	08/18/21 12:22	1
Sulfide	<1.0		1.0	0.23	mg/L			08/10/21 00:12	1

General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	5.0		1.0	0.47	mg/L			08/09/21 23:26	1
Duplicate									

Lab Sample ID: 500-203343-3 Matrix: Water

Job ID: 500-203343-1

5

7

13

Client Sample ID: CL-1-20210803 Date Collected: 08/03/21 13:20 Date Received: 08/05/21 09:45

Method: 6010B - Metals (IC	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.10		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:50	1
Calcium	23		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:50	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:50	1
Iron	0.38		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:50	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:50	1
Magnesium	11	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:50	1
Manganese	0.037		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:50	1
Potassium	4.5	В	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:50	1
Sodium	11	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:50	1
Method: 6010B - Metals (IC	CP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.12		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:54	1
Calcium, Dissolved	26		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:54	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:54	1
Iron, Dissolved	0.68		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:54	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:54	1
Magnesium, Dissolved	11	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:54	1

Magnesium, Dissolved 11 B 0.10 0.049 mg/L 0.010 0.0023 mg/L Manganese, Dissolved 0.062 **Potassium, Dissolved** 0.50 0.066 mg/L 4.7 B 1.0 0.097 mg/L Sodium, Dissolved 12 B

General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11		0.40	0.34	mg/L			08/17/21 18:01	2
Sulfate	33		2.0	0.95	mg/L			08/18/21 14:01	10
Alkalinity	<mark>6</mark> 8		5.0	3.7	mg/L			08/15/21 19:21	1
Total Dissolved Solids	120		10	4.3	mg/L			08/09/21 09:56	1
Ferric Iron	0.38		0.20	0.10	mg/L			08/19/21 14:42	1
Ferrous Iron	<0.050	HF	0.050	0.050	mg/L			08/11/21 05:00	1
Phosphorus as PO4	0.21		0.15	0.073	mg/L		08/15/21 12:30	08/18/21 12:23	1
Sulfide	<1.0		1.0	0.23	mg/L			08/10/21 00:16	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	5.4		1.0	0.47	mg/L			08/09/21 23:33	1

Duplicate

Job ID: 500-203343-1

Lab Sample ID: 500-203343-4

08/10/21 08:44 08/10/21 23:54

08/10/21 08:44 08/10/21 23:54

08/10/21 08:44 08/10/21 23:54

Matrix: Water

1

1

1

Eurofins TestAmerica, Chicago

Magnesium, Dissolved

Client Sample ID: DUP-20210803 Date Collected: 08/03/21 13:30 Date Received: 08/05/21 09:45

Method: 6010B - Metals (I	CP)								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.086		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 23:58	1
Calcium	21		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 23:58	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 23:58	1
Iron	0.39		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 23:58	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 23:58	1
Magnesium	10	В	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 23:58	1
Manganese	0.052		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 23:58	1
Potassium	4.7	В	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 23:58	1
Sodium	11	В	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 23:58	1
Method: 6010B - Metals (I	CP) - Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.086		0.050	0.0056	mg/L		08/10/21 08:44	08/11/21 00:14	1
Calcium, Dissolved	21		0.20	0.053	mg/L		08/10/21 08:44	08/11/21 00:14	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/11/21 00:14	1
Iron, Dissolved	0.087	J	0.20	0.082	mg/L		08/10/21 08:44	08/11/21 00:14	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/11/21 00:14	1

0.10

0.049 mg/L

					0			
Manganese, Dissolved	<0.010		0.010	0.0023	mg/L		08/10/21 08:44	08/11/21 00:14
Potassium, Dissolved	4.7	В	0.50	0.066	mg/L		08/10/21 08:44	08/11/21 00:14
Sodium, Dissolved	11	В	1.0	0.097	mg/L		08/10/21 08:44	08/11/21 00:14
General Chemistry								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Chloride	11		0.40	0.34	mg/L			08/17/21 18:28
Sulfate	33		2.0	0.95	mg/L			08/18/21 14:15
Alkalinity	65		5.0	3.7	mg/L			08/15/21 19:28
Total Dissolved Solids	110		10	4.3	ma/L			08/09/21 09:59

10 B

Total Dissolved Solids	110	10	4.3 mg/L	08/09/21 09:59
Ferric Iron	0.39	0.20	0.10 mg/L	08/19/21 14:42
Ferrous Iron	<0.050 HF	0.050	0.050 mg/L	08/11/21 05:03
Phosphorus as PO4	0.14 J	0.15	0.073 mg/L	08/15/21 12:30 08/18/21 12:42
Sulfide	<1.0	1.0	0.23 mg/L	08/10/21 00:20
General Chemistry - Dissolved				

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	4.9	1.0	0.47	mg/L			08/09/21 23:40	1
Duplicate								

Lab Sample ID: 500-203343-5

08/10/21 08:44 08/11/21 00:14

Matrix: Water

7

1

1 1 1

1

1

1

1

Manganese, Dissolved

Sodium, Dissolved

Potassium, Dissolved

Client Sample ID: CL-2-20210803 Date Collected: 08/03/21 13:50 Date Received: 08/05/21 09:45

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.086		0.050	0.0056	mg/L		08/10/21 08:44	08/11/21 00:18	1
Calcium	21		0.20	0.053	mg/L		08/10/21 08:44	08/11/21 00:18	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/11/21 00:18	1
Iron	0.38		0.20	0.082	mg/L		08/10/21 08:44	08/11/21 00:18	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/11/21 00:18	1
Magnesium	10	В	0.10	0.049	mg/L		08/10/21 08:44	08/11/21 00:18	1
Manganese	0.051		0.010	0.0023	mg/L		08/10/21 08:44	08/11/21 00:18	1
Potassium	4.7	В	0.50	0.066	mg/L		08/10/21 08:44	08/11/21 00:18	1
Sodium	11	В	1.0	0.097	mg/L		08/10/21 08:44	08/11/21 00:18	1
Method: 6010B - Metals (ICP)	- Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.087		0.050	0.0056	mg/L		08/10/21 08:44	08/11/21 00:21	1
Calcium, Dissolved	22		0.20	0.053	mg/L		08/10/21 08:44	08/11/21 00:21	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/11/21 00:21	1
Iron, Dissolved	0.13	J	0.20	0.082	mg/L		08/10/21 08:44	08/11/21 00:21	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/11/21 00:21	1
Magnesium, Dissolved	10	В	0.10	0.049	mg/L		08/10/21 08:44	08/11/21 00:21	1

General Chemistry Dil Fac Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Chloride 11 0.40 0.34 mg/L 08/17/21 18:55 2 2.0 0.95 mg/L 08/18/21 14:29 10 Sulfate 31 Alkalinity 65 5.0 3.7 mg/L 08/15/21 19:35 1 **Total Dissolved Solids** 160 10 4.3 mg/L 08/09/21 10:02 1 **Ferric Iron** 0.38 0.20 0.10 mg/L 08/19/21 14:42 1 Ferrous Iron <0.050 HF 0.050 0.050 mg/L 08/11/21 05:06 1 0.073 mg/L 08/18/21 12:43 **Phosphorus as PO4** 0.12 0.15 08/15/21 12:30 1 J Sulfide 0.23 mg/L 08/10/21 00:23 <1.0 1.0 1 **General Chemistry - Dissolved** RL MDL Unit Dil Fac Analyte **Result Qualifier** D Prepared Analyzed 08/09/21 23:47 **Dissolved Organic Carbon -**4.9 1.0 0.47 mg/L 1 **Duplicate**

0.010

0.50

1.0

0.0023 mg/L

0.066 mg/L

0.097 mg/L

<0.010

4.7 B

11 B

Lab Sample ID: 500-203343-6 Matrix: Water

08/10/21 08:44 08/11/21 00:21

08/10/21 08:44 08/11/21 00:21

08/10/21 08:44 08/11/21 00:21

1

1

1

Eurofins TestAmerica, Chicago

Client Sample ID: CL-3-20210803 Date Collected: 08/03/21 14:20 Date Received: 08/05/21 09:45

Method: 6010B - Metals (ICP)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	0.086		0.050	0.0056	mg/L		08/10/21 08:44	08/11/21 00:25	1
Calcium	21		0.20	0.053	mg/L		08/10/21 08:44	08/11/21 00:25	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/11/21 00:25	1
Iron	0.31		0.20	0.082	mg/L		08/10/21 08:44	08/11/21 00:25	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/11/21 00:25	1
Magnesium	11	В	0.10	0.049	mg/L		08/10/21 08:44	08/11/21 00:25	1
Manganese	0.046		0.010	0.0023	mg/L		08/10/21 08:44	08/11/21 00:25	1
Potassium	4.9	В	0.50	0.066	mg/L		08/10/21 08:44	08/11/21 00:25	1
Sodium	11	В	1.0	0.097	mg/L		08/10/21 08:44	08/11/21 00:25	1
Method: 6010B - Metals (ICP) -	Dissolved								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron, Dissolved	0.084		0.050	0.0056	mg/L		08/10/21 08:44	08/11/21 00:29	1

Boron, Biosontea	0.004		0.000	0.0000	g/ =		00/10/21 00111	00/11/21 00:20	•
Calcium, Dissolved	21		0.20	0.053	mg/L		08/10/21 08:44	08/11/21 00:29	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/11/21 00:29	1
Iron, Dissolved	<0.20		0.20	0.082	mg/L		08/10/21 08:44	08/11/21 00:29	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/11/21 00:29	1
Magnesium, Dissolved	10	В	0.10	0.049	mg/L		08/10/21 08:44	08/11/21 00:29	1
Manganese, Dissolved	<0.010		0.010	0.0023	mg/L		08/10/21 08:44	08/11/21 00:29	1
Potassium, Dissolved	4.6	В	0.50	0.066	mg/L		08/10/21 08:44	08/11/21 00:29	1
Sodium, Dissolved	11	В	1.0	0.097	mg/L		08/10/21 08:44	08/11/21 00:29	1
General Chemistry									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11		0.40	0.34	mg/L			08/17/21 19:23	2
Sulfate	32		2.0	0.95	mg/L			08/18/21 14:42	10
Alkalinity	63		5.0	3.7	mg/L			08/15/21 19:41	1

Alkalinity	63		5.0	3.7	mg/L			08/15/21 19:41	1
Total Dissolved Solids	150		10	4.3	mg/L			08/09/21 10:04	1
Ferric Iron	0.31		0.20	0.10	mg/L			08/19/21 14:42	1
Ferrous Iron	<0.050	HF	0.050	0.050	mg/L			08/11/21 05:09	1
Phosphorus as PO4	0.095	J	0.15	0.073	mg/L		08/15/21 12:30	08/18/21 12:44	1
Sulfide	<1.0		1.0	0.23	mg/L			08/10/21 00:27	1
General Chemistry - Dissolved									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Dissolved Organic Carbon -	4.9		1.0	0.47	mg/L			08/09/21 23:55	1

Matrix: Water

Lab Sample ID: 500-203343-7
Estimated Detection Limit (Dioxin)

Limit of Quantitation (DoD/DOE)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Limit of Detection (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number Method Quantitation Limit

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

8

Qualifiers

EDL

LOD

LOQ

MCL

MDA

MDC

MDL

MPN

MQL NC

ND

NEG

POS

PQL

PRES QC

RER

RPD

TEF

TEQ TNTC

RL

ML

-	
Metals	
Qualifier	
В	Compound was found in the blank and sample.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
General Che	mistry
Qualifier	Qualifier Description
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.
HF	Field parameter with a holding time of 15 minutes. Test performed by laboratory at client's request.
J	Result is less than the RL but greater than or equal to the MDL and the concentration is an approximate value.
Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)

Prep Batch: 613499

Metals

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Dissolved	Water	3010A	
500-203343-1	D-2-20210803	Total/NA	Water	3010A	
500-203343-2	D-1-20210803	Dissolved	Water	3010A	
500-203343-2	D-1-20210803	Total/NA	Water	3010A	
500-203343-3	BKG-1-20210803	Dissolved	Water	3010A	
500-203343-3	BKG-1-20210803	Total/NA	Water	3010A	
500-203343-4	CL-1-20210803	Dissolved	Water	3010A	
500-203343-4	CL-1-20210803	Total/NA	Water	3010A	
500-203343-5	DUP-20210803	Dissolved	Water	3010A	
500-203343-5	DUP-20210803	Total/NA	Water	3010A	
500-203343-6	CL-2-20210803	Dissolved	Water	3010A	
500-203343-6	CL-2-20210803	Total/NA	Water	3010A	
500-203343-7	CL-3-20210803	Dissolved	Water	3010A	
500-203343-7	CL-3-20210803	Total/NA	Water	3010A	
MB 500-613499/1-A	Method Blank	Total/NA	Water	3010A	
LCS 500-613499/2-A	Lab Control Sample	Total/NA	Water	3010A	

Analysis Batch: 613679

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Dissolved	Water	6010B	613499
500-203343-1	D-2-20210803	Total/NA	Water	6010B	613499
500-203343-2	D-1-20210803	Dissolved	Water	6010B	613499
500-203343-2	D-1-20210803	Total/NA	Water	6010B	613499
500-203343-3	BKG-1-20210803	Dissolved	Water	6010B	613499
500-203343-3	BKG-1-20210803	Total/NA	Water	6010B	613499
500-203343-4	CL-1-20210803	Dissolved	Water	6010B	613499
500-203343-4	CL-1-20210803	Total/NA	Water	6010B	613499
500-203343-5	DUP-20210803	Dissolved	Water	6010B	613499
500-203343-5	DUP-20210803	Total/NA	Water	6010B	613499
500-203343-6	CL-2-20210803	Dissolved	Water	6010B	613499
500-203343-6	CL-2-20210803	Total/NA	Water	6010B	613499
500-203343-7	CL-3-20210803	Dissolved	Water	6010B	613499
500-203343-7	CL-3-20210803	Total/NA	Water	6010B	613499
MB 500-613499/1-A	Method Blank	Total/NA	Water	6010B	613499
LCS 500-613499/2-A	Lab Control Sample	Total/NA	Water	6010B	613499

General Chemistry

Analysis Batch: 613305

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	SM 2540C	
500-203343-2	D-1-20210803	Total/NA	Water	SM 2540C	
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 2540C	
500-203343-4	CL-1-20210803	Total/NA	Water	SM 2540C	
500-203343-5	DUP-20210803	Total/NA	Water	SM 2540C	
500-203343-6	CL-2-20210803	Total/NA	Water	SM 2540C	
500-203343-7	CL-3-20210803	Total/NA	Water	SM 2540C	
MB 500-613305/1	Method Blank	Total/NA	Water	SM 2540C	
LCS 500-613305/2	Lab Control Sample	Total/NA	Water	SM 2540C	
500-203340-B-2 MS	Matrix Spike	Total/NA	Water	SM 2540C	
500-203340-B-3 DU	Duplicate	Total/NA	Water	SM 2540C	

Eurofins TestAmerica, Chicago

QC Association Summary

General Chemistry

Analysis Batch: 613311

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-2	D-1-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-4	CL-1-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-5	DUP-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-6	CL-2-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-7	CL-3-20210803	Total/NA	Water	SM 3500 Fe B	
MB 500-613311/1	Method Blank	Total/NA	Water	SM 3500 Fe B	
LCS 500-613311/2	Lab Control Sample	Total/NA	Water	SM 3500 Fe B	
500-203343-1 MS	D-2-20210803	Total/NA	Water	SM 3500 Fe B	
500-203343-1 MSD	D-2-20210803	Total/NA	Water	SM 3500 Fe B	

Analysis Batch: 613518

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
500-203343-1	D-2-20210803	Total/NA	Water	SM 4500 S2 F		
500-203343-2	D-1-20210803	Total/NA	Water	SM 4500 S2 F		
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 4500 S2 F		
500-203343-4	CL-1-20210803	Total/NA	Water	SM 4500 S2 F		
500-203343-5	DUP-20210803	Total/NA	Water	SM 4500 S2 F		
500-203343-6	CL-2-20210803	Total/NA	Water	SM 4500 S2 F		
500-203343-7	CL-3-20210803	Total/NA	Water	SM 4500 S2 F		
MB 500-613518/1	Method Blank	Total/NA	Water	SM 4500 S2 F		
LCS 500-613518/2	Lab Control Sample	Total/NA	Water	SM 4500 S2 F		
180-125221-A-1 MS	Matrix Spike	Total/NA	Water	SM 4500 S2 F		
180-125221-A-1 MSD	Matrix Spike Duplicate	Total/NA	Water	SM 4500 S2 F		

Analysis Batch: 613783

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Dissolved	Water	9060A	
500-203343-2	D-1-20210803	Dissolved	Water	9060A	
500-203343-3	BKG-1-20210803	Dissolved	Water	9060A	
500-203343-4	CL-1-20210803	Dissolved	Water	9060A	
500-203343-5	DUP-20210803	Dissolved	Water	9060A	
500-203343-6	CL-2-20210803	Dissolved	Water	9060A	
500-203343-7	CL-3-20210803	Dissolved	Water	9060A	
MB 500-613783/9	Method Blank	Dissolved	Water	9060A	
LCS 500-613783/10	Lab Control Sample	Dissolved	Water	9060A	

Prep Batch: 614309

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	SM 4500 P B	
500-203343-2	D-1-20210803	Total/NA	Water	SM 4500 P B	
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 4500 P B	
500-203343-4	CL-1-20210803	Total/NA	Water	SM 4500 P B	
500-203343-5	DUP-20210803	Total/NA	Water	SM 4500 P B	
500-203343-6	CL-2-20210803	Total/NA	Water	SM 4500 P B	
500-203343-7	CL-3-20210803	Total/NA	Water	SM 4500 P B	
MB 500-614309/1-A	Method Blank	Total/NA	Water	SM 4500 P B	
LCS 500-614309/2-A	Lab Control Sample	Total/NA	Water	SM 4500 P B	

Job ID: 500-203343-1

QC Association Summary

General Chemistry

Analysis Batch: 614414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	SM 2320B	
500-203343-2	D-1-20210803	Total/NA	Water	SM 2320B	
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 2320B	
500-203343-4	CL-1-20210803	Total/NA	Water	SM 2320B	
500-203343-5	DUP-20210803	Total/NA	Water	SM 2320B	
500-203343-6	CL-2-20210803	Total/NA	Water	SM 2320B	
500-203343-7	CL-3-20210803	Total/NA	Water	SM 2320B	
MB 500-614414/3	Method Blank	Total/NA	Water	SM 2320B	
LCS 500-614414/4	Lab Control Sample	Total/NA	Water	SM 2320B	
500-203363-E-1 DU	Duplicate	Total/NA	Water	SM 2320B	

Analysis Batch: 614638

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	9056A	
500-203343-3	BKG-1-20210803	Total/NA	Water	9056A	
500-203343-4	CL-1-20210803	Total/NA	Water	9056A	
500-203343-5	DUP-20210803	Total/NA	Water	9056A	
500-203343-6	CL-2-20210803	Total/NA	Water	9056A	
500-203343-7	CL-3-20210803	Total/NA	Water	9056A	
MB 500-614638/3	Method Blank	Total/NA	Water	9056A	
LCS 500-614638/4	Lab Control Sample	Total/NA	Water	9056A	
500-203337-F-2 MS	Matrix Spike	Total/NA	Water	9056A	
500-203337-F-2 MSD	Matrix Spike Duplicate	Total/NA	Water	9056A	

Analysis Batch: 614916

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	SM 4500 P E	614309
500-203343-2	D-1-20210803	Total/NA	Water	SM 4500 P E	614309
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 4500 P E	614309
500-203343-4	CL-1-20210803	Total/NA	Water	SM 4500 P E	614309
500-203343-5	DUP-20210803	Total/NA	Water	SM 4500 P E	614309
500-203343-6	CL-2-20210803	Total/NA	Water	SM 4500 P E	614309
500-203343-7	CL-3-20210803	Total/NA	Water	SM 4500 P E	614309
MB 500-614309/1-A	Method Blank	Total/NA	Water	SM 4500 P E	614309
LCS 500-614309/2-A	Lab Control Sample	Total/NA	Water	SM 4500 P E	614309

Analysis Batch: 614951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	9056A	
500-203343-2	D-1-20210803	Total/NA	Water	9056A	
500-203343-3	BKG-1-20210803	Total/NA	Water	9056A	
500-203343-4	CL-1-20210803	Total/NA	Water	9056A	
500-203343-5	DUP-20210803	Total/NA	Water	9056A	
500-203343-6	CL-2-20210803	Total/NA	Water	9056A	
500-203343-7	CL-3-20210803	Total/NA	Water	9056A	
MB 500-614951/3	Method Blank	Total/NA	Water	9056A	
LCS 500-614951/4	Lab Control Sample	Total/NA	Water	9056A	
_ Analysis Batch: 615′ _	118				

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-2	D-1-20210803	Total/NA	Water	9056A	

Eurofins TestAmerica, Chicago

Job ID: 500-203343-1

General Chemistry (Continued)

Analysis Batch: 615118 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 500-615118/3	Method Blank	Total/NA	Water	9056A	
LCS 500-615118/4	Lab Control Sample	Total/NA	Water	9056A	

Analysis Batch: 615136

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
500-203343-1	D-2-20210803	Total/NA	Water	SM 3500	
500-203343-2	D-1-20210803	Total/NA	Water	SM 3500	
500-203343-3	BKG-1-20210803	Total/NA	Water	SM 3500	
500-203343-4	CL-1-20210803	Total/NA	Water	SM 3500	
500-203343-5	DUP-20210803	Total/NA	Water	SM 3500	
500-203343-6	CL-2-20210803	Total/NA	Water	SM 3500	
500-203343-7	CL-3-20210803	Total/NA	Water	SM 3500	

Method: 6010B - Metals (ICP)

Lab Sample ID: MB 500-613499/1-A Matrix: Water Analysis Batch: 613679

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Boron	<0.050		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 22:21	1
Boron, Dissolved	<0.050		0.050	0.0056	mg/L		08/10/21 08:44	08/10/21 22:21	1
Calcium	<0.20		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 22:21	1
Calcium, Dissolved	<0.20		0.20	0.053	mg/L		08/10/21 08:44	08/10/21 22:21	1
Cobalt	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 22:21	1
Cobalt, Dissolved	<0.0050		0.0050	0.00078	mg/L		08/10/21 08:44	08/10/21 22:21	1
Iron	<0.20		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 22:21	1
Iron, Dissolved	<0.20		0.20	0.082	mg/L		08/10/21 08:44	08/10/21 22:21	1
Lithium	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 22:21	1
Lithium, Dissolved	<0.010		0.010	0.0044	mg/L		08/10/21 08:44	08/10/21 22:21	1
Magnesium	0.0812	J	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 22:21	1
Magnesium, Dissolved	0.0812	J	0.10	0.049	mg/L		08/10/21 08:44	08/10/21 22:21	1
Manganese	<0.010		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 22:21	1
Manganese, Dissolved	<0.010		0.010	0.0023	mg/L		08/10/21 08:44	08/10/21 22:21	1
Potassium	0.185	J	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 22:21	1
Potassium, Dissolved	0.185	J	0.50	0.066	mg/L		08/10/21 08:44	08/10/21 22:21	1
Sodium	0.165	J	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 22:21	1
Sodium, Dissolved	0.165	J	1.0	0.097	mg/L		08/10/21 08:44	08/10/21 22:21	1

Lab Sample ID: LCS 500-613499/2-A Matrix: Water Analysis Batch: 613679

Analysis Batch: 613679							Prep Batch: 613499
-	Spike	LCS	LCS				%Rec.
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Boron	1.00	0.822		mg/L		82	80 - 120
Boron, Dissolved	1.00	0.822		mg/L		82	80 - 120
Calcium	10.0	10.7		mg/L		107	80 - 120
Calcium, Dissolved	10.0	10.7		mg/L		107	80 - 120
Cobalt	0.500	0.498		mg/L		100	80 - 120
Cobalt, Dissolved	0.500	0.498		mg/L		100	80 - 120
Iron	1.00	1.15		mg/L		115	80 - 120
Iron, Dissolved	1.00	1.15		mg/L		115	80 - 120
Lithium	0.500	0.525		mg/L		105	80 - 120
Lithium, Dissolved	0.500	0.525		mg/L		105	80 - 120
Magnesium	10.0	10.0		mg/L		100	80 - 120
Magnesium, Dissolved	10.0	10.0		mg/L		100	80 - 120
Manganese	0.500	0.522		mg/L		104	80 - 120
Manganese, Dissolved	0.500	0.522		mg/L		104	80 - 120
Potassium	10.0	10.1		mg/L		101	80 - 120
Potassium, Dissolved	10.0	10.1		mg/L		101	80 - 120
Sodium	10.0	9.94		mg/L		99	80 - 120
Sodium, Dissolved	10.0	9.94		mg/L		99	80 - 120

Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 613499

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

QC Sample Results

Job ID: 500-203343-1

Method: 9056A - Anions, Ion Chromatography

Lab Sample ID: MB 500-614	638/3									Clie	ent Sam	ple ID: Me	ethod	Blank
Matrix: Water												Prep Typ	be: 10	tai/NA
Analysis Batch: 614638														
Analyta	IVI Decir	B IVIB		ы			11		-	п	ue we we we	A mobile	I	
				RL						P	repared		ea	
Chionae	<0.2	0		0.20		0.17	mg/L					08/17/21	11:40	1
Lab Sample ID: LCS 500-61	4638/4							CI	iont	Sar	nnlo ID	· Lah Con	trol S	amnlo
Matrix: Water	-000/-								ient	oui		Pron Tyr		
Analysis Batch: 61/638												I ICP IY	. 10	
Analysis Datch. 014000			Sniko		1.05	1.05	2					%Bec		
Analyto					Posult		lifior	Unit		п	%Pac	l imite		
			3.00		2.81	Que		ma/l		_		80 120		
Chlonde			3.00		2.01			IIIg/L			94	00 - 120		
Lab Sample ID: 500-203337	-F-2 MS									CI	ient Sa	mple ID [.] N	latrix	Snike
Matrix: Water												Pren Tvr	e' To	tal/NΔ
Analysis Batch: 61/638												i icp iyp	. 10	
Analysis Datch. 014000	Sample S	amnlo	Sniko		MS	мs						%Rec		
Analyto	Posult O	ualifior			Posult		lifior	Unit		п	%Pac	/intec.		
Chlorido	420		100		197					_	60	80 120		
Chlonde	430		100		407	4		IIIg/L			00	00 - 120		
Lab Sample ID: 500-203337	-F-2 MSD							Clien	it Sa	mn	Ie ID' N	latrix Snik		olicate
Matrix: Water								Union		ΠP		Pren Tvr		tal/NA
Analysis Batch: 61/638												1100 136		
Analysis Datch. 014000	Sample S	amnlo	Sniko		MSD	MSI	п					%Bec		RPD
Analyto	Posult O	ualifior			Posult		alifior	Unit		п	%Pac	l imite	חסס	Limit
			100		101			ma/l		-		80 120	1	15
Chlonde	430		100		431	4		iiig/L			04	00 - 120	1	15
I ab Sample ID: MB 500-614	1951/3									Clie	ont Sam	nle ID [.] Me	othod	Blank
Matrix: Water										•	un oun	Pren Tyr	ne: To	tal/NA
Analysis Batch: 614951												1100 136		
Analysis Baton. 014001	м	R MR												
Analyte	Resu	lt Qualifier		RI		мпі	Unit		п	Р	renared	Δnalvz	ed	Dil Fac
Chloride				0.20		0 17	ma/l			•	lepuleu	- 08/18/21	11.04	1
Sulfate	<0.2	0		0.20	ſ	0.17	mg/L					08/18/21	11.04	1
Juliate	~0.2	.0		0.20	C C	0.035	mg/∟					00/10/21	11.04	
Lab Sample ID: LCS 500-61	4951/4							CI	ient	Sar	nnle ID	· Lah Con	trol S	ample
Matrix: Water								•		.		Pren Tyr	ne: To	tal/NA
Analysis Batch: 614951												1.00.136		
Analysis Baton. 014001			Snike		LCS	1.05	3					%Rec		
Analyte			babbA		Result		alifior	Unit		п	%Rec	l imite		
			3 00		3 27	Qui				_	100	80 120		
Sulfate			5.00		5 30			mg/L			105	80 120		
Juliate			5.00		5.50			iiig/L			100	00 - 120		
I ab Sample ID: MB 500-614	5118/3									Clie	nt Sam	nle ID: Ma	othod	Blank
Matrix: Water										- 110	un Guin	Pren Tvr		tal/NA
Analysis Batch: 615118														
Analysis Baton. 010110	м	B MB												
Analyte	Roeu	t Qualifier		RI		мпі	Unit		р	P	renared	∆nalvz	ed	Dil Fac
Chloride				0.20		0 17	ma/l			•	sparea	- 08/19/21	11.03	1
Sulfato	-0.2 <0.0	0		0.20	r	0.095	ma/l					08/10/21	11.03	1
JUNALE	31/ /													

Eurofins TestAmerica, Chicago

10

Method: 9056A - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 500-61511	8/4							Cli	ent S	am	ole IC	C: Lab Control	Samp
Analysis Batch: 615118												Fieb Type.	
Analysis Batch. 015110			Snike		LCS							%Rec	
Analyte					Result	Qua	lifier	Unit	ſ	% כ	Rec	l imits	
Chloride			3 00		3 27			ma/l			109	80 - 120	
Sulfate			5.00		5.30			ma/L			106	80 - 120	
_ Method: 9060A - Organic C	arbon. D)issolve	ed (DO	C)									
 	2/ 9			-/					C	lion	t San	nnie ID: Metho	d Blan
Matrix: Water										ICII	t Jan	Pren Tyne: Di	ssolve
Analysis Batch: 613783												пер турс. В	330170
Analysis Batch. 010100	МВ	мв											
Analyte	Result	Qualifier		RI		мрі	Unit		D	Prer	hared	Analyzed	Dil Fa
Dissolved Organic Carbon - Duplicate	<1.0	quamor		1.0		0.47	ma/L			1.01	Juidu	08/09/21 21:30	
							5						
Lab Sample ID: LCS 500-61378	3/10							Cli	ent S	am	ole IC	D: Lab Control	Samp
Matrix: Water												Prep Type: Di	ssolve
Analysis Batch: 613783													
			Spike		LCS	LCS	;					%Rec.	
Analyte			Added		Result	Qua	lifier	Unit	I	D %	6Rec	Limits	
DOC Result 1			10.0		9.57			mg/L			96	86 - 116	
DOC Result 2			10.0		9.57			mg/L			96	86 - 116	
Dissolved Organic Carbon -			10.0		9.57			mg/L			96	86 - 116	
_Duplicate													
Method: SM 2320B - Alkalii	nity												
Lab Sample ID: MB 500-614414	I/3								C	lien	t San	nple ID: Metho	d Blan
Matrix: Water												Prep Type: 1	Total/N
Analysis Batch: 614414													
	MB	MB											
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prep	bared	Analyzed	Dil Fa
Alkalinity	<5.0			5.0		3.7	mg/L					08/15/21 16:27	
- Lab Sample ID: LCS 500-61441	A 1 A							Cli	ont S	.): Lab Control	Samp
Matrix: Wator									ent o	am		Prop Type: 1	Samp Total/N
Analysis Patch: 614414												Fieb Type.	
Allalysis Balcil. 014414			Sniko		201	109						%Pac	
Analyte					Result	0112	lifior	Unit	ſ	י ר	Rec	l imite	
Alkalinity			500		454	Quu		ma/l			91	90 - 110	
			000		101			mg/L			01	001110	
Lab Sample ID: 500-203363-E-1	I DU									C	lient	t Sample ID: D	uplicat
Matrix: Water												Prep Type: 1	Total/N
Analysis Batch: 614414													
-	Sample Sar	nple			DU	DU							RP
Analyte	Result Qua	alifier			Result	Qua	lifier	Unit	I	C		RP	D Lin
Alkalinity	180				181			mg/L					2 2

QC Sample Results

Job ID: 500-203343-1

Method: SM 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 500-61	3305/1								(Clie	ent San	nple ID: Metho Prep Type: 1	d Bla otal/	nk N∆
Analysis Batch: 613305													otuin	
		MB MB												
Analyte	Re	sult Qualifier		RL	1	MDL U	Init		D	P	repared	Analyzed	Dil	Fac
Total Dissolved Solids		<10		10		4.3 m	ng/L				•	08/09/21 09:31		1
										_				
Lab Sample ID: LCS 500-6	13305/2							Cli	ent	Sar	nple ID	: Lab Control	Sam	ple
Matrix: Water												Prep Type: 1	otal/	NA
Analysis Batch: 613305														
			Spike		LCS	LCS	-			_		%Rec.		
Analyte			Added		Result	Qualif	ier	Unit		D	%Rec	Limits		
Total Dissolved Solids			250		238			mg/L			95	80 - 120		
Lab Sample ID: 500-203340)-B-2 MS									СІ	ient Sa	mole ID: Matri	x Sni	ike
Matrix: Water												Pren Type: 1	otal/	NΔ
Analysis Batch: 613305														
	Sample	Sample	Spike		MS	MS						%Rec.		
Analyte	Result	Qualifier	Added		Result	Qualif	ier	Unit		D	%Rec	Limits		
Total Dissolved Solids	490		250		792			mg/L		_	120	75 - 125		
								-						
Lab Sample ID: 500-203340)-B-3 DU										Client	Sample ID: D	uplica	ate
Matrix: Water												Prep Type: 1	otal/	NA
Analysis Batch: 613305														
	Sample	Sample			DU	DU							R	RPD
Analyte	Result	Qualifier			Result	Qualif	ier	Unit		D		RP	D Li	imit
Total Dissolved Solids	480				472			mg/L					2	5
Method: SM 3500 Fe B	- Iron, Fe	rrous												
Lab Sample ID: MB 500-61	3311/1									Clie	nt San	nle ID: Metho	d Bla	nk
Matrix: Water	5511/1									JIIC	ant Gan	Pron Type: 1	otal/	ΝΔ
Analysis Batch: 613311												пер турс. т	otan	
Analysis Daten. 010011		MB MB												
Analyte	Re	sult Qualifier		RL		MDL U	Init		D	P	repared	Analyzed	Dil	Fac
Ferrous Iron	<0	.050	0	.050	0	.050 m	ng/L				-	08/11/21 04:41		1
							0							
Lab Sample ID: LCS 500-67	13311/2							Cli	ent	Sar	nple ID	: Lab Control	Sam	ple
Matrix: Water												Prep Type: 1	otal/	NA
Analysis Batch: 613311														
			Spike		LCS	LCS						%Rec.		
Analyte			Added		Result	Qualif	ier	Unit		D	%Rec	Limits		
Ferrous Iron			0.500		0.500			mg/L			100	80 - 120		
Lah Sample ID: 500-203341	R-1 MS									Cliv	ont San	nnle ID: D_2-20	12109	203
Matrix: Water											Sin Jal	Pron Type: 7	otal/	NΔ
Analysis Ratch: 612211												Lich isher i	Jai	
Analysis Datell. 013311	Sample	Sample	Snike		м۹	MS						%Rec		
Analyte	Rocult	Qualifier			Result	Qualif	ier	Unit		п	%Rec	l imits		
Ferrous Iron	<0.050	HF	0.500		0.500	quuili		mg/L		_	100	75 - 125		
	0.000	-												

10

Eurofins TestAmerica, Chicago

QC Sample Results

Job ID: 500-203343-1

10

Method: SM 3500 Fe B - Iron, Ferrous (Continued)

Markin Hubb Sample Sample Result Qualifier Analysis Batch: 613311 Sample Sample Result Qualifier Analysis Batch: 613091 Sample Sample Result Qualifier Analysis Batch: 614916 MSD MSD (Solo MSD (Solo MS	Lab Sample ID: 500-203343	3-1 MSD						CI	ient Sam	ple ID: D-2	2-202 [,]	10803 tal/NA	
Analysis Sample Sample Result Qualifier MSD Result Qualifier Unit Result Qualifier D %Rec. mg/L RPD Limits Limits RPD Limits RPD Limits Limits RPD Limits RPD Limits Limits RPD Limits RPD Limits Limits RPD Limits RPD Limits Limits RPD Limits RPD Limits Limits RPD Limits RPD RPD Limits Limits RPD Limits RPD RPD Limits Limits RPD Limits RPD RPD Limits Limits RPD Limits RPD RPD Limits Limits RPD Limits RPD RPD Limits Limits RPD Limits RPD RPD RPD RPD RPD RPD RPD RPD RPD RPD	Analysis Batch: 613311									гіер іур	e. 101		
Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Limit Result Qualifier Qualifier <thqualifie< th=""><th>Analysis Batch. 015511</th><th>Sample</th><th>Sample</th><th>Snike</th><th>MSD</th><th>MSD</th><th></th><th></th><th></th><th>%Rec</th><th></th><th>RPD</th></thqualifie<>	Analysis Batch. 015511	Sample	Sample	Snike	MSD	MSD				%Rec		RPD	
Ferrous iton <0.050	Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Method: SM 4500 P E - Phosphorus Lab Sample ID: MB 500-614309/1-A Matrix: Water MB MB Result Qualifier RL 0.15 MDL 0.15 Unit 0.073 mg/L D Prepared 08/15/211230 Matrixe Di Pace Di Pace 08/15/211230 Analyzed Di Pace Di Di Pace Di Di Pace Di Di Pace Di Di Pace Di Pace Di	Ferrous Iron	< 0.050	HF -	0.500	0.500		mg/L	=	100	75 - 125	0	20	
Lab Sample ID: MB 500-614309/1-A Client Sample ID: Method Blank Matrix: Water Analysis Batch: 614916 Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Phosphorus as PO4 <0.15	Method: SM 4500 P E -	Phospho	rus										
Matrix: Water Prep Type: Total/NA Analysis Batch: 614916 MB MB Analysis Batch: 614916 Result Qualifier Phosphorus as PO4 <0.15	Lab Sample ID: MB 500-61	4309/1-A						CI	ient Sam	ple ID: Met	thod	Blank	
Analysis Batch: 614916 Prep Batch: 614309 Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Phosphorus as PO4 <0.15	Matrix: Water									Prep Type	e: Tot	tal/NA	
MB Result Qualifier Rt. MDL Unit D Prepared Analyzed Dil Fac Phosphorus as PO4 <0.15	Analysis Batch: 614916									Prep Bat	ch: 6'	14309	
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DI Hazz Phosphorus as PO4 <0.15			MB MB										
Phosphorus as PO4 <0.15	Analyte	Re	sult Qualifie	er	RL	MDL Unit		D	Prepared	Analyze	d	Dil Fac	
Lab Sample ID: LCS 500-614309/2-A Client Sample ID: Lab Control Sample Marty: Water Analyte Prep Type: Total/NA Analyte Added Result Qualifier Unit D %Rec. Phosphorus as PO4 1.54 1.56 mg/L D %Rec. Method: SM 4500 S2 F - Sulfide, Total Image: Sample ID: MB 500-613518/1 Client Sample ID: MB 500-613518/1 Client Sample ID: Method Blank Matrix: Water Analyte Result Qualifier Rt. MDL Unit D Prep Type: Total/NA Sulfide <1.0	Phosphorus as PO4	<	0.15		0.15 C).073 mg/L		08/	/15/21 12:30	08/18/21 1	1:49	1	
Matrix: Water Analysis Batch: 614916 Prep Type: Total/NA Prep Batch: 614309 Analyte Added Result Qualifier Unit D %Rec. Water Analyte Added Result Qualifier Unit D %Rec. Limits	Lab Sample ID: LCS 500-6	14309/2-A					Clie	ent Sa	ample ID:	Lab Cont	rol Sa	ample	
Analysis Batch: 614916 Prep Batch: 614309 Prep Batch: 614309 Analyte Added Result Qualifier Unit D %Rec. imits Phosphorus as PO4 1.54 1.56 mg/L D %Rec. imits Method: SM 4500 S2 F - Sulfide, Total Imits Imits D %Rec. imits Lab Sample ID: MB 500-613518/1 MB MB Client Sample ID: Method Blank Prep Type: Total/NA Analyte Result Qualifier NL MDL Unit D Prep Rec. Dil Fac Suffide <1.0	Matrix: Water									Prep Type	e: Tot	tal/NA	
SpikeLCSLCSMRec.AnalyteAddedResultQualifierUnitD%Rec.Phosphorus as PO41.541.56UnitD%Rec.Method: SM 4500 S2 F - Sulfide, TotalLab Sample ID: MB 500-613518/1Client Sample ID: Method Blank Prep Type: Total/NAMatrix: WaterResult QualifierRLMDLUnitDPreparedAnalyteResult Qualifier1.00.23mg/LDPreparedAnalyzedDil FacSulfide<1.0	Analysis Batch: 614916									Prep Bat	ch: 6	14309	
Analyte Added Result Qualifier Unit D %Rec Limits Phosphorus as PO4 1.54 1.56 mg/L 101 88-123 Method: SM 4500 S2 F - Sulfide, Total Image: Constraint of the second				Spike	LCS	LCS				%Rec.			
Phosphorus as PO4 1.54 1.56 mg/L 101 88.123 Method: SM 4500 S2 F - Sulfide, Total Lab Sample ID: MB 500-613518/1 Client Sample ID: Method Blank Matrix: Water Analysis Batch: 613518 Prep Type: Total/NA Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Suffide <1.0	Analyte			Added	Result	Qualifier	Unit		%Rec	Limits			
Method: SM 4500 S2 F - Sulfide, Total Lab Sample ID: MB 500-613518/1 Matrix: Water Client Sample ID: Method Blank Prep Type: Total/NA Analysis Batch: 613518 MB MB Sulfide Result Qualifier RL MDL Unit D Prepared Analyzed DII Fac 08/09/21 23:35 DII Fac 08/09/21 23:35 Lab Sample ID: LCS 500-613518/2 Matrix: Water Result Qualifier Result Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Spike Added Result Qualifier Unit D %Rec. Lab Sample ID: 180-125221-A-1 MS Matrix: Water Sample Spike MS MS MS MS MS Lab Sample ID: 180-125221-A-1 MS Matrix: Water Sample Spike MS MS MS MS MS MS MS %Rec. Limits	Phosphorus as PO4			1.54	1.56		mg/L		101	88 - 123			
Client Sample ID: MB 500-613518/1 MB MB Analysis Batch: 613518 MB MB Analysis Batch: 613518 MB MB Sulfide Prep Type: Total/NA Sulfide Prepared Analyzed Dil Fac Sulfide Client Sample ID: Lab Control Sample Sulfide Client Sample ID: Lab Control Sample Analyte Spike LCS LCS CS Analyte Spike LCS LCS MB MB Analyte Spike Client Sample ID: Lab Control Sample Matrix: Water Analyte Spike Client Sample ID: Matrix Spike Analyte Sample Spike MS MS Analyte Result Qualifier Unit D %Rec Lab Sample ID: 180-125221-A-1 MSD Sample Spike <th colspan<="" td=""><td><u> </u></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th>	<td><u> </u></td> <td></td>	<u> </u>											
AnalyteResultQualifierRLMDLUnitDPreparedAnalyzedDII FacSulfide<1.01.00.23mg/L00.809/21 23:351Lab Sample ID: LCS 500-613518/2 Matrix: Water Analysis Batch: 613518Client Sample ID: Lab Control Sample Prep Type: Total/NASulfideSpikeLCSLCSVRec.AnalyteAddedResultQualifierUnitD%Rec.Sulfide3.843.87mg/LD%Rec.AnalyteSample ID: 180-125221-A-1 MS Matrix: Water Analysis Batch: 613518SampleSpikeMSMSClient Sample ID: Matrix Spike Prep Type: Total/NASulfide<1.03.843.57UnitD%Rec.Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518SampleSpikeMSMSMS%Rec.Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518SampleSpikeMSMSMSD%Rec.Limits mg/L	Method: SM 4500 S2 F	- Sulfide, 3518/1	lotal					CI	ient Sam	ple ID: Met	thod	Blank	
Sulfide <1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1	Iotal MB MB					CI	ient Sam	ple ID: Met Prep Type	thod e: Tot	Blank tal/NA	
Lab Sample ID: LCS 500-613518/2 Matrix: Water Analysis Batch: 613518 Spike Analysis Batch: 613518 Spike Added 3.84 Client Sample ID: Lab Control Sample Prep Type: Total/NA Analyte Analyte Added 3.84 Strike 3.84 Client Sample ID: Lab Control Sample Prep Type: Total/NA Lab Sample ID: 180-125221-A-1 MS Matrix: Water Analysis Batch: 613518 Sample 4.00 Spike 3.84 Result 3.87 Qualifier MS MS 3.87 Unit mg/L D %Rec. Limits 93 /// 75.125 Lab Sample ID: 180-125221-A-1 MS Matrix: Water Analysis Batch: 613518 Sample 4.00 Spike 3.84 MS 3.57 MS MS MSD /// 93 /// 75.125 Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518 Sample 4.00 Spike 3.84 MSD 3.57 MSD MSD D %Rec. Limits MSD Limits Prep Type: Total/NA Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518 Sample 4.00 Spike 3.84 MSD 3.75 Unit mg/L D %Rec. MSD // %Rec. Prep Type: Total/NA	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte	- Sulfide, 3518/1 Re	MB MB sult Qualifie	ər	RL	MDL Unit		Cl	ient Sam Prepared	ple ID: Met Prep Type Analyze	thod e: Tot d	Blank tal/NA Dil Fac	
Analysis Batch: 613518 Spike LCS LCS LCS LCS LCS LCS Limits Prep Type: Total/NA Analyte Added Added Result Qualifier Unit D %Rec. Limits	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide	- Sulfide, 3518/1 	MB MB esult Qualifie	ər	RL 1.0	MDL Unit			ient Sam	ple ID: Met Prep Type - <u>Analyze</u> 08/09/21 23	thod e: Tot d 3:35	Blank tal/NA Dil Fac 1	
Analysis Batch: 613518 Spike LCS LCS LCS MRec. Analyte Added Result Qualifier Unit D %Rec. Limits	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide	- Sulfide, 3518/1 	MB MB sult Qualifie	ər	RL 1.0	MDL Unit	Clie	Cli D	ient Sam	ple ID: Met Prep Type Analyze 08/09/21 23	thod e: Tot d 3:35	Blank tal/NA Dil Fac 1	
AnalyteSpikeLCSLCSUnitD%Rec.Analyte3.843.87QualifierUnitD%Rec.LimitsSulfide3.843.87QualifierUnitD%Rec.LimitsLab Sample ID: 180-125221-A-1 MS Matrix: WaterSample SampleSpikeMSMSClient Sample ID: Matrix Spike Prep Type: Total/NAAnalyteResultQualifierAddedResultQualifierUnitD%Rec.LimitsSulfide<1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water	- Sulfide, 3518/1 	MB MB esult Qualifie	ər	RL 1.0	MDL Unit	Clie	Cli D ent Sa	ient Sam Prepared ample ID:	ple ID: Met Prep Type - 	thod e: Tot d 3:35 rol Sa	Blank tal/NA Dil Fac 1 ample tal/NA	
AnalyteAddedResultQualifierUnitD%RecLimitsSulfide3.843.873.87mg/LD%RecLimitsLab Sample ID: 180-125221-A-1 MS Matrix: Water Analysis Batch: 613518SampleSampleSpikeMSMSAnalyteResultQualifierAddedResultQualifierUnitD%Rec.Lab Sample ID: 180-125221-A-1 MS SulfideSampleSpikeMSMS%Rec.LimitsLab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NALab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518SampleSpike AddedMSDMSDClient Sample ID: Matrix Spike Duplicate Prep Type: Total/NAAnalyte SulfideSample ResultSpike QualifierMSDMSDMSD%Rec.RPDAnalyte SulfideResult <1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 	MB MB esult Qualifie	91.	RL 1.0	MDL Unit 0.23 mg/L	Clie	Cli D ent Sa	ient Sam Prepared ample ID:	ple ID: Met Prep Type Analyze 08/09/21 23 Lab Conte Prep Type	thod e: Tot a 3:35 rol Sa e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA	
Sulfide3.843.87mg/L10185 - 115Lab Sample ID: 180-125221-A-1 MS Matrix: Water Analysis Batch: 613518Client Sample ID: Matrix Spike Prep Type: Total/NAAnalyteSample SampleSpikeMS%Rec.AnalyteResult QualifierAdded 3.84Result 3.57QualifierUnit mg/LD%Rec.Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518Sample Sample (1.0)SpikeMSDClient Sample ID: Matrix Spike Duplicate Prep Type: Total/NALab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518Sample Sample (21.0)Spike (21.0)MSDMSD (MSD)%Rec.RPD (20.0)AnalyteResult QualifierQualifier (3.84)Added (3.75)MSD (20.0)MSD (20.0)%Rec.RPD (20.0)	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 	MB MB esult Qualifie	er	RL 1.0 LCS	MDL Unit 0.23 mg/L	Clie	Cli D	ient Sam Prepared ample ID:	ple ID: Met Prep Type Analyze 08/09/21 23 Lab Conte Prep Type %Rec.	thod e: Tot ^d ^{3:35} rol Sa e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA	
Lab Sample ID: 180-125221-A-1 MS Matrix: Water Analysis Batch: 613518 Client Sample ID: Matrix Spike Prep Type: Total/NA Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits - Lab Sample ID: 180-125221-A-1 MSD Sulfide Result Qualifier Added Result Qualifier Unit D %Rec. Limits - - Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518 Sample Spike MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Analyte Sample Sample Spike MSD MSD %Rec. RPD Watrix: Vater Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Watrix Spike Duplicate Sulfide <1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte	- Sulfide, 3518/1 	MB MB sult Qualifie	er Spike Added	RL 1.0 LCS Result	MDL Unit 0.23 mg/L LCS Qualifier	Clie	Cli D ent Sa	ient Sam Prepared ample ID:	ple ID: Met Prep Type Analyze 08/09/21 23 Lab Contr Prep Type %Rec. Limits	thod e: Tot ^d ^{3:35 - rol Sa e: Tot}	Blank tal/NA Dil Fac 1 ample tal/NA	
Analysis Batch: 613518 Sample Sample Spike MS MS %Rec. Analyte Result Qualifier Added Result Qualifier Unit D %Rec. Limits — Sulfide <1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide	- Sulfide, 3518/1 	MB MB esult Qualifie	er Spike Added 3.84	RL 1.0 LCS Result 3.87	MDL Unit 0.23 mg/L LCS Qualifier	Clie Unit mg/L	Cli D ent Sa	Prepared Ample ID:	ple ID: Met Prep Type 08/09/21 23 Lab Contt Prep Type %Rec. Limits 85 - 115	thod e: Tot ^d ^{3:35} rol Sa e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA	
SampleSampleSpikeMSMS%Rec.AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsSulfide<1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522 Matrix: Water	- Sulfide, 3518/1 	MB MB esult Qualifie	er Spike Added 3.84	RL 1.0 LCS Result 3.87	MDL Unit 0.23 mg/L LCS Qualifier	Clie Unit mg/L	Cli D ent Sa 	Prepared Ample ID: 2 <u>%Rec</u> 101 Client Sar	ple ID: Met Prep Type 08/09/21 23 Lab Contu Prep Type %Rec. Limits 85 - 115 mple ID: Me Prep Type	thod e: Tot ^{3:35} rol Sa e: Tot atrix	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsSulfide<1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analysis Batch: 613518 Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 13518/2 1-A-1 MS	MB MB esult Qualifie	er Spike Added 3.84	RL 1.0 LCS Result 3.87	MDL Unit 0.23 mg/L LCS Qualifier	Clie Unit mg/L	CI ent Sa	Prepared Ample ID: 2 <u>%Rec</u> 101 - Client Sar	Ple ID: Met Prep Type 08/09/21 23 Lab Contr Prep Type %Rec. Limits 85 - 115 mple ID: M Prep Type	thod e: Tot ^{3:35} rol Sa e: Tot atrix e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
Sulfide<1.03.843.57mg/L9375-125Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NAAnalysis Batch: 613518Sample Result Sample QualifierSpike Added 3.84MSD 3.75MSD qualifier mg/LØ%Rec.RPD 4Matrix: Water Natrix: Water Prep Type: Total/NAMSD MSDMSD MSDMSD MSD%Rec.RPD 5Limit 20	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 13518/2 1-A-1 MS 	MB MB sult Qualifie	er Spike Added 3.84	RL 1.0 LCS Result 3.87 MS	MDL Unit 0.23 mg/L LCS Qualifier	Clie Unit mg/L	CI ent Sa	Prepared Ample ID: 9 <u>%Rec</u> 101 - Client Sar	Ple ID: Met Prep Type 08/09/21 23 Lab Contr Prep Type %Rec. Limits 85 - 115 mple ID: Ma Prep Type %Rec.	thod e: Tot ^{3:35} rol Sa e: Tot atrix	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
Lab Sample ID: 180-125221-A-1 MSD Matrix: Water Analysis Batch: 613518Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NAAnalyteSampleSampleSpikeMSD%Rec.RPDAnalyteResultQualifierAddedResultQualifierUnitD%Rec.RPDSulfide<1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analysis Batch: 613518 Analysis Batch: 613518	- Sulfide, 3518/1 	MB MB sult Qualifie	er Spike Added 3.84 Spike Added	RL 1.0 LCS Result 3.87 MS Result	MDL Unit 0.23 mg/L LCS Qualifier MS Qualifier	Clie Unit mg/L	Cli D ent Sa C	Prepared Ample ID: MRec Client Sar	ple ID: Met Prep Type Analyze 08/09/21 23 Lab Contr Prep Type %Rec. Limits 85 - 115 mple ID: Ma Prep Type %Rec. Limits	thod e: Tot 3:35 rol Sa e: Tot atrix e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
Analysis Batch: 613518 Sample Spike MSD MSD %Rec. RPD Analyte Result Qualifier Added Result Qualifier Unit D %Rec. RPD Limits Sulfide <1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522 Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 	Iotal MB MB sult Qualifie <1.0	Spike Added 3.84 Spike Added 3.84	RL 1.0 LCS Result 3.87 MS Result 3.57	MDL Unit 0.23 mg/L LCS Qualifier MS Qualifier	Clie Unit mg/L Unit mg/L	Cli ent Sa	Prepared Ample ID: Ample ID: Ample ID: Client Sar	ple ID: Met Prep Type 08/09/21 23 Lab Contu Prep Type %Rec. Limits 85 - 115 mple ID: Ma Prep Type %Rec. Limits 75 - 125	thod e: Tot ^d ^{3:35} rol Sa e: Tot atrix e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
AnalyteSampleSampleSpikeMSDMSD%Rec.RPDAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDSulfide<1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522*	- Sulfide, 3518/1 	MB MB esult Qualifie <1.0	er Spike Added 3.84 Spike Added 3.84	RL 1.0 LCS Result 3.87 MS Result 3.57	MDL Unit 0.23 mg/L LCS Qualifier MS Qualifier	Clie Unit mg/L Unit mg/L Client	Cli ent Sa Cli ent Sa	Prepared Ample ID: Ample ID: Client San Ample ID: Ma	ple ID: Met Prep Type 08/09/21 23 Lab Contr Prep Type %Rec. Limits 85 - 115 mple ID: Mi Prep Type %Rec. Limits 75 - 125 atrix Spike	thod e: Tot ^d ^{3:35} rol Sa e: Tot atrix e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsRPDLimitSulfide<1.0	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522 Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522 Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522 Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 Re 13518/2 1-A-1 MS <1.0 1-A-1 MSD	MB MB esult Qualifie	er Spike Added 3.84 Spike Added 3.84	RL 1.0 LCS Result 3.87 MS Result 3.57	MDL Unit 0.23 mg/L LCS Qualifier MS Qualifier	Clie Unit mg/L Unit mg/L Client	CII ent Sa CII ent Sa CII CII CII CII CII CII CII CII CII CI	Prepared Ample ID: Ample ID: Client Sar	Ple ID: Met Prep Type 08/09/21 23 Lab Contr Prep Type %Rec. Limits 85 - 115 mple ID: Ma Prep Type %Rec. Limits 75 - 125 atrix Spike Prep Type	thod e: Tot ^d ^{3:35} rol Sa e: Tot e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
Sulfide <1.0 3.84 3.75 mg/L 98 75 - 125 5 20	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518	- Sulfide, 3518/1 	Iotal MB MB soult Qualifie Sample Qualifier Sample	er Spike Added 3.84 Spike Added 3.84	RL 1.0 LCS Result 3.87 MS Result 3.57	MDL Unit 0.23 mg/L LCS Qualifier MS Qualifier	Clie Unit mg/L Unit mg/L Client	Cli ent Sa C Sam	Prepared Ample ID: Ample ID: Ample ID: Client Sar	ple ID: Met Prep Type Analyze 08/09/21 23 Lab Contu Prep Type %Rec. Limits 85 - 115 mple ID: Ma Prep Type %Rec. Limits 75 - 125 atrix Spike Prep Type %Rec.	thod e: Tot 3:35 rol Sa e: Tot atrix e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA	
· · · · · · · · · · · · · · · · · · ·	Method: SM 4500 S2 F Lab Sample ID: MB 500-61 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: LCS 500-6 Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analyte Sulfide Lab Sample ID: 180-12522* Matrix: Water Analysis Batch: 613518 Analysis Batch: 613518 Analysis Batch: 613518 Analysis Batch: 613518	- Sulfide, 3518/1 	Iotal MB MB sult Qualifie <1.0	er Spike Added 3.84 Spike Added 3.84 Spike Added	RL 1.0 LCS Result 3.87 MS Result 3.57 MSD Result	MDL Unit 0.23 mg/L LCS Qualifier MS Qualifier	Clie Unit mg/L Unit mg/L Client	Cli ent Sa Sam	Prepared Ample ID: Ample ID: A	ple ID: Met Prep Type 08/09/21 23 Lab Contu Prep Type %Rec. Limits 85 - 115 mple ID: Me Prep Type %Rec. Limits 75 - 125 atrix Spike Prep Type %Rec. Limits	thod l e: Tot ^{3:35} rol Sa e: Tot atrix e: Tot	Blank tal/NA Dil Fac 1 ample tal/NA Spike tal/NA Spike tal/NA	

Batch

Number

613499

613679

613499

613679

614638

614951

613783

(Start)

(End)

614414

613305

615136

613311

614309

614916

613518

(Start)

(End)

Batch

Number

613499

613679

613499

613679

614951

615118

613783

614414

613305

615136

613311

614309

614916

613518

(Start)

(End)

(Start) (End) Prepared

or Analyzed

08/10/21 08:44

08/10/21 23:31

08/10/21 08:44 BDE

08/10/21 23:27 EEN

08/17/21 16:12 EAT

08/18/21 12:53 EAT

08/09/21 23:09

08/09/21 23:09

08/15/21 19:00 MS

08/09/21 09:49 CLB

08/19/21 14:42 PFK

08/11/21 04:46 CLB

08/15/21 12:30

08/18/21 12:20

08/10/21 00:05

08/10/21 00:08

Prepared

or Analyzed

08/10/21 08:44

08/10/21 23:38

08/10/21 08:44 BDE

08/10/21 23:34 EEN

08/18/21 13:07 EAT

08/19/21 11:37 EAT

08/09/21 23:16

08/09/21 23:16 08/15/21 19:07 MS

08/09/21 09:51

08/15/21 12:30

08/10/21 00:08

08/10/21 00:12

08/19/21 14:42 PFK

08/11/21 04:55 CLB

08/18/21 12:21 JMP

Analyst

BDE

FFN

TMS

JMP

JMF

CLB

Analyst

BDE

EEN

TMS

CLB

JMF

CLB

Lab

TAL CHI

Lab

TAL CHI

TAL CHI TAL CHI

TAL CHI

TAL CHI

Dilution

Factor

1

1

1

20

1

1

1

1

1

1

1

Dilution

Factor

1

1

25

2

1

1

1

1

1

1

1

Run

Run

Prep Type

Dissolved

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Dissolved

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sample ID: D-2-20210803 Date Collected: 08/03/21 10:15 Date Received: 08/05/21 09:45

Batch

Type

Prep

Prep

Analysis

Prep

Batch

3010A

6010B

3010A

6010B

9056A

9056A

9060A

SM 2320B

SM 2540C

SM 3500

SM 3500 Fe B

SM 4500 P B

SM 4500 P E

SM 4500 S2 F

Batch

3010A

6010B

3010A

6010B

9056A

9056A

9060A

SM 2320B

SM 2540C

SM 3500

SM 3500 Fe B

SM 4500 P B

SM 4500 P E

SM 4500 S2 F

Method

Method

Lab Sample ID: 500-203343-1 Matrix: Water

Client Sample ID: D-1-20210803 Date Collected: 08/03/21 10:50 Date Received: 08/05/21 09:45

Batch

Туре

Prep

Prep

Analysis

Prep

Lab	Sample	ID:	500-203343-2
			Matrix: Water

Eurofins	TestAmerica,	Chicago

Batch

Number

613499

613679

613499

613679

614638

614951

613783

(Start)

(End)

614414

615136

614309

614916

613518

Prepared

or Analyzed

08/10/21 08:44

08/10/21 23:46

08/10/21 08:44 BDE

08/10/21 23:42 EEN

08/17/21 17:48 EAT

08/18/21 13:48 EAT

08/15/21 19:14 MS

08/19/21 14:42 PFK

08/18/21 12:22 JMP

08/09/21 23:26 08/09/21 23:26

613305 08/09/21 09:54 CLB

613311 08/11/21 04:58 CLB

(Start) 08/10/21 00:12 (End) 08/10/21 00:16

08/15/21 12:30

Analyst

BDE

EEN

TMS

JMP

CLB

Lab

TAL CHI

Dilution

Factor

1

1

10

10

1

1

1

1

1

1

1

Run

Prep Type

Dissolved

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Client Sample ID: BKG-1-20210803 Date Collected: 08/03/21 12:45 Date Received: 08/05/21 09:45

Batch

Туре

Prep

Prep

Analysis

Prep

Batch

3010A

6010B

3010A

6010B

9056A

9056A

9060A

SM 2320B

SM 2540C

SM 3500

SM 3500 Fe B

SM 4500 P B

SM 4500 P E

SM 4500 S2 F

Method

Lab Sample ID: 500-203343-3 Matrix: Water

Client Sample ID: CL-1-20210803 Date Collected: 08/03/21 13:20 Date Received: 08/05/21 09:45

Lab Sample ID: 500-203343-4 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3010A			613499	08/10/21 08:44	BDE	TAL CHI
Dissolved	Analysis	6010B		1	613679	08/10/21 23:54	EEN	TAL CHI
Total/NA	Prep	3010A			613499	08/10/21 08:44	BDE	TAL CHI
Total/NA	Analysis	6010B		1	613679	08/10/21 23:50	EEN	TAL CHI
Total/NA	Analysis	9056A		2	614638	08/17/21 18:01	EAT	TAL CHI
Total/NA	Analysis	9056A		10	614951	08/18/21 14:01	EAT	TAL CHI
Dissolved	Analysis	9060A		1	613783		TMS	TAL CHI
					(Start)	08/09/21 23:33		
					(End)	08/09/21 23:33		
Total/NA	Analysis	SM 2320B		1	614414	08/15/21 19:21	MS	TAL CHI
Total/NA	Analysis	SM 2540C		1	613305	08/09/21 09:56	CLB	TAL CHI
Total/NA	Analysis	SM 3500		1	615136	08/19/21 14:42	PFK	TAL CHI
Total/NA	Analysis	SM 3500 Fe B		1	613311	08/11/21 05:00	CLB	TAL CHI
Total/NA	Prep	SM 4500 P B			614309	08/15/21 12:30	JMP	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	614916	08/18/21 12:23	JMP	TAL CHI
Total/NA	Analysis	SM 4500 S2 F		1	613518		CLB	TAL CHI
					(Start)	08/10/21 00:16		
					(End)	08/10/21 00:20		

Eurofins TestAmerica, Chicago

Dilution

Factor

1

1

2

10

1

Dilution

Factor

Number

613499

613679

613499

613679

614638

614951

613783

(Start)

Batch

Number

Run

Prep Type

Dissolved

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Dissolved

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Client Sample ID: DUP-20210803 Date Collected: 08/03/21 13:30 Date Received: 08/05/21 09:45

Batch

Туре

Prep

Prep

Analysis

Prep

Batch

3010A

6010B

3010A

6010B

9056A

9056A

9060A

SM 2320B

SM 2540C

SM 3500 Fe B

SM 4500 P B

SM 4500 P E

SM 4500 S2 F

Batch

Method

SM 3500

Method

Lab Sample ID: 500-203343-5 Matrix: Water

5 11

Client Sample ID: CL-2-20210803 Date Collected: 08/03/21 13:50 Date Received: 08/05/21 09:45

Batch

Туре

-203343-6 Matrix: Water

8/20/2021

					-	
Dissolved	Prep	3010A		613499	08/10/21 08:44	BDE
Dissolved	Analysis	6010B	1	613679	08/11/21 00:21	EEN
Total/NA	Prep	3010A		613499	08/10/21 08:44	BDE
Total/NA	Analysis	6010B	1	613679	08/11/21 00:18	EEN
Total/NA	Analysis	9056A	2	614638	08/17/21 18:55	EAT
Total/NA	Analysis	9056A	10	614951	08/18/21 14:29	EAT
Dissolved	Analysis	9060A	1	613783		TMS
				(Ctart)	00/00/01 00.47	

Run

Total/NA	Analysis	9056A	10	614951	08/18/21 14:29	EAT	TAL CHI
Dissolved	Analysis	9060A	1	613783		TMS	TAL CHI
				(Start)	08/09/21 23:47		
				(End)	08/09/21 23:47		
Total/NA	Analysis	SM 2320B	1	614414	08/15/21 19:35	MS	TAL CHI
Total/NA	Analysis	SM 2540C	1	613305	08/09/21 10:02	CLB	TAL CHI
Total/NA	Analysis	SM 3500	1	615136	08/19/21 14:42	PFK	TAL CHI
Total/NA	Analysis	SM 3500 Fe B	1	613311	08/11/21 05:06	CLB	TAL CHI
Total/NA	Prep	SM 4500 P B		614309	08/15/21 12:30	JMP	TAL CHI
Total/NA	Analysis	SM 4500 P E	1	614916	08/18/21 12:43	JMP	TAL CHI
Total/NA	Analysis	SM 4500 S2 F	1	613518		CLB	TAL CHI
				(Start)	08/10/21 00:23		
				(End)	08/10/21 00:27		

Batch Prepared

Analyst

BDE

EEN

TMS

Lab

TAL CHI

or Analyzed

08/10/21 08:44

08/11/21 00:14

08/10/21 08:44 BDE

08/10/21 23:58 EEN

08/17/21 18:28 EAT

08/18/21 14:15 EAT

08/09/21 23:40

Prepared

or Analyzed

Analyst

Lab

TAL CHI

TAL CHI

TAL CHI

TAL CHI

TAL CHI

			Lab Sa	mple ID: 500
 	()			
	(End)	08/10/21 00:23		
	(Start)	08/10/21 00:20		
1	613518		CLB	TAL CHI
1	614916	08/18/21 12:42	JMP	TAL CHI
	614309	08/15/21 12:30	JMP	TAL CHI
1	613311	08/11/21 05:03	CLB	TAL CHI
1	615136	08/19/21 14:42	PFK	TAL CHI
1	613305	08/09/21 09:59	CLB	TAL CHI
1	014414	00/13/21 19.20	1013	
1	614414	08/15/21 10.28	MS	
	(End)	08/09/21 23:40		

Client Sample ID: CL-3-20210803 Date Collected: 08/03/21 14:20 Date Received: 08/05/21 09:45

Lab Sample ID: 500-203343-7 Matrix: Water

	Batch	Batch		Dilution	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Number	or Analyzed	Analyst	Lab
Dissolved	Prep	3010A			613499	08/10/21 08:44	BDE	TAL CHI
Dissolved	Analysis	6010B		1	613679	08/11/21 00:29	EEN	TAL CHI
Total/NA	Prep	3010A			613499	08/10/21 08:44	BDE	TAL CHI
Total/NA	Analysis	6010B		1	613679	08/11/21 00:25	EEN	TAL CHI
Total/NA	Analysis	9056A		2	614638	08/17/21 19:23	EAT	TAL CHI
Total/NA	Analysis	9056A		10	614951	08/18/21 14:42	EAT	TAL CHI
Dissolved	Analysis	9060A		1	613783		TMS	TAL CHI
					(Start)	08/09/21 23:55		
					(End)	08/09/21 23:55		
Total/NA	Analysis	SM 2320B		1	614414	08/15/21 19:41	MS	TAL CHI
Total/NA	Analysis	SM 2540C		1	613305	08/09/21 10:04	CLB	TAL CHI
Total/NA	Analysis	SM 3500		1	615136	08/19/21 14:42	PFK	TAL CHI
Total/NA	Analysis	SM 3500 Fe B		1	613311	08/11/21 05:09	CLB	TAL CHI
Total/NA	Prep	SM 4500 P B			614309	08/15/21 12:30	JMP	TAL CHI
Total/NA	Analysis	SM 4500 P E		1	614916	08/18/21 12:44	JMP	TAL CHI
Total/NA	Analysis	SM 4500 S2 F		1	613518		CLB	TAL CHI
					(Start)	08/10/21 00:27		
					(End)	08/10/21 00:31		

Laboratory References:

TAL CHI = Eurofins TestAmerica, Chicago, 2417 Bond Street, University Park, IL 60484, TEL (708)534-5200

	Accreditation/C	ertification Summary		
Client: Geosyntec Consu Project/Site: GLP8029 C	ultants, Inc. coffeen, IL		Job ID: 500-203343-1	2
Laboratory: Eurofin	IS TestAmerica, Chicago s listed below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
Illinois	NELAP	IL00035	04-29-22	5
				6
				8
				9
				1
				12
				1:
				14

Eurofins TestAmerica, Chicago

Chain of Custody Record

eurofins Environment Testing America

2417 Bond Street University Park IL 60484 Phone 708-534-5200 Fax 708-534-5211

Client Information	Sampler N.ck	Williams	Lab Kint	РМ tz Robin M					Ci 500-20	3343 COC		COC № 500-93566-4160	06 1
lient Contact 3rian Ares	Phone 317	6949143	E-Ma Rot	ail Din Kintz@E	urofinset	com			Sta			Page Page 1 of \$ 1	
ompany Jeosyntec Consultants Inc		PWSID				An	alvsis	Rea	uested			Job # 509 -	-203343
ddress	Due Date Reques	sted									in the second	Preservation Co	des
ty	TAT Requested (days)		-					T			A HCL B NaOH	M Hexane N None
nn Arbor							0	Cal	19201			C Zn Acetate D Nitric Acid	O AsNaO2 P Na2O4S
11 48105	Compliance Proje	ect A Yes A No			str		Od) p	113 E	e			E NaHSO4 F MeOH	Q Na2SO3 R Na2S2O3
none 34-794-1548(Tel)	P0 # Purchase Orde	er not required		9	eleme		solver	3500_	tert.			G Amchlor H Ascorbic Acid	S H2SO4 T TSP Dodecahydra
^{mail} ares@geosyntec.com	WO #·			lo l	ents	2	Dis	alc	5		ø	I Ice J DIWater	U Acetone V MCAA
oject Name I P8029 Coffeen II	Project #:			s or	elem Is (ICI	as P	arbor	8	2		laine	K EDTA L EDA	W pH 4-5 Z other (specify)
te	SSOW#			D (Ye	P) - 9 Meta	horus	anic C	Ľ,	2		con	Other [.]	
		1 1	Matrix	ed Sa SMS Sride,	als (IC	hosp	- Org	C 350	P		ber of		
		Samp Typ	le (W=water S=solid	m M: - Chic	- Meta	ш,	Diss	2540	4		Vum		
	Samala Data	Sample (C=co	np, BT=Tissue,	erfor 056A	010B 010B	500_P	M450	320B	2		otal I	Constal la	- 4
		Pres	ervation Code:	XXN		S	CBS	N			- İz	Special In	structions/Note
)-2-20210803	8/3/21	1015 G	Tω	NX	XX	L D	XX	X				Fiftered in 1	feld for
2-1-20210803		1050 G	W	NX	XX	X	XX	X	*			Dosnued &	referts Dor
3K(1-20210803		1245 G	1	XU	XX	X	XX	X				1 Dree	and Wharste
1-1-20210803		1320 G	- w	NX	XK	X	XX	X				S.C.La	μω
NP-20210803		1330 G	w w	NX	XX	X	XX	X				Jonane	
1-2-20210803		1350 G	1 NO	NX	XX	X	XX	X	$\overline{\mathbf{x}}$				
1-3-20210803		1420 G	<u> </u>		XX	K	XX	X	$\frac{1}{1}$				1
					12 12	<u> ' -</u>			44				
				╏╏╌┤──		+		$\left \right $		++			
						+					- Silver		
ossible Hazard Identification		<u>. </u>		Sample	Dispos	al (Af	ee may	be as	sessed if s	amples are	e retain	ed longer than 1	month)
🛛 Non-Hazard 🗁 Flammable 🔤 Skin Irritant	Poison B Unk	nown 🗔 Radiolo	gical	\square_R	eturn To	Client		Di N	sposal By L	.ab	Arcl	hive For	Months
eliverable Requested I II III IV Other (specify)				Special	Instructio	ons/QC	Requi	remen	ts				
npty Kit Relinquished by		Date		Time	4				Method o	of Shipment			
	Date/Time	12, 5		Refe	/10-5	% [b	M	11	B	5/21	1 8945	Company TA
linquished by	Date/Time		Company	Rec	Poy U	10	1		~	Date/Tme	1	and the second	Company
	,												

Client: Geosyntec Consultants, Inc.

Login Number: 203343 List Number: 1 Creator: James, Jeff A

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	1.1, 2.5
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

List Source: Eurofins TestAmerica, Chicago

November 08, 2016

Rhonald Hasenyager Hanson Professional Services, Inc. 1525 South Sixth Street Springfield, IL 62703-2886

Dear Rhonald Hasenyager:

Please find enclosed the analytical results for the sample(s) the laboratory received on **10/25/16 7:45 am** and logged in under work order **6103663**. All testing is performed according to our current TNI certifications unless otherwise noted. This report cannot be reproduced, except in full, without the written permission of PDC Laboratories, Inc.

If you have any questions regarding your report, please contact your project manager. Quality and timely data is of the utmost importance to us.

PDC Laboratories, Inc. appreciates the opportunity to provide you with analytical expertise. We are always trying to improve our customer service and we welcome you to contact the Vice President, John LaPayne with any feedback you have about your experience with our laboratory.

Sincerely,

pail & Schindler

Gail Schindler Project Manager (309) 692-9688 x1716 gschindler@pdclab.com

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-01 Name: AP1a Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 1 10/25/16 (11:52)7:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	3.2	mg/L		10/25/16 11:16	10/25/16 11:16	TAS	EPA 300.0
Fluoride	< 0.250	mg/L		10/25/16 11:16	10/25/16 11:16	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 11:16	10/25/16 11:16	TAS	EPA 300.0
Sulfate	1500	mg/L		10/27/16 13:02	10/27/16 13:02	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.99	pH Units		10/24/16 11:52	10/24/16 11:52	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	90	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Solids - total dissolved solids (TDS)	1800	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
Total Metals - PIA							
Antimony	3.1	ug/L		10/26/16 13:38	11/02/16 12:10	JMW	SW 6020
Arsenic	7.2	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Barium	130	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Boron	3800	ug/L		10/26/16 13:38	11/03/16 07:54	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Calcium	380	mg/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Lithium	39	ug/L		10/26/16 13:38	10/27/16 11:24	KJP	SW 6010*
Magnesium	67	mg/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 13:53	JMW	SW 6020
Molybdenum	47	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Potassium	7.3	mg/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Selenium	3.0	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Sodium	33	mg/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:23	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-02 Name: AP1b Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 1 10/25/16 (11:56)7:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	13	mg/L		10/27/16 13:20	10/27/16 13:20	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 12:45	10/25/16 12:45	TAS	EPA 300.0
Sulfate	1300	mg/L		10/27/16 13:38	10/27/16 13:38	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	7.01	pH Units		10/24/16 11:56	10/24/16 11:56	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	120	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	0.977	mg/L		10/27/16 13:26	10/27/16 13:26	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	1600	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
Total Metals - PIA							
Antimony	3.3	ug/L		10/26/16 13:38	11/02/16 12:23	JMW	SW 6020
Arsenic	17	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Barium	100	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Boron	3100	ug/L		10/26/16 13:38	11/03/16 07:59	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Calcium	320	mg/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Lithium	47	ug/L		10/26/16 13:38	10/27/16 11:33	KJP	SW 6010*
Magnesium	52	mg/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:06	JMW	SW 6020
Molybdenum	100	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Potassium	18	mg/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Selenium	6.9	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Sodium	53	mg/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:36	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-03					Sampled:	10/24/16 1	2:10
Name: AP1c					Received:	10/25/16 0	7:45
Matrix: Surface Water - Grab							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	13	mg/L		10/27/16 13:55	10/27/16 13:55	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 13:21	10/25/16 13:21	TAS	EPA 300.0
Sulfate	1600	mg/L		10/27/16 14:13	10/27/16 14:13	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	7.05 p	oH Units		10/24/16 12:10	10/24/16 12:10	FIELD	Field*
<u>General Chemistry - PIA</u>							
Alkalinity - bicarbonate as CaCO3	80	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	0.614	mg/L		10/27/16 13:30	10/27/16 13:30	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	1900	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:26	JMW	SW 6020
Arsenic	18	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Barium	130	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Boron	2900	ug/L		10/26/16 13:38	11/03/16 08:01	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Calcium	390	mg/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Lithium	51	ug/L		10/26/16 13:38	10/27/16 11:36	KJP	SW 6010*
Magnesium	49	mg/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:10	JMW	SW 6020
Molybdenum	81	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Potassium	18	mg/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Selenium	3.1	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Sodium	59	mg/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:39	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-04 Name: AP1d					Sampled: Received:	10/24/16 1 10/25/16 0	2:15 17:45
Matrix: Surface Water - Grab			0	Durand	• • • • • • •	•	•••••
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	18	mg/L		10/27/16 14:31	10/27/16 14:31	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 13:57	10/25/16 13:57	TAS	EPA 300.0
Sulfate	1000	mg/L		10/27/16 14:48	10/27/16 14:48	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	7.21	pH Units		10/24/16 12:15	10/24/16 12:15	FIELD	Field*
<u>General Chemistry - PIA</u>							
Alkalinity - bicarbonate as CaCO3	90	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*
Alkalinity - carbonate as CaCO3	< 20	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*
Fluoride	1.08	mg/L		10/27/16 13:43	10/27/16 13:43	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	980	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
<u> Total Metals - PIA</u>							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:30	JMW	SW 6020
Arsenic	2.0	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Barium	200	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Boron	2000	ug/L		10/26/16 13:38	11/03/16 08:02	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Calcium	210	mg/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Lithium	55	ug/L		10/26/16 13:38	10/27/16 11:39	KJP	SW 6010*
Magnesium	35	mg/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:13	JMW	SW 6020
Molybdenum	31	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Potassium	26	mg/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Selenium	1.5	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Sodium	83	mg/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:43	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-05 Name: AP1e Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 1 10/25/16 (12:01)7:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	18	mg/L		10/27/16 18:37	10/27/16 18:37	TAS	EPA 300.0
Fluoride	1.00	mg/L		10/25/16 13:26	10/25/16 13:26	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 13:26	10/25/16 13:26	TAS	EPA 300.0
Sulfate	960	mg/L		10/28/16 11:36	10/28/16 11:36	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	7.12	pH Units		10/24/16 12:01	10/24/16 12:01	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	80	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Solids - total dissolved solids (TDS)	1200	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
<u>Total Metals - PIA</u>							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:45	JMW	SW 6020
Arsenic	1.4	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Barium	160	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Boron	2100	ug/L		10/26/16 13:38	11/03/16 08:03	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Calcium	200	mg/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Lithium	55	ug/L		10/26/16 13:38	10/27/16 11:48	KJP	SW 6010*
Magnesium	34	mg/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:17	JMW	SW 6020
Molybdenum	30	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Potassium	26	mg/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Selenium	1.2	ug/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Sodium	80	mg/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020
Thallium	< 1.0	ua/L		10/26/16 13:38	11/01/16 11:46	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-06 Name: AP1f Matrix: Surface Water - Grab					Sampled: Received:	Sampled: 10/24/16 12:40 Received: 10/25/16 07:45			
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method		
Anions - PIA									
Chloride	17	mg/L		10/27/16 15:06	10/27/16 15:06	TAS	EPA 300.0		
Fluoride	1.00	mg/L		10/25/16 14:03	10/25/16 14:03	TAS	EPA 300.0		
Nitrite-N	< 0.15	mg/L		10/25/16 14:03	10/25/16 14:03	TAS	EPA 300.0		
Sulfate	1000	mg/L		10/27/16 15:23	10/27/16 15:23	TAS	EPA 300.0		
Field - PIA									
bH, Field Measured	7.20	pH Units		10/24/16 12:40	10/24/16 12:40	FIELD	Field*		
General Chemistry - PIA									
Alkalinity - bicarbonate as CaCO3	110	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*		
Alkalinity - carbonate as CaCO3	< 20	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*		
Solids - total dissolved solids (TDS)	1200	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C		
Total Metals - PIA									
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:48	JMW	SW 6020		
Arsenic	1.5	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Barium	150	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Boron	2100	ug/L		10/26/16 13:38	11/03/16 08:13	JMW	SW 6020		
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Calcium	200	mg/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Lithium	57	ug/L		10/26/16 13:38	10/27/16 11:51	KJP	SW 6010*		
Magnesium	35	mg/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:21	JMW	SW 6020		
Molybdenum	31	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Potassium	26	mg/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Selenium	1.2	ug/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Sodium	82	mg/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		
Fhallium	< 1.0	ua/L		10/26/16 13:38	11/01/16 11:50	JMW	SW 6020		

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-07 Name: AP1g Matrix: Surface Water - Grab				Sampled: 10/24/16 12:50 Received: 10/25/16 07:45				
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA								
Chloride	17	mg/L		10/27/16 15:41	10/27/16 15:41	TAS	EPA 300.0	
Fluoride	1.00	mg/L		10/25/16 15:34	10/25/16 15:34	TAS	EPA 300.0	
Nitrite-N	< 0.15	mg/L		10/25/16 15:34	10/25/16 15:34	TAS	EPA 300.0	
Sulfate	970	mg/L		10/28/16 11:54	10/28/16 11:54	TAS	EPA 300.0	
Field - PIA								
oH, Field Measured	7.21	pH Units		10/24/16 12:50	10/24/16 12:50	FIELD	Field*	
General Chemistry - PIA								
Alkalinity - bicarbonate as CaCO3	75	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Solids - total dissolved solids (TDS)	1200	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C	
Total Metals - PIA								
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:52	JMW	SW 6020	
Arsenic	1.3	ug/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	
Barium	140	ug/L		10/26/16 13:38	11/01/16 14:37	JMW	SW 6020	
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	
Boron	2100	ug/L		10/26/16 13:38	11/03/16 08:16	JMW	SW 6020	
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	
Calcium	210	mg/L		10/26/16 13:38	11/02/16 12:52	JMW	SW 6020	
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:37	JMW	SW 6020	
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 12:52	JMW	SW 6020	
Lithium	56	ug/L		10/26/16 13:38	10/27/16 11:54	KJP	SW 6010*	
Magnesium	32	mg/L		10/26/16 13:38	11/01/16 14:37	JMW	SW 6020	
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:37	JMW	SW 6020	
Molybdenum	29	ug/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	
Potassium	26	mg/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	
Selenium	1.4	ug/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	
Sodium	100	mg/L		10/26/16 13:38	11/02/16 12:52	JMW	SW 6020	
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:09	JMW	SW 6020	

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-08 Name: AP1h Matrix: Surface Water - Grab		12:55)7:45					
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	17	mg/L		10/27/16 16:51	10/27/16 16:51	TAS	EPA 300.0
Fluoride	0.980	mg/L		10/25/16 16:11	10/25/16 16:11	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 16:11	10/25/16 16:11	TAS	EPA 300.0
Sulfate	1000	mg/L		10/28/16 12:12	10/28/16 12:12	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	7.41	pH Units		10/24/16 12:55	10/24/16 12:55	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	90	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*
Alkalinity - carbonate as CaCO3	< 20	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*
Solids - total dissolved solids (TDS)	1200	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:55	JMW	SW 6020
Arsenic	1.5	ug/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020
Barium	180	ug/L		10/26/16 13:38	11/01/16 14:40	JMW	SW 6020
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020
Boron	2200	ug/L		10/26/16 13:38	11/03/16 08:18	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020
Calcium	230	mg/L		10/26/16 13:38	11/02/16 12:55	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:40	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 12:55	JMW	SW 6020
Lithium	55	ug/L		10/26/16 13:38	10/27/16 11:57	KJP	SW 6010*
Magnesium	30	mg/L		10/26/16 13:38	11/01/16 14:40	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:40	JMW	SW 6020
Molybdenum	31	ug/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020
Potassium	27	mg/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020
Selenium	1.2	ug/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020
Sodium	110	mg/L		10/26/16 13:38	11/02/16 12:55	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:12	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-09 Name: AP2e					Sampled: Received:	10/24/16 11:30 : 10/25/16 07:45		
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
				•		-		
Anions - PIA								
Chloride	< 5.0	mg/L		10/27/16 17:27	10/27/16 17:27	TAS	EPA 300.0	
Nitrite-N	< 0.15	mg/L		10/25/16 14:33	10/25/16 14:33	TAS	EPA 300.0	
Sulfate	1500	mg/L		10/28/16 12:31	10/28/16 12:31	TAS	EPA 300.0	
Field - PIA								
pH, Field Measured	6.49	pH Units		10/24/16 11:30	10/24/16 11:30	FIELD	Field*	
General Chemistry - PIA								
Alkalinity - bicarbonate as CaCO3	55	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*	
Alkalinity - carbonate as CaCO3	< 20	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*	
Fluoride	0.438	mg/L		10/27/16 13:58	10/27/16 13:58	TTH	SM 4500-F C	
Solids - total dissolved solids (TDS)	1700	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C	
Total Metals - PIA								
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 12:59	JMW	SW 6020	
Arsenic	23	ug/L		10/26/16 13:38	11/01/16 12:16	JMW	SW 6020	
Barium	26	ug/L		10/26/16 13:38	11/01/16 14:44	JMW	SW 6020	
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/02/16 12:59	JMW	SW 6020	
Boron	5300	ug/L		10/26/16 13:38	11/03/16 08:19	JMW	SW 6020	
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:16	JMW	SW 6020	
Calcium	210	mg/L		10/26/16 13:38	11/02/16 12:59	JMW	SW 6020	
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:44	JMW	SW 6020	
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 12:59	JMW	SW 6020	
Lithium	190	ug/L		10/26/16 13:38	10/27/16 12:00	KJP	SW 6010*	
Magnesium	40	mg/L		10/26/16 13:38	11/01/16 14:44	JMW	SW 6020	
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:44	JMW	SW 6020	
Molybdenum	90	ug/L		10/26/16 13:38	11/01/16 12:16	JMW	SW 6020	
Potassium	27	mg/L		10/26/16 13:38	11/01/16 12:16	JMW	SW 6020	
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:16	JMW	SW 6020	
Sodium	25	mg/L		10/26/16 13:38	11/02/16 12:59	JMW	SW 6020	
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:16	JMW	SW 6020	

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-10					Sampled:	10/24/16 1	11:20
Name: AP2t					Received:	10/25/16 ()7:45
Matrix: Surface Water - Grab							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	< 5.0	mg/L		10/27/16 18:02	10/27/16 18:02	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 15:09	10/25/16 15:09	TAS	EPA 300.0
Sulfate	1500	mg/L		10/28/16 12:49	10/28/16 12:49	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.42	pH Units		10/24/16 11:20	10/24/16 11:20	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	100	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*
Alkalinity - carbonate as CaCO3	< 20	mg/L		10/25/16 09:29	10/25/16 09:29	CJN	SM 2320B*
Fluoride	0.398	mg/L		10/27/16 14:02	10/27/16 14:02	ТТН	SM 4500-F C
Solids - total dissolved solids (TDS)	1700	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
<u>Total Metals - PIA</u>							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:03	JMW	SW 6020
Arsenic	1.2	ug/L		10/26/16 13:38	11/01/16 12:20	JMW	SW 6020
Barium	22	ug/L		10/26/16 13:38	11/01/16 14:47	JMW	SW 6020
Beryllium	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:54	JMW	SW 6020
Boron	2000	ug/L		10/26/16 13:38	11/03/16 08:20	JMW	SW 6020
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:20	JMW	SW 6020
Calcium	170	mg/L		10/26/16 13:38	11/02/16 13:54	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:47	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:03	JMW	SW 6020
Lithium	130	ug/L		10/26/16 13:38	10/27/16 12:03	KJP	SW 6010*
Magnesium	33	mg/L		10/26/16 13:38	11/01/16 14:47	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:47	JMW	SW 6020
Molybdenum	3.2	ug/L		10/26/16 13:38	11/01/16 12:20	JMW	SW 6020
Potassium	21	mg/L		10/26/16 13:38	11/01/16 12:20	JMW	SW 6020
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:20	JMW	SW 6020
Sodium	14	mg/L		10/26/16 13:38	11/02/16 13:03	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:20	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-11					Sampled:	10/24/16 1	11:10
Name: AP2g					Received:	10/25/16 ()7:45
Matrix: Surface Water - Grab							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	< 5.0	mg/L		10/27/16 19:12	10/27/16 19:12	TAS	EPA 300.0
Nitrite-N	< 0.15	mg/L		10/25/16 16:20	10/25/16 16:20	TAS	EPA 300.0
Sulfate	2300	mg/L		10/28/16 13:07	10/28/16 13:07	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.46	pH Units		10/24/16 11:10	10/24/16 11:10	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	4.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	0.506	mg/L		10/27/16 14:07	10/27/16 14:07	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	2400	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:06	JMW	SW 6020
Arsenic	5.5	ug/L		10/26/16 13:38	11/01/16 12:23	JMW	SW 6020
Barium	20	ug/L		10/26/16 13:38	11/01/16 14:51	JMW	SW 6020
Beryllium	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:57	JMW	SW 6020
Boron	4300	ug/L		10/26/16 13:38	11/03/16 08:22	JMW	SW 6020
Cadmium	4.6	ug/L		10/26/16 13:38	11/01/16 12:23	JMW	SW 6020
Calcium	410	mg/L		10/26/16 13:38	11/02/16 13:57	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:51	JMW	SW 6020
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:06	JMW	SW 6020
Lithium	180	ug/L		10/26/16 13:38	10/27/16 12:06	KJP	SW 6010*
Magnesium	51	mg/L		10/26/16 13:38	11/01/16 14:51	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:51	JMW	SW 6020
Molybdenum	41	ug/L		10/26/16 13:38	11/01/16 12:23	JMW	SW 6020
Potassium	29	mg/L		10/26/16 13:38	11/01/16 12:23	JMW	SW 6020
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:23	JMW	SW 6020
Sodium	27	mg/L		10/26/16 13:38	11/02/16 13:06	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:23	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-12 Name: AP2h Matrix: Surface Water - Grab					Sampled: Received:	oled: 10/24/16 11:40 ived: 10/25/16 07:45		
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA								
Chloride	1.7	mg/L		10/25/16 16:56	10/25/16 16:56	TAS	EPA 300.0	
Fluoride	0.406	mg/L		10/25/16 16:56	10/25/16 16:56	TAS	EPA 300.0	
Nitrite-N	< 0.15	mg/L		10/25/16 16:56	10/25/16 16:56	TAS	EPA 300.0	
Sulfate	1300	mg/L		10/28/16 14:57	10/28/16 14:57	TAS	EPA 300.0	
Field - PIA								
oH, Field Measured	7.17	pH Units		10/24/16 11:40	10/24/16 11:40	FIELD	Field*	
General Chemistry - PIA								
Alkalinity - bicarbonate as CaCO3	140	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Solids - total dissolved solids (TDS)	1500	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C	
Total Metals - PIA								
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:10	JMW	SW 6020	
Arsenic	75	ug/L		10/26/16 13:38	11/01/16 12:27	JMW	SW 6020	
Barium	23	ug/L		10/26/16 13:38	11/01/16 14:55	JMW	SW 6020	
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:27	JMW	SW 6020	
Boron	14000	ug/L		10/26/16 13:38	11/03/16 08:23	JMW	SW 6020	
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:27	JMW	SW 6020	
Calcium	310	mg/L		10/26/16 13:38	11/02/16 13:10	JMW	SW 6020	
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:55	JMW	SW 6020	
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:10	JMW	SW 6020	
Lithium	120	ug/L		10/26/16 13:38	10/27/16 12:09	KJP	SW 6010*	
Magnesium	29	mg/L		10/26/16 13:38	11/01/16 14:55	JMW	SW 6020	
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:55	JMW	SW 6020	
Molybdenum	570	ug/L		10/26/16 13:38	11/01/16 12:27	JMW	SW 6020	
Potassium	40	mg/L		10/26/16 13:38	11/03/16 08:23	JMW	SW 6020	
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:27	JMW	SW 6020	
Sodium	39	mg/L		10/26/16 13:38	11/02/16 13:10	JMW	SW 6020	
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:27	JMW	SW 6020	

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-13 Name: CLa Matrix: Surface Water - Grab					Sampled: 10/24/16 15:30 Received: 10/25/16 07:45				
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method		
Anions - PIA									
Chloride	23	mg/L		10/27/16 20:41	10/27/16 20:41	TAS	EPA 300.0		
Fluoride	0.443	mg/L		10/25/16 17:32	10/25/16 17:32	TAS	EPA 300.0		
Nitrite-N	< 0.15	mg/L		10/25/16 17:32	10/25/16 17:32	TAS	EPA 300.0		
Sulfate	55	mg/L		10/25/16 17:50	10/25/16 17:50	TAS	EPA 300.0		
Field - PIA									
pH, Field Measured	7.22	pH Units		10/24/16 15:30	10/24/16 15:30	FIELD	Field*		
General Chemistry - PIA									
Alkalinity - bicarbonate as CaCO3	80	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*		
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*		
Solids - total dissolved solids (TDS)	190	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C		
Total Metals - PIA									
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:14	JMW	SW 6020		
Arsenic	1.8	ug/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		
Barium	54	ug/L		10/26/16 13:38	11/01/16 14:58	JMW	SW 6020		
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		
Boron	270	ug/L		10/26/16 13:38	11/03/16 08:24	JMW	SW 6020		
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		
Calcium	23	mg/L		10/26/16 13:38	11/02/16 13:14	JMW	SW 6020		
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 14:58	JMW	SW 6020		
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:14	JMW	SW 6020		
Lithium	< 10	ug/L		10/26/16 13:38	10/27/16 12:12	KJP	SW 6010*		
Magnesium	12	mg/L		10/26/16 13:38	11/01/16 14:58	JMW	SW 6020		
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 14:58	JMW	SW 6020		
Molybdenum	5.0	ug/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		
Potassium	7.4	mg/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		
Sodium	19	mg/L		10/26/16 13:38	11/02/16 13:14	JMW	SW 6020		
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:30	JMW	SW 6020		

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-14 Name: CLb Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 13:35 10/25/16 07:45		
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA								
Chloride	22	mg/L		10/27/16 20:58	10/27/16 20:58	TAS	EPA 300.0	
Fluoride	0.425	mg/L		10/25/16 18:08	10/25/16 18:08	TAS	EPA 300.0	
Nitrite-N	< 0.15	mg/L		10/25/16 18:08	10/25/16 18:08	TAS	EPA 300.0	
Sulfate	56	mg/L		10/25/16 18:26	10/25/16 18:26	TAS	EPA 300.0	
Field - PIA								
oH, Field Measured	7.52	pH Units		10/24/16 13:35	10/24/16 13:35	FIELD	Field*	
General Chemistry - PIA								
Alkalinity - bicarbonate as CaCO3	80	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Solids - total dissolved solids (TDS)	180	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C	
Total Metals - PIA								
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:17	JMW	SW 6020	
Arsenic	1.8	ug/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	
Barium	52	ug/L		10/26/16 13:38	11/01/16 15:02	JMW	SW 6020	
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	
Boron	280	ug/L		10/26/16 13:38	11/03/16 08:26	JMW	SW 6020	
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	
Calcium	23	mg/L		10/26/16 13:38	11/02/16 13:17	JMW	SW 6020	
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 15:02	JMW	SW 6020	
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:17	JMW	SW 6020	
Lithium	< 10	ug/L		10/26/16 13:38	10/27/16 12:15	KJP	SW 6010*	
Magnesium	11	mg/L		10/26/16 13:38	11/01/16 15:02	JMW	SW 6020	
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 15:02	JMW	SW 6020	
Molybdenum	4.9	ug/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	
Potassium	7.8	mg/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	
Sodium	19	mg/L		10/26/16 13:38	11/02/16 13:17	JMW	SW 6020	
Thallium	< 1.0	ua/L		10/26/16 13:38	11/01/16 12:34	JMW	SW 6020	

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-15 Name: CLc Matrix: Surface Water - Grab	Sampled: 10/24/16 13:15 Received: 10/25/16 07:45							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method	
Anions - PIA								
Chloride	22	mg/L		10/27/16 21:16	10/27/16 21:16	TAS	EPA 300.0	
Fluoride	0.426	mg/L		10/25/16 18:43	10/25/16 18:43	TAS	EPA 300.0	
Nitrite-N	< 0.15	mg/L		10/25/16 18:43	10/25/16 18:43	TAS	EPA 300.0	
Sulfate	54	mg/L		10/25/16 19:01	10/25/16 19:01	TAS	EPA 300.0	
Field - PIA								
pH, Field Measured	7.62	pH Units		10/24/16 13:15	10/24/16 13:15	FIELD	Field*	
General Chemistry - PIA								
Alkalinity - bicarbonate as CaCO3	75	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*	
Solids - total dissolved solids (TDS)	160	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C	
Total Metals - PIA								
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:29	JMW	SW 6020	
Arsenic	1.8	ug/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	
Barium	56	ug/L		10/26/16 13:38	11/01/16 15:05	JMW	SW 6020	
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	
Boron	280	ug/L		10/26/16 13:38	11/03/16 08:27	JMW	SW 6020	
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	
Calcium	23	mg/L		10/26/16 13:38	11/02/16 13:29	JMW	SW 6020	
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 15:05	JMW	SW 6020	
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:29	JMW	SW 6020	
Lithium	< 10	ug/L		10/26/16 13:38	10/27/16 12:24	KJP	SW 6010*	
Magnesium	12	mg/L		10/26/16 13:38	11/01/16 15:05	JMW	SW 6020	
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 15:05	JMW	SW 6020	
Molybdenum	4.7	ug/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	
Potassium	7.4	mg/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	
Sodium	19	mg/L		10/26/16 13:38	11/02/16 13:29	JMW	SW 6020	
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:38	JMW	SW 6020	

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-16 Name: CLd Matrix: Surface Water - Grab					Sampled: 10/24/16 15:55 Received: 10/25/16 07:45				
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method		
Anions - PIA									
Chloride	23	mg/L		10/27/16 21:34	10/27/16 21:34	TAS	EPA 300.0		
Fluoride	0.421	mg/L		10/25/16 19:55	10/25/16 19:55	TAS	EPA 300.0		
Nitrite-N	< 0.15	mg/L		10/25/16 19:55	10/25/16 19:55	TAS	EPA 300.0		
Sulfate	54	mg/L		10/25/16 20:13	10/25/16 20:13	TAS	EPA 300.0		
Field - PIA									
oH, Field Measured	7.30	pH Units		10/24/16 15:55	10/24/16 15:55	FIELD	Field*		
General Chemistry - PIA									
Alkalinity - bicarbonate as CaCO3	80	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*		
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*		
Solids - total dissolved solids (TDS)	170	mg/L		10/25/16 14:59	10/25/16 15:33	DMB/ARL	SM 2540C		
Total Metals - PIA									
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:32	JMW	SW 6020		
Arsenic	1.8	ug/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		
Barium	54	ug/L		10/26/16 13:38	11/01/16 15:09	JMW	SW 6020		
Beryllium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		
Boron	270	ug/L		10/26/16 13:38	11/03/16 08:41	JMW	SW 6020		
Cadmium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		
Calcium	23	mg/L		10/26/16 13:38	11/02/16 13:32	JMW	SW 6020		
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 15:09	JMW	SW 6020		
Cobalt	< 2.0	ug/L		10/26/16 13:38	11/02/16 13:32	JMW	SW 6020		
Lithium	< 10	ug/L		10/26/16 13:38	10/27/16 12:27	KJP	SW 6010*		
Magnesium	12	mg/L		10/26/16 13:38	11/01/16 15:09	JMW	SW 6020		
Mercury	< 0.20	ug/L		10/26/16 13:38	11/01/16 15:09	JMW	SW 6020		
Molybdenum	4.8	ug/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		
Potassium	7.5	mg/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		
Selenium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		
Sodium	20	mg/L		10/26/16 13:38	11/02/16 13:32	JMW	SW 6020		
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 12:41	JMW	SW 6020		

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-17					Sampled:	10/24/16 ⁻	14:00
Name: GPa					Received:	10/25/16 (07:45
Matrix: Surface Water - Grab							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	1900	mg/L		10/27/16 21:51	10/27/16 21:51	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 11:42	10/26/16 11:42	TAS	EPA 300.0
Sulfate	17000	mg/L		11/01/16 09:58	11/01/16 09:58	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	7.16	pH Units		10/24/16 14:00	10/24/16 14:00	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	4.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	42.7	mg/L		10/27/16 17:31	10/27/16 17:31	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	17000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:36	JMW	SW 6020
Arsenic	4.7	ug/L		10/26/16 13:38	11/02/16 15:00	JMW	SW 6020
Barium	120	ug/L		10/26/16 13:38	11/02/16 13:36	JMW	SW 6020
Beryllium	2.6	ug/L		10/26/16 13:38	11/02/16 14:16	JMW	SW 6020
Boron	59000	ug/L		10/26/16 13:38	11/03/16 08:44	JMW	SW 6020
Cadmium	40	ug/L		10/26/16 13:38	11/02/16 15:53	JMW	SW 6020
Calcium	450	mg/L		10/26/16 13:38	11/02/16 14:16	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 15:20	JMW	SW 6020
Cobalt	52	ug/L		10/26/16 13:38	11/02/16 15:00	JMW	SW 6020
Lithium	300	ug/L		10/26/16 13:38	10/27/16 12:30	KJP	SW 6010*
Magnesium	1500	mg/L		10/26/16 13:38	11/02/16 14:16	JMW	SW 6020
Mercury	< 0.80	ug/L		10/26/16 13:38	11/02/16 15:00	JMW	SW 6020
Molybdenum	130	ug/L		10/26/16 13:38	11/02/16 14:16	JMW	SW 6020
Potassium	210	mg/L		10/26/16 13:38	11/03/16 09:03	JMW	SW 6020
Selenium	890	ug/L		10/26/16 13:38	11/02/16 15:00	JMW	SW 6020
Sodium	620	mg/L		10/26/16 13:38	11/02/16 13:36	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 15:20	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-18 Name: GPb		Sampled: 10/24/16 14:10					
Matrix: Surface Water - Grab					Received:	10/20/10 (
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	2600	mg/L		10/27/16 22:26	10/27/16 22:26	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 12:00	10/26/16 12:00	TAS	EPA 300.0
Sulfate	27000	mg/L		10/28/16 14:39	10/28/16 14:39	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.65	pH Units		10/24/16 14:10	10/24/16 14:10	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	10	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	69.4	mg/L		10/27/16 15:56	10/27/16 15:56	ТТН	SM 4500-F C
Solids - total dissolved solids (TDS)	28000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
<u>Total Metals - PIA</u>							
Antimony	8.6	ug/L		10/26/16 13:38	11/02/16 14:20	JMW	SW 6020
Arsenic	92	ug/L		10/26/16 13:38	11/02/16 15:03	JMW	SW 6020
Barium	1100	ug/L		10/26/16 13:38	11/02/16 14:20	JMW	SW 6020
Beryllium	< 20	ug/L		10/26/16 13:38	11/02/16 14:34	JMW	SW 6020
Boron	97000	ug/L		10/26/16 13:38	11/03/16 08:45	JMW	SW 6020
Cadmium	67	ug/L		10/26/16 13:38	11/02/16 15:55	JMW	SW 6020
Calcium	1400	mg/L		10/26/16 13:38	11/02/16 14:34	JMW	SW 6020
Chromium	150	ug/L		10/26/16 13:38	11/02/16 15:03	JMW	SW 6020
Cobalt	110	ug/L		10/26/16 13:38	11/02/16 15:03	JMW	SW 6020
Lithium	480	ug/L		10/26/16 13:38	10/27/16 12:33	KJP	SW 6010*
Magnesium	2500	mg/L		10/26/16 13:38	11/02/16 14:34	JMW	SW 6020
Mercury	27	ug/L		10/26/16 13:38	11/02/16 15:03	JMW	SW 6020
Molybdenum	140	ug/L		10/26/16 13:38	11/02/16 15:03	JMW	SW 6020
Potassium	360	mg/L		10/26/16 13:38	11/03/16 08:45	JMW	SW 6020
Selenium	1500	ug/L		10/26/16 13:38	11/02/16 15:03	JMW	SW 6020
Sodium	1000	mg/L		10/26/16 13:38	11/02/16 14:34	JMW	SW 6020
Thallium	< 4.0	ug/L		10/26/16 13:38	11/07/16 15:07	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-19 Name: GPc					Sampled: Received:	10/24/16 1 10/25/16 0	14:20)7:45
Matrix: Surface Water - Grab							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	1800	mg/L		10/28/16 01:58	10/28/16 01:58	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 12:18	10/26/16 12:18	TAS	EPA 300.0
Sulfate	20000	mg/L		10/28/16 02:16	10/28/16 02:16	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.73	pH Units		10/24/16 14:20	10/24/16 14:20	FIELD	Field*
<u>General Chemistry - PIA</u>							
Alkalinity - bicarbonate as CaCO3	5.5	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	49.2	mg/L		10/27/16 17:35	10/27/16 17:35	ттн	SM 4500-F C
Solids - total dissolved solids (TDS)	17000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
<u>Total Metals - PIA</u>							
Antimony	< 6.0	ug/L		10/26/16 13:38	11/02/16 14:23	JMW	SW 6020
Arsenic	4.4	ug/L		10/26/16 13:38	11/02/16 15:07	JMW	SW 6020
Barium	110	ug/L		10/26/16 13:38	11/02/16 13:43	JMW	SW 6020
Beryllium	2.6	ug/L		10/26/16 13:38	11/02/16 14:23	JMW	SW 6020
Boron	72000	ug/L		10/26/16 13:38	11/03/16 08:46	JMW	SW 6020
Cadmium	41	ug/L		10/26/16 13:38	11/02/16 15:56	JMW	SW 6020
Calcium	570	mg/L		10/26/16 13:38	11/02/16 14:38	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 15:27	JMW	SW 6020
Cobalt	54	ug/L		10/26/16 13:38	11/02/16 15:07	JMW	SW 6020
Lithium	300	ug/L		10/26/16 13:38	10/27/16 12:36	KJP	SW 6010*
Magnesium	1500	mg/L		10/26/16 13:38	11/02/16 14:23	JMW	SW 6020
Mercury	< 0.80	ug/L		10/26/16 13:38	11/02/16 15:07	JMW	SW 6020
Molybdenum	120	ug/L		10/26/16 13:38	11/02/16 14:23	JMW	SW 6020
Potassium	260	mg/L		10/26/16 13:38	11/03/16 08:46	JMW	SW 6020
Selenium	890	ug/L		10/26/16 13:38	11/02/16 15:07	JMW	SW 6020
Sodium	650	mg/L		10/26/16 13:38	11/02/16 13:43	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 15:27	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-20 Name: GPd Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 ⁻ 10/25/16 (14:30)7:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	1900	mg/L		10/28/16 03:09	10/28/16 03:09	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 12:36	10/26/16 12:36	TAS	EPA 300.0
Sulfate	19000	mg/L		10/28/16 03:26	10/28/16 03:26	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.73	pH Units		10/24/16 14:30	10/24/16 14:30	FIELD	Field*
<u>General Chemistry - PIA</u>							
Alkalinity - bicarbonate as CaCO3	6.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	51.3	mg/L		10/27/16 17:39	10/27/16 17:39	ТТН	SM 4500-F C
Solids - total dissolved solids (TDS)	16000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 13:38	11/02/16 13:47	JMW	SW 6020
Arsenic	4.2	ug/L		10/26/16 13:38	11/02/16 15:10	JMW	SW 6020
Barium	110	ug/L		10/26/16 13:38	11/02/16 13:47	JMW	SW 6020
Beryllium	< 20	ug/L		10/26/16 13:38	11/02/16 14:41	JMW	SW 6020
Boron	66000	ug/L		10/26/16 13:38	11/03/16 08:48	JMW	SW 6020
Cadmium	38	ug/L		10/26/16 13:38	11/02/16 15:57	JMW	SW 6020
Calcium	560	mg/L		10/26/16 13:38	11/02/16 14:41	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 13:38	11/01/16 15:31	JMW	SW 6020
Cobalt	52	ug/L		10/26/16 13:38	11/02/16 15:10	JMW	SW 6020
Lithium	300	ug/L		10/26/16 13:38	10/27/16 12:39	KJP	SW 6010*
Magnesium	1500	mg/L		10/26/16 13:38	11/02/16 14:27	JMW	SW 6020
Mercury	< 0.80	ug/L		10/26/16 13:38	11/02/16 15:10	JMW	SW 6020
Molybdenum	120	ug/L		10/26/16 13:38	11/02/16 14:27	JMW	SW 6020
Potassium	230	mg/L		10/26/16 13:38	11/03/16 08:48	JMW	SW 6020
Selenium	800	ug/L		10/26/16 13:38	11/01/16 15:31	JMW	SW 6020
Sodium	660	mg/L		10/26/16 13:38	11/02/16 13:47	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 13:38	11/01/16 15:31	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-21 Name: RPb Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 1 10/25/16 (14:50)7:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	1800	mg/L		10/28/16 03:44	10/28/16 03:44	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 12:53	10/26/16 12:53	TAS	EPA 300.0
Sulfate	18000	mg/L		10/28/16 04:01	10/28/16 04:01	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.49	pH Units		10/24/16 14:50	10/24/16 14:50	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	44.4	mg/L		10/27/16 17:44	10/27/16 17:44	ТТН	SM 4500-F C
Solids - total dissolved solids (TDS)	16000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
<u>Total Metals - PIA</u>							
Antimony	< 3.0	ug/L		10/26/16 11:03	11/01/16 09:42	JMW	SW 6020
Arsenic	2.8	ug/L		10/26/16 11:03	11/02/16 11:16	JMW	SW 6020
Barium	90	ug/L		10/26/16 11:03	11/01/16 09:42	JMW	SW 6020
Beryllium	2.1	ug/L		10/26/16 11:03	11/01/16 10:30	JMW	SW 6020
Boron	56000	ug/L		10/26/16 11:03	11/02/16 16:34	JMW	SW 6020
Cadmium	33	ug/L		10/26/16 11:03	11/02/16 11:32	JMW	SW 6020
Calcium	380	mg/L		10/26/16 11:03	11/01/16 10:30	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 11:03	11/01/16 09:42	JMW	SW 6020
Cobalt	45	ug/L		10/26/16 11:03	11/01/16 09:42	JMW	SW 6020
Lithium	310	ug/L		10/26/16 11:03	10/27/16 11:01	KJP	SW 6010*
Magnesium	1200	mg/L		10/26/16 11:03	11/01/16 10:30	JMW	SW 6020
Mercury	< 0.40	ug/L		10/26/16 11:03	11/02/16 11:16	JMW	SW 6020
Molybdenum	64	ug/L		10/26/16 11:03	11/01/16 10:30	JMW	SW 6020
Potassium	210	mg/L		10/26/16 11:03	11/02/16 11:32	JMW	SW 6020
Selenium	780	ug/L		10/26/16 11:03	11/02/16 11:16	JMW	SW 6020
Sodium	470	mg/L		10/26/16 11:03	11/01/16 09:42	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 11:03	11/01/16 09:42	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-22					Sampled:	10/24/16 ⁻	15:00
Name: RPc					Received:	10/25/16 (07:45
Matrix: Surface Water - Grab							
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	2000	mg/L		10/28/16 04:19	10/28/16 04:19	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 14:05	10/26/16 14:05	TAS	EPA 300.0
Sulfate	20000	mg/L		10/28/16 04:37	10/28/16 04:37	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.32	pH Units		10/24/16 15:00	10/24/16 15:00	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	45.0	mg/L		10/27/16 17:48	10/27/16 17:48	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	16000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 11:03	11/01/16 09:46	JMW	SW 6020
Arsenic	3.1	ug/L		10/26/16 11:03	11/02/16 11:20	JMW	SW 6020
Barium	88	ug/L		10/26/16 11:03	11/01/16 09:46	JMW	SW 6020
Beryllium	2.2	ug/L		10/26/16 11:03	11/01/16 10:34	JMW	SW 6020
Boron	59000	ug/L		10/26/16 11:03	11/02/16 16:36	JMW	SW 6020
Cadmium	37	ug/L		10/26/16 11:03	11/02/16 11:36	JMW	SW 6020
Calcium	380	mg/L		10/26/16 11:03	11/01/16 10:34	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 11:03	11/01/16 09:46	JMW	SW 6020
Cobalt	43	ug/L		10/26/16 11:03	11/01/16 09:46	JMW	SW 6020
Lithium	310	ug/L		10/26/16 11:03	10/27/16 11:04	KJP	SW 6010*
Magnesium	1200	mg/L		10/26/16 11:03	11/01/16 10:34	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 11:03	11/02/16 10:36	JMW	SW 6020
Molybdenum	64	ug/L		10/26/16 11:03	11/01/16 10:34	JMW	SW 6020
Potassium	200	mg/L		10/26/16 11:03	11/02/16 11:36	JMW	SW 6020
Selenium	830	ug/L		10/26/16 11:03	11/02/16 11:20	JMW	SW 6020
Sodium	440	mg/L		10/26/16 11:03	11/01/16 09:46	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 11:03	11/01/16 09:46	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-23 Name: RPd Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 1 10/25/16 (15:05)7:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	1600	mg/L		10/28/16 04:25	10/28/16 04:25	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 14:23	10/26/16 14:23	TAS	EPA 300.0
Sulfate	16000	mg/L		10/28/16 04:43	10/28/16 04:43	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.32	pH Units		10/24/16 15:05	10/24/16 15:05	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	51.2	mg/L		10/27/16 17:53	10/27/16 17:53	TTH	SM 4500-F C
Solids - total dissolved solids (TDS)	17000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
Total Metals - PIA							
Antimony	< 3.0	ug/L		10/26/16 11:03	11/01/16 09:49	JMW	SW 6020
Arsenic	3.4	ug/L		10/26/16 11:03	11/02/16 11:23	JMW	SW 6020
Barium	89	ug/L		10/26/16 11:03	11/01/16 09:49	JMW	SW 6020
Beryllium	2.4	ug/L		10/26/16 11:03	11/01/16 10:37	JMW	SW 6020
Boron	59000	ug/L		10/26/16 11:03	11/02/16 16:37	JMW	SW 6020
Cadmium	36	ug/L		10/26/16 11:03	11/02/16 11:40	JMW	SW 6020
Calcium	400	mg/L		10/26/16 11:03	11/01/16 10:37	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 11:03	11/01/16 09:49	JMW	SW 6020
Cobalt	45	ug/L		10/26/16 11:03	11/01/16 09:49	JMW	SW 6020
Lithium	310	ug/L		10/26/16 11:03	10/27/16 11:13	KJP	SW 6010*
Magnesium	1300	mg/L		10/26/16 11:03	11/01/16 10:37	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 11:03	11/02/16 10:39	JMW	SW 6020
Molybdenum	66	ug/L		10/26/16 11:03	11/01/16 10:37	JMW	SW 6020
Potassium	200	mg/L		10/26/16 11:03	11/02/16 11:40	JMW	SW 6020
Selenium	860	ug/L		10/26/16 11:03	11/02/16 11:23	JMW	SW 6020
Sodium	460	mg/L		10/26/16 11:03	11/01/16 09:49	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 11:03	11/01/16 09:49	JMW	SW 6020

2231 West Altorfer Drive Peoria, IL 61615 (800) 752-6651

Sample: 6103663-24 Name: RPa Matrix: Surface Water - Grab					Sampled: Received:	10/24/16 ⁻ 10/25/16 (14:40 07:45
Parameter	Result	Unit	Qualifier	Prepared	Analyzed	Analyst	Method
Anions - PIA							
Chloride	1600	mg/L		10/28/16 05:02	10/28/16 05:02	TAS	EPA 300.0
Nitrite-N	< 3.0	mg/L		10/26/16 13:11	10/26/16 13:11	TAS	EPA 300.0
Sulfate	17000	mg/L		10/28/16 05:20	10/28/16 05:20	TAS	EPA 300.0
Field - PIA							
pH, Field Measured	6.70	pH Units		10/24/16 14:40	10/24/16 14:40	FIELD	Field*
General Chemistry - PIA							
Alkalinity - bicarbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Alkalinity - carbonate as CaCO3	< 2.0	mg/L		10/31/16 13:36	10/31/16 13:36	LAM	SM 2320B*
Fluoride	47.0	mg/L		10/27/16 15:52	10/27/16 15:52	ттн	SM 4500-F C
Solids - total dissolved solids (TDS)	16000	mg/L		10/27/16 12:04	10/27/16 12:28	ARL	SM 2540C
<u>Total Metals - PIA</u>							
Antimony	< 3.0	ug/L		10/26/16 11:03	11/01/16 09:53	JMW	SW 6020
Arsenic	3.3	ug/L		10/26/16 11:03	11/02/16 11:27	JMW	SW 6020
Barium	89	ug/L		10/26/16 11:03	11/01/16 09:53	JMW	SW 6020
Beryllium	2.3	ug/L		10/26/16 11:03	11/01/16 10:41	JMW	SW 6020
Boron	60000	ug/L		10/26/16 11:03	11/02/16 16:38	JMW	SW 6020
Cadmium	37	ug/L		10/26/16 11:03	11/02/16 11:43	JMW	SW 6020
Calcium	380	mg/L		10/26/16 11:03	11/01/16 10:41	JMW	SW 6020
Chromium	< 4.0	ug/L		10/26/16 11:03	11/01/16 09:53	JMW	SW 6020
Cobalt	44	ug/L		10/26/16 11:03	11/01/16 09:53	JMW	SW 6020
Lithium	310	ug/L		10/26/16 11:03	10/27/16 11:16	KJP	SW 6010*
Magnesium	1200	mg/L		10/26/16 11:03	11/01/16 10:41	JMW	SW 6020
Mercury	< 0.20	ug/L		10/26/16 11:03	11/02/16 10:43	JMW	SW 6020
Molybdenum	63	ug/L		10/26/16 11:03	11/01/16 10:41	JMW	SW 6020
Potassium	190	mg/L		10/26/16 11:03	11/02/16 11:43	JMW	SW 6020
Selenium	840	ug/L		10/26/16 11:03	11/02/16 11:27	JMW	SW 6020
Sodium	450	mg/L		10/26/16 11:03	11/01/16 09:53	JMW	SW 6020
Thallium	< 1.0	ug/L		10/26/16 11:03	11/01/16 09:53	JMW	SW 6020

(800) 752-6651

NOTES

Specific method revisions used for analysis are available upon request.

Certifications

PIA - Peoria, IL

TNI Accreditation for Drinking Water, Wastewater, Hazardous and Solid Wastes Fields of Testing through IL EPA Lab No. 100230 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 17553 Missouri Department of Natural Resources Certificate of Approval for Microbiological Laboratory Service No. 870 Drinking Water Certifications: Iowa (240); Kansas (E-10338); Missouri (870) Wastewater Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338) Hazardous/Solid Waste Certifications: Arkansas (88-0677); Iowa (240); Kansas (E-10338)

SPMO - Springfield, MO USEPA DMR-QA Program

STL - St. Louis, MO

TNI Accreditation for Wastewater, Hazardous and Solid Wastes Fields of Testing through KS Lab No. E-10389 Illinois Department of Public Health Bacteriological Analysis in Drinking Water Approved Laboratory Registry No. 171050 Drinking Water Certifications: Missouri (1050) Missouri Department of Natural Resources

* Not a TNI accredited analyte

Dail g Schindler

PDC LABORATORIES, INC.			CH	AIN OF CUSTODY REC	ORD
2231 WEST ALTORFER DRIVE PHONE # PEORIA, IL 61615	309-692-9688 309-692-9689				
91-92-01-0-	ALL SHADED AREA	S <u>MUST</u> BE COMPLETE	D BY CLIENT (PLEASE I	RINT)	
COFFEEN ENERGY CENTER	PROJECT NUMBER	P.O. NUMBER	MEANS SHIPPED	3 ANALYSIS REQUESTED AV	$\left(\frac{\text{FOR LAB USE ONLY}}{\Lambda/DZ/J_T_TZL}\right)$
ADDRESS	PHONE NUMBER	FAX NUMBER	DATE SHIPPED		N# ULVING TON
134 CIPS LANE				А 2 2 2 2 2 2 2 2 2 2 2 2 2	TURAL RESOURCE
CITY STATE COFFEEN IL 62017 ZIP	SAMPLER (PLEASE PRINT)		MATRIX TYPES: WW- WASTEWATER DW- DRUNKING WATER	102 102 102 102 102 102 102 102 102 102	CHNOLOGY FFFFN DOND I AKF
CONTACT PERSON JOHN ROMANG	SAMPLER'S SIGNATURE SIGNATURE		WWSL- SLUDGE NAS- SOLID OTHER:	А8,8А,88 4,42,41,4 76,47,61,61,61,61,61,61,61,61,61,61,61,61,61,	IL J SCHINDLER
2 SAMPLE DESCRIPTION		E SAMPLE TYPE TED GRAB COMP	MATRIX TOTAL # TYPE OF CONT	Custom list	REMARKS
APIa	10/24/16 11:5	$\frac{1}{\lambda}$	50 7	REV ROWANY / 31	1 6.99
AP1 b	10/24/16 11:5	7	50 7	V / / / / / /	7.01
AP1 c	1:El silvelos	+	5W 7	Ha ////////////////////////////////////	So.F
AP1 d	10/24/16 12:1	s- X	5w 7	Ha ////////////////////////////////////	16.6
AP1e	12:21 21/26/01	X	Sw 7	Ha ////////////////////////////////////	24
AP14	Pici allesi	× v	5W 7	H ^a ////////////////////////////////////	3.20
APIG	2:01 11/he/01	X	5W 7	Ha / / / / / / / / / / /	7.21
APIN	2:01 11/201	X	50 7	1///////////	7.41
Apa e	10/24/11 11:3	$\left \right\rangle$	SW 7	Ha ///////////	6.49
AP2 F	10/24/11 11.20	\times	SW 7	H_{a} ////////////////////////////////////	6.42
AP2 9	10/24/16 11:15	\times	5W 7	$H^{\bullet}_{\bullet} / / / / / / / / / / / / / / / / / / /$	6.46
TURNAROUND TIME REQUESTED (PLEASE CIRCLE) NC X(RUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHARGE) RUSH RESULTS VIA (PLEASE CIRCLE) FA	DRMAL RUSH X PHON	W	6 The sample this area yo the sample	temperature will be measured upon receipt at the la u request that the lab notify you, before proceeding temperature is outside of the range of 0.1-6.0°C. B)	ab. By initialing t with analysis, if / not initialing
FAX # IF DIFFERENT FROM ABOVE: PHONE # IF DIFFE	ERENT FROM ABOVE:		uns area yo sample tem	u allow the lab to proceed with analytical testing re perature.	gardless of the
	ATE RECEIVED BY: (SIC	GNATURE)		DATE COMMENTS: (FOR LI	4B USE ONLY)
	ME Y.Y			TIME	
RELINQUISHED BY: (SIGNATURE)	ATE RECEIVED AT LAB	BPC (SIGNATURE)		DATE AMPLE TEMPERATURE UPON R CHILL PROCESS STARTED PRIOF CHILL PROCESS STARTED PRIOF SAMPLE(S) RECEIVED ON ICE BOTTLES RECEIVED IN GOOD CC TIME BOTTLES RECEIVED IN GOOD CC	ECEIPT C C RECEIPT OR N NDITION MOR N HE NECK
	() 	F		THUS SAMPLES RECEIVED WITHIN HOI	LD TIME(S) COR N
-					

CHAIN OF CUSTODY RECORD

Page 27 of 30

COFFEEN UNERSY CENTER Montuner Antransment (1) Antransment (1) Antransment (1) Antransment AURIES TABLES LANE MONTUNER MONTUNER MONTUNER MONTUNER MONTUNER MONTUNER AURIES TABLES MONTUNER MONTUNER <t< th=""><th>CLIENT LA MCNIN Row L. M. M. Country</th><th>ALL SHAUED ARI PROJECT NUMBER</th><th>EAS MUST BE COMPLE</th><th>TED BY CLIENT (PLI MEANS SHIPPI</th><th>EASE PRI</th><th>E(</th><th></th><th></th><th></th><th></th><th>5</th></t<>	CLIENT LA MCNIN Row L. M. M. Country	ALL SHAUED ARI PROJECT NUMBER	EAS MUST BE COMPLE	TED BY CLIENT (PLI MEANS SHIPPI	EASE PRI	E(5
ФОЛЕКТАН РОДЕ ИНЕ АК ИЛИНА Даля видения Дали видения	COFFEEN ENERGY CENTER					3 ANA	LYSIS RE	auested JD-J6	41-		۲)
оти видет совтетеми совта техно самитат самита	ADDRESS 134 CIPS LANE	PHONE NUMBER	FAX NUMBER	DATE SHIPPE	0	٦: د ا	WO E	(NY	LOGGED BY:	
Other Freshold Othe	CITY STATE COFFEEN IL 62017 ZIP	SAMPLER (PLEASE PRINT)		MATRIX TYPES: WW- WASTEWATER			'อн'พุพ'อ 'พฮ'อว์'о:	s'a/TONZI	4'501,501	TECHNOLOGY	RCE AVE
(1) Submet erector from Conditions Submet area Mitter Production Conditions Submet area Production Remotes PP 3.1 CL b bj2/lib 11:yo × 5.u 7 1 1 7 1 CL c 0/2/lib 13:sr × 5.u 7 1 1 7 1 7 7 CL c 0/2/lib 13:sr × 5.u 7 1 1 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 7 1 1 7 1 1 7 1 1 7 1 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1	CONTACT PERSON JOHN ROMANG	SAMPLER'S SIGNATURE		WWSL- SLUDGE NAS- SOLID OTHER:	×	✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓	אינדיפאל <u>ק</u> איניכׂצ ע פיכ	на'оуб'µ	N'ZON'SS	GAIL J SCHINDLE	
日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日 日	2 SAMPLE DESCRIPTION		ME SAMPLETYPE ECTED GRAB COMP	MATRIX TOT TYPE OF 0	AL#	1	á 	- ۲	4	REMARKS	i i
てしる CL CL CL PH 7.52 X S.U 7 /////////// PH 7.52 CL C 1(3)1/1 13:17 X S.U 7 ///////// PH 7.52 CL C 1(3)1/1 13:17 X S.U 7 /////// PH 7.52 CL C 10/2/1/L 13:17 X S.U 7 ////// PH 7.52 CF 0 10/2/1/L 17:10 X S.U 7 ////// PH 7.12 CF 0 10/2/1/L 11/1.70 X S.U 7 ////// PH 1.16 CF 0 10/2/1/L 11/1.70 X S.U 7 ///// PH 1.16 CF 0 10/2/1/L 11/1.70 X S.U 7 ///// 1.16 1.16 CF 0 10/2/1/L 11/1.70 17 1	AP2 h	11:0/24/16 11:0	X	2 3					\downarrow		
(11 b) (1) <th< td=""><td>ر ا م</td><td>10/24/16 15:</td><td>3° ×</td><td>50</td><td></td><td></td><td></td><td></td><td>$\left \right\rangle$</td><td>tet te</td><td></td></th<>	ر ا م	10/24/16 15:	3° ×	50					$\left \right\rangle$	tet te	
CL C 「ダネパル 13:55 × 5い 子 1/1/1 「ジュ 2:5 CL d [0]27/1 15:55 × 5い 子 1/1/1 1/1 1 CF = 10/27/1 15:55 × 5い 子 1/1/1 1/1 1 CF = 10/27/1 17:55 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:55 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:55 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:30 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:30 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:30 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:30 × 5い 子 1/1 1/1 1 CF = 10/27/1 17:30 × 5い 1 1 1 1 CF = 10/27/1 17:30 × 500 × 10000 1 1 1 1 CF = 10/27/1 17:30 × 500 × 10000 1 1 1 1 1 1 1 1 1 1 1 1 1 </td <td>CL 6</td> <td>10/24/16 13:</td> <td>35 X</td> <td>SU</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>pH 7.52</td> <td></td>	CL 6	10/24/16 13:	35 X	SU						pH 7.52	
CL d 10/21/L 15:55 5CU 7 1 1 91 7.30 G P L 10/21/L 17:55 5CU 7 1 1 91 7.30 G P L 10/21/L 17:50 X 5CU 7 1 1 91 7.30 G P C 10/21/L 17:30 X 5CU 7 1 1 91 2.30 G P C 10/21/L 17:30 X 5CU 7 1 1 91 2.33 G P C 10/21/L 17:30 X 5CU 7 1 91 1.33 R P L 10/21/L 17:30 X 5CU 7 1 1 91 2.33 R P L 10/21/L 17:30 X 5CU 7 1 1 32 R P L 10/21/L 17:30 10/21/L 17:30 10/21/L 10/32/L 10/32/L 10/21/L 10/21/L R P	CL C	1 \$ 34/16 13:1	X	SW		~				0H 7.62	
G P へのののでした。	CL d	10/24/16 15	× 55	SC V					$\left \right\rangle$	1 7.30	
GP B (b)2y/16 YY:o S.U T P 6.33 GP C C S.U T P 6.33 GP C S.U T P 6.33 GP C D P 6.33 GP C D P 6.33 GP C S.U T P 6.33 RP Notation Notation Notation Notation P 6.33 RP Notation Notation Notation Notation P 6.33 RP Notation Notation Notation Notation Notation RP Notation Notation Notation Notation Notation RP Notation Notation Notation Notation Notation Notation Notation Notation Notation Notation Notatis and	GP a	10/2/1/2 14.	λ	Sw 7	7		/	$\overline{)}$		TIE Ha	
GP C Poly 1/1 1Y:30 X S.U T T T T T GP C 0/24/1 1Y:30 X S.U T T T T T T GP C 0/24/1 1Y:30 X S.U T T T T T RP L 0/24/1 1Y:50 X S.U T T T T T RP L 0/24/1 1Y:50 X S.U T T T T T RP L 0/24/1 1Y:50 X S.U T T T T T RP L 0/24/1 1Y:50 X S.U T T T T RP L 0/24/1 1Y:50 X S.U T T T T Norman Norman Norman Norman Norman Norman T T T T Norman Norman Norman Norman Norman Norman Norman Norman T T Norman Norman Norman Norman Norman Norman Norman Norman T T Norma	GP b	16/24/16 14:	$\frac{\lambda}{2}$		2	//	<u> </u>			PH 6.65	
CF d	GPC	16/24/16 it:	20 X	SU J			$\overline{)}$			++ 6.73	
KP b KP b β/3/1/L 1/1/S c S L T P b/1/S RP c NUSN RECULSTED PLASE CIACLE NORMAL RUSN RUSN FX P b/1/S (a) NUSN RESULTS VIA, PLASE CIACLE NORMAL RUSN RUSN FX P b/1/S (b) (c) NUSN RESULTS VIA, PLASE CIACLE NORMAL RUSN RUSN FX P b/1/S (c) NUSN RESULTS VIA, PLASE CIACLE NORMAL RUSN RUSN FX P b/1/S FX (c) NUSN RESULTS VIA, PLASE CIACLE NORMAL RUSN FX P b/1/S FX FX (c) NUSN RESULTS VIA, PLASE CIACLE NORMAL RUSN FX P b/1/S FX FX (c) NUSN RESULTS VIA, PLASE CIACLE NORMAL RUSN FX FX FX FX FX FX & FILAUUSHED BY: (SIGNATURE) PATE RECEIVED BY: (SIGNATURE) DATE RECEIVED AT LAB BY/SIGNATURE) DATE Sample temperature is outside of the range of 0.1.6.0°C. By not receipt at the range of 0.1.	6P d	10/24/11 14.	50 X	SU	2					pH 6.73	
RR RR Mornal Clip <	KP b	16/24/16 14	so X	SU	7	/				5h.9 Ha	
5 XRUNH TROUCS ILD (PARSE GRCLE) RAX PRENEX REQUEST ILD (PARSE GRCLE) FAX #1 ENTERTOUCS INTERTOUCS INTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOUCS INTERPORT OF EXCENTER ILD (PARSE) FAX #10 ENTERTOUCS INTERTOR PROVIDED FAX #10 ENTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOUCS INTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOR ICD (PARSE) FAX #10 ENTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOUCS INTERTOR ICD (PARSE) FAX #10 ENTERTOR ICD (PARSE) FAX #1	RP c	10/24/16 15:	* ×	500	7					PH 6.32	
FAX # IP IFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABOVE: TEX # IP IFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABOVE: PHONE # IF DIFFERENT FROM ABOVE: TEX.NOUISHED BY: (SIGNATURE) DATE RECEIVED BY: (SIGNATURE) TIME DATE RECEIVED BY: (SIGNATURE) TIME DATE RECEIVED BY: (SIGNATURE) TIME DATE RECEIVED AT LAB BY: (SIGNATURE) DATE RECEIVED AT LAB BY: (SIGNATURE) DATE TIME DATE RECEIVED AT LAB BY: (SIGNATURE) DATE RECEIVED AT LAB BY: (SIGNATURE) DATE TIME DATE RECEIVED AT LAB BY: (SIGNATURE)	5 XIRUSH TAT IS SUBJECT TO PDC LABS APPROVAL AND SURCHARG RUSH RESULTS VIA (PLEASE CIRCLE) RUSH RESULTS VIA (PLEASE CIRCLE)	E) NORMAL RUS	H NE	6 The s this a the si	ample tem trea you re ample tem	perature wi quest that t perature is	ll be meat he lab not outside of	sured upo iffy you, bu	n receipt sfore proc	at the lab. By initialing seeding with analysis, if 0°C. By not initialing	
The mean of the mediation of the mediati	FAX # IF DIFFERENT FROM ABOVE: PHONE #	F DIFFERENT FROM ABOVE:) this a samp	irea you ali ie tempera	low the lab	to procee	d with ana	lytical tes	ting regardless of the	
TIME TIME 7: YS 7: YS ReLINQUISHED BY: (SIGNATURE) DATE RELINQUISHED BY: (SIGNATURE) DATE Imme DATE RECEIVED AT LAB BY-(SIGNATURE) DATE Imme DATE Imme BOTTLES RECEIVED IN CONDITION Imme BOTTLES RECEIVED IN OLD Imme BOTTLES RECEIVED IN INFICION Imme SamPLES RECEIVED WITHIN HOLD TIME(S)		DATE RECEIVED BY: (S	signature)			DATE	œ	COM	MENTS: (FOR LAB USE ONLY)	
RELINQUISHED BY: (SIGNATURE) DATE RECEIVED AT LAB BY-(SIGNATURE) DATE/ CHILL PROCESS STARTED PRIOR TO RECEIPT OC DATE/ CHILL PROCESS STARTED PRIOR TO RECEIPT OC TIME DEDTTLES RECEIVED IN GOOD CONDITION TIME DEDTTLES RECEIVED IN GOOD CONDITION TIME DEDTTLES RECEIVED IN GOOD CONDITION TIME DEDTTLES RECEIVED IN GOOD CONDITION TAUK SAMPLES RECEIVED IN GOOD CONDITION TAUK SAMPLES RECEIVED IN GOOD CONDITION THE NEXT		TIME 7.45			1	TIME)			0	
THME POTTLES FILLED TO APPROX. THE NECK COOR NOT SAMPLES RECEIVED WITHIN HOLD TIME(S) COOR NOT	REĽINQUISHED BY: (SIGNATURE)	DATE RECEIVED AT LA	BY-(SIGNATURE)			DATE/	SAMPLI CHILL P SAMPLI BOTTLE	E TEMPER ROCESS E(S) RECE	ATURE L STARTEE IVED ON	IPON RECEIPT	о 2 2 2 2
			XXX)		b_`_	アナ	SAMPLI	es filled Es receiv	TO APPF /ED WITH	THE NECK COR	77
-			>								

CHAIN OF CUSTODY RECORD

ч.,e

PDC LABORATORIES, INC. 2231 WEST ALTORFER DRIVE PEORIA, IL 61615

PHONE # 309-692-9688 EAY # 300-602-0680

AIN OF CUSTODY RECORD	PRINT)	ANALYSIS REQUESTED (FOR LAB USE ONLY)		иди и и и и и и и и и и и и и и и и и и	а, са, ка, ка, ка, ка, ка, ка, ка, ка, ка, к	REMARKS	/////// at 6.32	1/////////////////////////////////////				temperature will be measured upon receipt at the lab. By initialing u request that the lab notify you, before proceeding with analysis, if temperature is outside of the range of 0.1-6°C. By not initialing u allow the lab to proceed with analytical testing regardless of the	DATE 600 COMMENTS: (FOR LAB USE ONLY)		DATE SAMPLE TEMPERATURE UPON RECEIPT CHILL PROCESS STARTED PRIOR TO RECEIPT 10/25///S SAMPLE(S) RECEIVED IN OR IN TIME BOTTLES RECEIVED IN GOOD CONDITION	ALK SAMPLES RECEIVED WITHIN HOLD TIME(S) CORN	
CH	BY CLIENT (PLEASE I	MEANS SHIPPED	DATE SHIPPED	MATRIX TYPES: www.wastewater ww.drinking.water	W- GROUND WALEK WWS- SLUDGE JAS- SOLID THER:	MATRIX TOTAL # TYPE OF CONT	507	C CM		 _		6 The sample this area you the sample t this area you	sample tem				
	<u>IUST</u> BE COMPLETED	P.O. NUMBER	FAX NUMBER			SAMPLE TYPE GRAB COMP	λ	λ					(URE)		(SIGNATJURE)		2
9-692-9688 9-692-9689	ALL SHADED AREAS <u>M</u>	PROJECT NUMBER	PHONE NUMBER	MPLER LEASE PRINT) R. 21, 255 E	MPLER'S SNATURE		124/16 15:05	124/16 14:40				RUSH PHONE Rom Above-	RECEIVED BY: (SIGNAT		RECEIVED AT LAB BY:		
PHONE # 300 FAX # 300		l Services		de la			10/	19				NORMAL, JRCHARGE) FAX PHONE # JF DIFFERENT FI	DATE 10/25/11	7:45	DATE TIME		
PDC LABORATORIES, INC. 2231 WEST ALTORFER DRIVE PEORIA, IL 61615	01.9201 589	COFFEEN ENERGY CENTER	ADDRESS 134 CIPS LANE	CITY STATE COFFEEN IL 62017 ZIP	CONTACT PERSON JOHN ROMANG	2 SAMPLE DESCRIPTION	RPd	RPa				FAX # IF DIFFERENT FROM ABOVE: 14			KELINGUISHED BY: (SIGNATURE)		

Page 29 of 30

Chain of Custody Parameters (as totals) Antimony Arsenic Barium Beryllium **Bicarbonate Alkalinity** Boron Cadmium Calcium **Carbonate Alkalinity** Chloride Chromium Cobalt Fluoride Lithium Magnesium Mercury Molybdenum Nitrite pН Potassium Selenium Sodium Sulfate Thallium Total Dissolved Solids (TDS)

٠

ations mud - Author: touchman: Data/Itma: 19/99/9018-2-60-50 DM

Table 10 Potential Source Water and Surface Water Sampling Results - October 24, 2016 Hydrogeologic Characterization Report Coffeen Energy Center

Sample ID	Sample Location	Alkalinity, bicarbonate mg/L	Alkalinity, carbonate mg/L	Antimony, Total ug/L	Arsenic, Total ug/L	Barium, Total ug/L	Beryllium, Total ug/L	Boron, Total ug/L	Cadmium, Total ug/L	Calcium, Total mg/l	Chloride, Total mg/L	Chromium, Total ug/L	Cobalt, Total ug/L	Fluoride, Total mg/L	Lithium, Total ug/L	Magnesium, Total mg/L	Mercury, Total ug/L	Molybdenum , Total ug/L	рН	Potassium, Total mg/L	Selenium, Total ug/L	Sodium, Total mg/l	Solids - total dissolved solids (TDS) mg/L	Sulfate, Total mg/L	Thallium, Total ug/L
AP1a		90	< 2.0	3.1	7.2	130	< 1.0	3800	< 1.0	380	3.2	< 4.0	< 2.0	< 0.250	39	67	< 0.20	47	6.99	7.3	3.0	33	1800	1500	< 1.0
AP1b		120	< 2.0	3.3	17	100	< 1.0	3100	< 1.0	320	13	< 4.0	< 2.0	0.977	47	52	< 0.20	100	7.01	18	6.9	53	1600	1300	< 1.0
AP1c		80	< 2.0	< 3.0	18	130	< 1.0	2900	< 1.0	390	13	< 4.0	< 2.0	0.614	51	49	< 0.20	81	7.05	18	3.1	59	1900	1600	< 1.0
AP1d	Ash Pond 1	90	< 20	< 3.0	2.0	200	< 1.0	2000	< 1.0	210	18	< 4.0	< 2.0	1.08	55	35	< 0.20	31	7.21	26	1.5	83	980	1000	< 1.0
AP1e		80	< 2.0	< 3.0	1.4	160	< 1.0	2100	< 1.0	200	18	< 4.0	< 2.0	1.00	55	34	< 0.20	30	7.12	26	1.2	80	1200	960	< 1.0
AP1f		110	< 20	< 3.0	1.5	150	< 1.0	2100	< 1.0	200	17	< 4.0	< 2.0	1.00	57	35	< 0.20	31	7.20	26	1.2	82	1200	1000	< 1.0
AP1g		75	< 2.0	< 3.0	1.3	140	< 1.0	2100	< 1.0	210	17	< 4.0	< 2.0	1.00	56	32	< 0.20	29	7.21	26	1.4	100	1200	970	< 1.0
AP1h		90	< 20	< 3.0	1.5	180	< 1.0	2200	< 1.0	230	17	< 4.0	< 2.0	0.980	55	30	< 0.20	31	7.41	27	1.2	110	1200	1000	< 1.0
AP2e		55	< 20	< 3.0	23	26	< 1.0	5300	< 1.0	210	< 5.0	< 4.0	< 2.0	0.438	190	40	< 0.20	90	6.49	27	< 1.0	25	1700	1500	< 1.0
AP2f	Ash Pond 2	100	< 20	< 3.0	1.2	22	< 2.0	2000	< 1.0	170	< 5.0	< 4.0	< 2.0	0.398	130	33	< 0.20	3.2	6.42	21	< 1.0	14	1700	1500	< 1.0
AP2g		4.0	< 2.0	< 3.0	5.5	20	< 2.0	4300	4.6	410	< 5.0	< 4.0	< 2.0	0.506	180	51	< 0.20	41	6.46	29	< 1.0	27	2400	2300	< 1.0
AP2h		140	< 2.0	< 3.0	75	23	< 1.0	14000	< 1.0	310	1.7	< 4.0	< 2.0	0.406	120	29	< 0.20	570	7.17	40	< 1.0	39	1500	1300	< 1.0
CLa		80	< 2.0	< 3.0	1.8	54	< 1.0	270	< 1.0	23	23	< 4.0	< 2.0	0.443	< 10	12	< 0.20	5.0	7.22	7.4	< 1.0	19	190	55	< 1.0
CLb	Coffeen Lake	80	< 2.0	< 3.0	1.8	52	< 1.0	280	< 1.0	23	22	< 4.0	< 2.0	0.425	< 10	11	< 0.20	4.9	7.52	7.8	< 1.0	19	180	56	< 1.0
CLc	Concerneake	75	< 2.0	< 3.0	1.8	56	< 1.0	280	< 1.0	23	22	< 4.0	< 2.0	0.426	< 10	12	< 0.20	4.7	7.62	7.4	< 1.0	19	160	54	< 1.0
CLd		80	< 2.0	< 3.0	1.8	54	< 1.0	270	< 1.0	23	23	< 4.0	< 2.0	0.421	< 10	12	< 0.20	4.8	7.30	7.5	< 1.0	20	170	54	< 1.0
GPa		4.0	< 2.0	< 3.0	4.7	120	2.6	59000	40	450	1900	< 4.0	52	42.7	300	1500	< 0.80	130	7.16	210	890	620	17000	17000	< 1.0
GPb	Gypsum Stack	10	< 2.0	8.6	92	1100	< 20	97000	67	1400	2600	150	110	69.4	480	2500	27	140	6.65	360	1500	1000	28000	27000	< 4.0
GPc	Pond	5.5	< 2.0	< 6.0	4.4	110	2.6	72000	41	570	1800	< 4.0	54	49.2	300	1500	< 0.80	120	6.73	260	890	650	17000	20000	< 1.0
GPd		6.0	< 2.0	< 3.0	4.2	110	< 20	66000	38	560	1900	< 4.0	52	51.3	300	1500	< 0.80	120	6.73	230	800	660	16000	19000	< 1.0
RPa		< 2.0	< 2.0	< 3.0	3.3	89	2.3	60000	37	380	1600	< 4.0	44	47.0	310	1200	< 0.20	63	6.70	190	840	450	16000	17000	< 1.0
RPb	Gypsum	< 2.0	< 2.0	< 3.0	2.8	90	2.1	56000	33	380	1800	< 4.0	45	44.4	310	1200	< 0.40	64	6.49	210	780	470	16000	18000	< 1.0
RPc	Recycle Pond	< 2.0	< 2.0	< 3.0	3.1	88	2.2	59000	37	380	2000	< 4.0	43	45.0	310	1200	< 0.20	64	6.32	200	830	440	16000	20000	< 1.0
RPd		< 2.0	< 2.0	< 3.0	3.4	89	2.4	59000	36	400	1600	< 4.0	45	51.2	310	1300	< 0.20	66	6.32	200	860	460	17000	16000	< 1.0

[O:MDM 12/2016, NRK 12/2016]

APPENDIX G Geochemical Conceptual Site Model

engineers | scientists | innovators

Geochemical Conceptual Site Model

Coffeen Power Plant – Ash Pond No. 2

(CCR Unit #102)

Prepared for

Illinois Power Generating Company 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Prepared by

Geosyntec Consultants, Inc. 134 N. Lasalle Street, Suite 300 Chicago, Illinois 60602

Project Number: GLP8078

June 2024

TABLE OF CONTENTS

1.	EXE	CUTIV	E SUMMARY	.1
2.	INTI	RODUC	CTION	2
3.	SITE 3.1 3.2	E BACK Site O Groun	GROUND verview dwater Monitoring Network	3 3 4
4.	GEO	CHEM	ICAL SITE CONDITIONS	5
	4.1	Consti	tuent Transport and Fate	5
	4.2	Site So	blids Characterization	6
		4.2.1	Bulk Characterization: Organic Carbon, Loss on Ignition, Cation Exchange Capacity and Sulfur Content	7
		4.2.2	Total Metals and Boron via Bulk Characterization	8
		4.2.3	Mineralogical Analysis	8
	4.3	Aqueo	us Geochemistry	9
		4.3.1	Redox/pH Summary	10
		4.3.2	Exceedance Parameters	10
		4.3.3	Pourbaix Diagrams	11
		4.3.4	Total and Dissolved Iron and Manganese Concentrations	12
		4.3.5	Major Ion Distribution and Groundwater Signatures	13
5.	EVA	LUATI	ON OF PARTITION COEFFICIENT RESULTS	14
	5.1	Batch	Attenuation Testing	14
	5.2	Partitio	on Coefficient Results	15
6.	GEO	CHEM	ICAL CONCEPTUAL SITE MODEL	16
	6.1	Source	e and Mobilization Mechanisms	16
	6.2	Potent	ial and Observed Attenuation Mechanisms	16
7.	REF	ERENC	CES	18

LIST OF FIGURES

Figure 1	pH Time Series
Figure 2	ORP Time Series
Figure 3a	Total Boron Concentration Time Series
Figure 3b	Dissolved Boron Concentration Time Series
Figure 4a	Total Sulfate Concentration Time Series
Figure 4b	Dissolved Sulfate Concentration Time Series
Figure 5	Total Dissolved Solids Concentration Time Series
Figure 6	TDS Concentration vs Sulfate Concentration
Figure 7a	Iron Pourbaix Diagram; Crystalline Phases Suppressed
Figure 7b	Iron Pourbaix Diagram
Figure 8	Manganese Pourbaix Diagram
Figure 9	Piper Diagram
Figure 10a	G401 Sulfate Partitioning Coefficients
Figure 10b	G401 Boron Partitioning Coefficients

LIST OF TABLES

Table 1	CEC and LOI of Site Solids
Table 2	Bulk Characterization of Site Solids
Table 3	XRF Analysis of Site Solids
Table 4	XRD Analysis of Site Solids
Table 5	AP2 Porewater Chemistry
Table 6	AP2 Eh-pH Diagram Inputs
Table 7	Total and Dissolved Aqueous Iron and Manganese Results
Table 8	Batch Attenuation Testing Results, G401
Table 9	Partition Coefficient Results, G401

LIST OF ATTACHMENTS

Attachment A:	Site Layout Figure
Attachment B:	Proposed Part 845 Groundwater Monitoring Network
Attachment C:	Monitoring Well Construction Information
Attachment D:	Boring Logs
Attachment E:	Site Solids Bulk Characterization Analytical Data
Attachment F:	X-Ray Fluorescence Analytical Data
Attachment G:	X-Ray Diffraction Analytical Data
Attachment H:	Site Evaluation Groundwater Data
Attachment I:	Antidegradation Assessment Report (Hansen 2017)

ACRONYMS AND ABBREVIATIONS

AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
ASD	alternative source demonstration
bgs	below ground surface
CEC	cation exchange capacity
CCR	coal combustion residuals
cm/s	centimeters per second
COCs	constituents of concern
CPP	Coffeen Power Plant
DA	deep aquifer
DCU	deep confining unit
GCSM	geochemical conceptual site model
GWPS	groundwater protection standards
HSU	hydrostratigraphic unit
I.A.C.	Illinois Administrative Code
IEPA	Illinois Environmental Protection Agency
LCU	lower confining unit
LOI	loss on ignition
meq/100 g	milliequivalents per 100 grams
mg/kg	milligrams per kilogram
mg/L	milligrams per liter
N&E	nature and extent
ORP	oxidation-reduction potential
PMP	potential migration pathway
SU	standard units
TDS	total dissolved solids
UA	uppermost aquifer
UCU	upper confining unit
XRD	X-Ray diffraction
XRF	X-Ray fluorescence

1. EXECUTIVE SUMMARY

A geochemical conceptual site model (GCSM) has been developed to describe subsurface conditions at the Coffeen Power Plant Ash Pond No. 2 (AP2) coal combustion residuals unit (Unit #102). A GCSM describes the environmental media and geochemical processes that contribute to the mobilization, distribution, and attenuation of chemicals in the environment. This report describes the GCSM for parameters that have exceeded the GWPS in AP2 groundwater and which will be addressed in the corrective action plan. The exceedances detected at AP2 were boron, sulfate, pH, and total dissolved solids. Constituents of concern (COC) exceedances are present in one hydrostratigraphic unit at the Site: the uppermost aquifer (UA), comprised predominantly of sandy to gravelly silts with thin sand beds.

Coal combustion residual (CCR) materials are the primary source of constituent loading to the CCR contact water (i.e., CCR porewater or source water). Over an extended period (e.g., months to years), the CCR porewater (i.e., water contained within the interstitial pore spaces of the CCR that can be sampled by low-flow groundwater sampling methods) reaches equilibrium with the CCR materials. The porewater is therefore representative of the mobile phase constituents capable of migrating into the underlying materials and potentially downgradient in groundwater. The AP2 CCR source water is therefore the primary indicator of boron and sulfate available to the groundwater and is considered as the primary source term for environmental investigation and fate and transport modeling. TDS is a measure of inorganic and organic substances in solution. TDS trends are generally consistent with those of sulfate in the AP1 groundwater system.

Conditions within UA groundwater are predicted to favor amorphous iron oxide stability at most locations, and the presence of iron oxides in some Site solids indicates a portion of the boron and sulfate in the groundwater system might be attenuated via surface complexation reactions. Attenuation of the constituents contributing to TDS, such as sulfate, will reduce TDS concentrations as well. Boron may be further attenuated via interactions with clay minerals, which are present in solids across the UA and LCU. Site-specific partition coefficients could not be calculated from the results of batch attenuation testing completed with solids from the Site. These results indicate that chemical attenuation of boron and sulfate is expected to be limited.

Low pH at G401 is potentially caused by geochemical reactions driven by the mixing of porewater and groundwater, although the specific drivers are still under investigation. The low pH values at G401 are likely to be buffered further downgradient by the abundance of carbonate minerals identified in site solids via XRD.

2. INTRODUCTION

This report documents the development of a geochemical conceptual site model (GCSM) to describe subsurface conditions at the Coffeen Power Plant (CPP) Ash Pond No. 2 (AP2) coal combustion residuals (CCR) unit (Unit #102). A GCSM describes the environmental media and geochemical processes that contribute to the mobilization, distribution, and attenuation of constituents of concern (COCs) in the environment. The GCSM was prepared in support of an evaluation of the nature and extent of exceedances of COCs above the groundwater protection standards (GWPS) at AP2. The document has been prepared as an appendix to the CPP AP2 Nature and Extent (N&E) Report prepared by Ramboll Americas Engineering Solutions. Inc. (Ramboll).

Constituents with statistical exceedances above the GWPS at CPP AP2 for the second, third, and fourth quarters of 2023 (Q2 2023, Q3 2023, and Q4 2023) monitoring events completed under Title 35 of the Illinois Administrative Code (35 I.A.C.) § Section 845.630 are boron, sulfate, pH, and total dissolved solids (TDS). For the 2023 events discussed above, exceedances of boron were detected at compliance monitoring wells G401, G402, G404, and G405; exceedances of sulfate were detected at G401, G402, G404, G405, and G406; an exceedance of pH below the GWPS was detected at G401; and exceedances of TDS were detected at G401, G402, G404, and G405 (Ramboll 2024). All exceedances are present within the uppermost aquifer (UA).

An exceedance above the GWPS of cobalt was detected at compliance monitoring well G401 during the Q2 2023 monitoring event. An alternative source demonstration (ASD), as allowed by 35 I.A.C. § 845.650(e), was completed for the cobalt exceedance (Geosyntec 2023a). The cobalt ASD was rejected by the Illinois Environmental Protection Agency (IEPA) on January 11, 2024 (IEPA 2024a); however, the Illinois Power Generating Company has filed a motion for stay with Office of the Clerk of the Pollution Control Board. Therefore, cobalt is not included as a COC in this GCSM.

Exceedances above the GWPS of both sulfate and TDS were detected at compliance monitoring well G407 during the Q2 2023 monitoring event. An ASD, as allowed by 35 I.A.C. § 845.650(e), was completed for the exceedances of TDS and sulfate at G407 (Geosyntec 2023b). The G407 sulfate and TDS ASD was rejected by IEPA on January 11, 2024 (IEPA 2024b); however, the Illinois Power Generating Company has filed a motion for stay with Office of the Clerk of the Pollution Control Board. Therefore, these constituents are not presented as exceedances at G407 within this report, although data for these analytes is included in figures for completeness.

3. SITE BACKGROUND

3.1 Site Overview

An overview of Site characteristics and hydrogeology is presented in the CPP AP2 N&E Report. A Site layout figure is provided in Attachment A.¹ Briefly, the CPP AP2 impoundment is located to the north of the Ash Pond No. 1 CCR unit (Unit #101), and south of the Gypsum Management Facility Recycle Pond (Unit #104). The CPP property is located approximately two miles south of the city of Coffeen, Illinois, and bordered by two lobes of Coffeen Lake to the west, east, and south, and by agricultural land to the north. An unnamed tributary runs north to south to the east of AP2.

AP2 is a 78-acre unlined surface impoundment that received bottom ash and fly ash between 1972 until the mid-1980's, when it was capped with a 2-foot compacted clay and soil cap. AP2 was recapped starting in 2019 using a geomembrane cover system in accordance with a closure plan submitted to the IEPA (AECOM 2017). The cover system installation was completed on November 17, 2020. The geomembrane cap design addresses the potential for slope failure and water infiltration into the closed CCR unit by directing the drainage of surface water (i.e., precipitation) off the cover system.

A Hydrogeologic Site Characterization Report (NRT 2017) has previously described the hydrostratigraphic units (HSUs) present in the vicinity of the CPP AP2, which consist of an Upper Confining Unit (UCU), Uppermost Aquifer (UA), Lower Confining Unit (LCU), Deep Aquifer (DA), and Deep Confining Unit (DCU). The UCU consists of the silt or clayey silt of the Loess Unit and the upper clayey portion of the Hagarstown Member. The UA is predominantly sandy to gravelly silts with thin sand beds, with lithology identified as the Hagarstown Member. The LCU, which contains the Vandalia Member, Mulberry Grove Member, and Smithboro Member, is comprised primarily of sandy to silty till, with discontinuous sand lenses that have been identified as potential migration pathways (PMPs). The DA is predominantly sand and sandy silt/clay units of the Yarmouth Soil and is discontinuous beneath the CPP. CCR within AP2 is underlain by the UCU in the majority of the footprint, with limited direct contact with the UA in pre-construction ravines on the eastern edge of AP2.

Vertical gradients measured near the CPP indicate variable flow directions, although on average it is downward from the UA to the LCU north of AP2 in G405/T408 (0.02 feet per foot); and in G406/T409, south of AP2 near the former discharge flume, it is upward with an average of -0.06 feet per foot. Vertical gradients between the LCU and DA are consistently downward (CPP AP2 N&E Report). Both the DA and the LCU have been identified as PMPs due to the presence of these downward gradients.

¹ This figure is also provided as Figure 2-1 of the CPP AP2 N&E Report.

3.2 Groundwater Monitoring Network

A groundwater monitoring network was proposed in accordance with 35 I.A.C. § 845.630 to monitor groundwater quality which passes the waste boundary as part of the Operating Permit application to IEPA for AP2. The proposed groundwater monitoring network is described in the Groundwater Monitoring Plan (Ramboll 2021b) and shown in Attachment B.² Well construction information, including the HSU in which each well is screened, is provided in Attachment C.³

Groundwater flow in the vicinity of AP2 is generally to the south and east. The groundwater to the west of AP2 is separated from the groundwater flow regime under AP2 by a groundwater divide. Groundwater flow directions are generally consistent across seasons. A detailed discussion of the hydrology of the Site is presented in Section 2 of the CPP AP2 N&E Report.

² This figure is also provided as Figure 2-2 of the CPP AP2 N&E Report.

³ This table is also provided as Table 3-1 of the CPP AP2 N&E Report.

4. GEOCHEMICAL SITE CONDITIONS

The general behavior of the COCs is discussed in Section 4.1. Summaries of Site solids and aqueous conditions within the relevant HSUs is provided in Section 4.2 and 4.3, respectively, with discussion of how groundwater both upgradient and downgradient of AP2 may interact with the Site solids to affect constituent behavior. This includes discussion of potential sorbing or precipitating phases and how the stability of those phases may be affected by variable groundwater pH and redox conditions.

4.1 Constituent Transport and Fate

Boron is primarily present in groundwater as boric acid (H₃BO₃°) or borate (B[OH]4⁻) (Bolan et al., 2023). The speciation of boron depends on pH: at pH below 9.2 standard units (SU), H₃BO₃ is the dominant species (NCBI 2024). Boron is not subject to oxidation/reduction reactions (Lemarchand et al. 2015; Bolan et al. 2023). Boron primarily sorbs to positively charged sites on solid metal oxide phases, including iron and aluminum oxides (Goldberg and Glaubig 1985; Bolan et al. 2023). Boron sorbs most extensively to amorphous metal oxides between pH 7 SU and 8 SU (Goldberg and Glaubig, 1985). Boron can also sorbs to organic surfaces such as humic acids or coal under favorable conditions, most extensively between pH 8 and 10 SU (LeMarchand et al. 2015). Clay minerals have been correlated with boron sorption in soils (Goldberg 1997), with this sorption mechanism presenting an additional potential attenuation mechanism for boron under favorable geochemical conditions.

Sulfate is the primary form of oxidized sulfur (S(VI)) in the environment and is a divalent oxyanion at pH values greater than 2 SU (Stumm and Morgan 1996). Sulfate in groundwater may sorb onto positively charged sites on solid metal oxide phases, most commonly iron and manganese oxides (Brown et al. 1999). The extent and strength of sulfate sorption to metal oxide surfaces depends on pH, ionic strength, and oxide surface area available for sorption. Sulfate can also form insoluble complexes such as barite (BaSO4) (NCBI 2024). Sulfate in groundwater may be reduced to elemental sulfur (S(0)) or sulfide (S(-II)) under sufficiently reducing conditions, a process governed by local microbial communities (Stumm and Morgan 1996). Generally, reduced sulfur is less mobile in groundwater than sulfate because reduced sulfur readily precipitates as metal sulfides (Stumm and Morgan 1996).

TDS is a measure of the mass of dissolved material in water, rather than a specific chemical constituent. Individual constituent contributions to TDS depends on the concentration of that constituent. Typically, major ions (i.e., calcium, sodium, magnesium, potassium, chloride, sulfate, and carbonate species) represent the primary contributors to TDS. As such, TDS is often positively correlated with electrical conductivity and ionic strength (Rusydi 2018, Ghalib et al. 2020). TDS concentrations can be reduced by the removal from aqueous phases of the individual constituents that contribute to TDS.

pH is a measure of the concentration of proton (H^+) species in solution and is presented on a logarithmic scale. pH represents the acidity or basicity of an aqueous solution and is one of the master variables that controls ion speciation and chemical processes within groundwaters. The carbonic acid – carbonate system is the most important acid-base system in groundwaters, typically controlling pH conditions within groundwaters such that they are circumneutral to slightly alkaline, with a pH range between 6-9 SU. The pH of groundwater can be affected by weathering and dissolution reactions of minerals, as wells as the biogeochemical processes associated with sulfur cycling, nitrification, and humic and fulvic acids (Brezonik and Arnold 2011), among other processes.

4.2 Site Solids Characterization

Solid phase data for the CCR source material within the unit were not collected, as the unit has been closed since the mid-1980s.

Solids from across the CPP were characterized to determine the type and abundance of minerals present in the UA and LCU. Solids were characterized using a variety of analytical techniques, to characterize their geochemical properties and to understand their effect on the geochemistry of the groundwater system.⁴ The results from these analyses are presented in Tables 1 - 4. Solids were collected from five locations adjacent to the following existing wells in the AP2 monitoring network:

- •G270, located upgradient of AP2 to the northwest. Solids were collected within the UA and are considered representative of background conditions for AP2.
- •G1001, located downgradient of AP2 to the east, with solids collected within the LCU.
- •G401, located downgradient of AP2 to the south, with solids collected within the UA. Statistical exceedances of boron, sulfate, TDS, and pH outside the GWPS limits were determined at G401 during 2023.
- •G407, located side-gradient of AP2 to the west. Solids were collected within the UA.
- •G410, located side-gradient of AP2 to the west, with solids collected within two intervals within the UA.

The monitoring well locations are shown on Attachment B. Boring logs for these locations are provided in Attachment D.

⁴ Sequential extraction procedures are chemical extractions used to dissolve metals from specific solid-associated phases. While useful for solid phase characterization, reporting limits are often elevated for sulfate and boron and samples from the vicinity of CPP AP2 were not submitted for analysis via this technique.

Samples from six additional locations across the Site were analyzed as part of investigations at CPP AP1 but are representative of conditions within the same HSUs beneath AP2. These solids were collected adjacent to existing wells, specifically:

- •G306, located upgradient of AP1 to the south and considered representative of background conditions, with solids collected within the UA.
- •G307 and G307D, located upgradient of AP1 to the south, with solids collected within five intervals representing the UCU, UA, and LCU.
- •G311 and G311D, located downgradient of AP1 to the north, with solids collected within four intervals representing the UCU, UA, and LCU.
- •G313, located downgradient of AP1 to the east, with solids collected within the UA.
- •G314 and G314D, located downgradient of AP1 to the east, with solids collected within six intervals representing the UCU, UA, LCU, and DA.
- G316, located downgradient of AP1 to the east, with solids collected within two intervals within the UA that were combined for analysis.

A map showing these monitoring well locations and boring logs for these locations are provided in Attachment D.

4.2.1 Bulk Characterization: Organic Carbon, Loss on Ignition, Cation Exchange Capacity and Sulfur Content

Total organic carbon (TOC) represents only the carbon component of organic matter within a solid material, while loss on ignition (LOI) represents the combustible portions of a solid material and is often used as an approximation of organic matter in a sample. The cation exchange capacity (CEC) of a solid represents the total negative surface charge of that material, which is related to the material's surface potential to sorb cations. Amorphous iron hydroxides, organic matter, and clays at circumneutral pH all tend to possess high negative surface charges and therefore tend to contribute to higher CEC values.

The CEC, TOC, and LOI values for Site solids are presented in Table 1 and the analytical data is provided in Attachment E. CEC values range from 3.32 - 31.02 milliequivalents per 100 g of sample (meq/100g), with lower CEC values reported for sandier lithologies (i.e., G307D). TOC abundances range from 0.06 - 1.74 percent by dry weight [% wt], whereas the reported LOI abundances ranged from 2.5 - 12.4 % wt). No clear patterns in CEC, TOC or LOI between HSUs is observed for solids across the Site.

Total sulfur within Site solids was low across all lithologies with all detections less than 0.15% wt. Acid volatile sulfide (AVS) represents the portion of sulfide within a solid material that can be liberated to hydrogen sulfide (H₂S) gas after the acidification of the sample. Sulfide was only

detected at one location (G1001 within the LCU at 0.05 % wt) and the highest detection of AVS was 0.28 milligrams per kilogram (mg/kg), indicating that sulfides have a limited abundance in the Site solids and sulfur is primarily present within other mineral phases. Sulfate concentrations, as measured in solid leachate after HCl digestion, were higher in solids at G307D (UCU and UA; 170-220 mg/kg) and G314D (UA/LCU, 210 mg/kg) compared to similar lithologic units (e.g. G311D). Higher sulfate concentrations at these two locations are consistent with the highest sulfur wt % values detected for these intervals (0.09 - 0.14 wt %).

4.2.2 Total Metals and Boron via Bulk Characterization

Total metals were analyzed to determine the major and trace metal content of the solids. The abundance of total aluminum, iron, and manganese can provide insights into the presence of adsorbing phases, as oxyhydroxides of these metals can provide sorption capacity. The total metals results are presented in Table 2 and the analytical data is provided in Attachment E.

Total iron concentrations are relatively similar between UA solids (4,900 milligrams per kilogram [mg/kg] to 22,000 mg/kg) and those detected for LCU solids (10,000 to 21,000 mg/kg). The abundance of iron within the bulk solids matrix of both the UA and LCU indicates the likelihood of iron-bearing minerals within the system. The presence of iron-bearing minerals was confirmed via X-Ray diffraction (XRD) as discussed in Section 4.2.3. Total manganese concentrations follow a similar pattern to iron, with concentrations in UA solids (34 mg/kg to 1,200 mg/kg) spanning those detected in LCU solids (370 to 470 mg/kg). Aluminum concentrations in UA solids vary from 9,600 mg/kg at the background location G270 to 32,000 mg/kg at the downgradient AP1 compliance location G316. Boron concentrations within solids were analyzed in the vicinity of AP2, with concentrations ranging between 4 to 6 mg/kg.

X-Ray fluorescence (XRF) was conducted for identification of the bulk elemental composition of solids. The XRF data are presented in Table 3 and the analytical data is provided in Attachment F. Solids from across all geologic units at the Site are predominantly composed of silicon (61.7 to 84.6 wt%), followed by calcium (0.5 to 9.1 wt%) and aluminum (4.9 to 8.4 wt%), consistent with the sandy, silty, and clayey lithologies described for these units. Iron is detected in all Site solid samples ranging from 1.69 to 3.71 wt %, with UA solids having lower wt % iron than LCU and DA solids. Manganese was detected in all Site solid samples with concentrations ranging from 0.03 to 0.13 wt %.

4.2.3 Mineralogical Analysis

XRD with Rietveld refinement was conducted for identification of minerals in solid samples. XRD is an analytical technique that provides information about the identity of the crystalline material within a sample but does not provide information about non-crystalline or amorphous phases. XRD results are normalized to 100% of the total weight, meaning that material not characterized by XRD is ignored in the percent calculation.

The XRD data are presented in Table 4 and the analytical data is provided in Attachment G. Solids from all HSUs across the Site were predominantly composed of quartz, ranging from 46.3 to 73.5% of the minerals present. Feldspar minerals including albite (6.1 to 10.4%) and microcline (5.1 to 9.8%), carbonates such as dolomite (0.0 to 15.7%) and calcite (0.4 to 4.1%), and a variety of clays (1.1 to 12.0% total) were detected as additional primary crystalline mineral phases. Low abundances of magnetite (detected up to 0.2%) were detected in UA solids side gradient of AP2 (G407 and G410), and in LCU and DA solids adjacent to AP1, but otherwise crystalline forms of iron oxides were not detected in Site solids. Metal oxides such as iron, manganese, or aluminum oxides can serve as attenuating surfaces for boron. Ankerite, an iron-bearing carbonate mineral, was detected in all Site solids at abundances from 0.5 to 9.4%. Compared to the XRF detections of iron abundances between 1.7 to 3.7 wt %, these results indicate that the total iron within Site solids is largely associated with minerals other than crystalline iron oxides. No crystalline manganese oxide minerals were detected in Site solids. The manganese-bearing mineral kutnohorite (0.1 to 0.5%) was detected at low abundances, consistent with the presence of dolomite-like carbonates.

Kaolinite, montmorillonite, and illite have been correlated with boron retention in soils (Goldberg 1997). Of those three clay types, illite has the greatest rate of boron adsorption, and was detected in solid samples from the UA, DA and LCU at abundances ranging from 1.7 to 4.0%. Montmorillonite and kaolinite were also present in a subset of solids from these units (1.0 to 3.2% and 0.6 to 1.1%, respectively). Chlorite was also identified at abundances ranging from 1.1 to 3.9%. The presence of clay minerals within solids presents an additional, if limited, potential attenuation mechanism for boron across the Site.

4.3 Aqueous Geochemistry

Groundwater from wells across the UA and LCU in the vicinity of AP2 were analyzed for a range of geochemical parameters, as presented in Figures 1–9. For clarity in interpretation, the figures present data from the UA and the LCU with differing symbology. UA well locations are shown with circular symbology on the figures and LCU locations are shown with triangular symbology. Background locations G270, G280, and G281, all of which are screened in the UA, are shown with hollow symbology. The groundwater data used in the Site evaluation is summarized in Attachment H.

A limited set of porewater (i.e., CCR contact water) samples have been collected in the recent past, including porewater collected from four locations screened within AP2 CCR in 2016 (AP2e-h; data originally presented in the 2017 *Antidegradation Assessment for Management of Coal Combustion Residuals Impoundment Waters, Coffeen Power Station*; Attachment I) and one sample of leachate collected during construction closure activities in 2020 (CO 102 Pump Q Box). The 2020 leachate sample pH value was analyzed by the analytical laboratory following sampling and was qualified as being analyzed after the acceptable holding time window; it has therefore

been excluded from figures and the following discussion. Other analytes measured for the 2020 AP2 leachate sample were unimpacted and are included throughout.

CCR porewater is water "collected from the interstitial water between waste particles in surface impoundments as it occurs in the field" (USEPA 2014) and represents the material potentially leached from impoundments. The CCR materials are the primary source of constituent loading to the CCR porewater. Over an extended period (e.g., months to years), the CCR porewater (i.e., water) reaches equilibrium with the CCR materials. The concentrations within the porewater are "the most representative data available for impoundments because these data are field-measured concentrations of leachate" (USEPA 2014). Porewater is therefore the most appropriate source term for potential flux out of CCR impoundments.

4.3.1 Redox/pH Summary

The oxidation-reduction (redox) potential (ORP) and pH in aqueous systems are major controls on the speciation and mobility of reactive constituents such as iron, manganese, and sulfate.

AP2 porewater pH values ranged between 6.4 to 7.2 standard units (SU). In wells across the groundwater monitoring network, pH values appear to be stable and circumneutral, with the exception of G401 (Figure 1). Compliance UA groundwater pH values largely range between 6.4 to 7.5 SU, which is a relatively lower range than detected for background UA groundwater with pH values 6.8 to 7.9 SU. Lower pH values were detected at UA well G401 relative to similarly located downgradient UA wells (e.g. G402), with reported values ranging from 5.6 to 6.4 SU, consistently below the GWPS of 6.5 SU. These pH values are also lower than the reported pH values within the AP2 unit. LCU groundwater pH, as represented by values reported for G1001, ranged between 6.8 to 7.0 SU.

Since 2020, positive ORP values have been reported in all groundwater monitoring network wells across the Site (Figure 2). Prior to 2020, groundwater at background wells G270, G280, and G281 was consistently more oxidizing than downgradient UA wells G401, G402, G403, and G404. After cessation of combustion activities and initiation of pond-recapping activities in late 2019 and early 2020, redox conditions at G401, G402, G403, and G404 shifted to more oxidizing conditions that are more consistent with the background locations. G401, G402, G403, and G404 are distributed around AP2, representing upgradient, side gradient, and downgradient locations, such that the detected shift in redox conditions likely relates to changes related to new flow patterns following plant cessation and re-closure activities. Many of the UA wells across the network (G402, G403, G404, and G405) appear to fluctuate seasonally between relatively more oxidizing (winter) and more reducing (summer) conditions. This pattern is not consistently observed across the monitoring network and appears to have developed after the completion of closure construction in 2020, which may have altered recharge conditions at these locations.

4.3.2 Exceedance Parameters

Total boron concentrations in AP2 porewaters and leachate varied from 2.0 to 14 milligrams per liter (mg/L), with concentrations detected above the site-specific GWPS for boron of 2.0 mg/L

(Table 5; Figure 3a). UA background wells G270, G280, and G281 are not detected to exceed the GWPS for boron (Figure 3a). Boron concentrations appear to increase as the sampling location moves east across AP2 (i.e., lower concentrations at G403 compared to G405; locations shown in Attachment B), consistent with the general direction of groundwater flow within the UA beneath the unit. Boron concentrations have been stable above the GWPS at downgradient UA compliance wells G401 and G402, and stable below the GWPS at G403, G406, G407, and G1001. Boron concentrations have increased at G404 following the completion of closure construction, and concentrations at G405 have also increased after a period of decline. Boron dynamics at G404 and G405 may be influenced by increasing porewater elevations within AP2 during closure that are still returning to equilibrium (Section 3.2.1 of the CPP AP2 N&E Report). When measured, dissolved boron represents the majority of total boron at all locations (Figure 3b), consistent with the expectation that the majority of boron is present as neutral boric acid at the pH ranges detected within the monitoring network and would have limited associations with particulates.

Total sulfate concentrations within AP2 porewater and leachate ranged between 1,300 to 2,300 mg/L, above the GWPS of 400 mg/L (Table 5; Figure 4a). Sulfate concentrations in groundwater are largely stable through time across the monitoring network, with sulfate concentrations detected at higher concentrations at G401 (Figure 4a). Sulfate concentration trends at both G404 and G405 are consistent with the changes in boron concentrations described above, although at a lesser magnitude. Measurements of dissolved sulfate within compliance well groundwaters are limited; when measured, dissolved sulfate represents the majority of total sulfate at all locations (Figure 4b), indicative of limited association with suspended solids in the unfiltered samples.

TDS values in AP2 porewater and leachate ranged between 1,500 to 2,400 mg/L, above the GWPS of 1,200 mg/L (Table 5; Figure 5). UA background wells G270 (60 to 510 mg/L), G280 (400 to 608 mg/L), and G281 (700 to 1,000 mg/L) have a similar range of TDS concentrations relative to UA compliance wells (270 to 1,200 mg/L; excluding exceedance wells) and LCU well G1001 (830 to 1,700 mg/L). TDS concentrations at wells with statistically significant exceedances of TDS are higher (460 to 6,600 mg/L), exceeding the range of values for AP2 porewater (1,500 to 2,400 mg/L) at some locations. Total sulfate concentrations are positively linearly correlated with TDS concentrations across wells in the monitoring network ($R^2 = 0.81$; Figure 6), indicating that sulfate is a major contributor to TDS across the AP2 monitoring network.

4.3.3 Pourbaix Diagrams

Eh-pH (Pourbaix) diagrams can be used to illustrate the predicted stability of specific phases at thermodynamic equilibrium under the conditions detected for a groundwater sample. Select crystalline mineral species were suppressed to be representative of groundwater conditions (e.g. mineral formation not anticipated to be kinetically favored for igneous and metamorphic minerals in the low temperature near-surface environment), except when identified in XRD data from solids in the site.

Using conditions detected at compliance well G402 on 6 June 2023 to represent downgradient groundwater within the UA (Table 6), amorphous ferrihydrite is predicted to be the predominant iron species under groundwater conditions at all locations, except for G401, where solid phase iron minerals are not expected to be stable (Figure 7a).⁵ The lower predicted stability of ferrihydrite at G401 appears to be driven by the low pH values detected at this location. Conditions at most UA wells, including background wells G270 and G281, are poised on the redox boundary for solid phase iron stability under conditions at G402; the lower aqueous concentrations of iron at other locations (see Table 7) would tend to shift the redox boundary upwards such that aqueous iron is more likely to occur under conditions at other UA wells. Additionally, the higher abundance of total iron at G402, which was used to inform the Eh-pH diagram generation, compared to dissolved iron at G402 (Table 7) may overestimate the stability of solid phase iron species.

When not suppressed, crystalline magnetite is expected to be stable at all locations except G401 (Figure 7b), consistent with the detection of magnetite via XRD near G407 and G410 (Table 4). Magnetite is likely in a dynamic state at G401, with its stability poised between dissolution to aqueous iron and subsequent reprecipitation as amorphous iron oxides. Ankerite, which was identified via XRD and is an analogous iron-bearing carbonate species to siderite, is not expected to be thermodynamically stable within the UA based upon the detected pH and redox conditions. Dissolution of ankerite or magnetite (where present) may provide a source of iron for the subsequent formation of amorphous iron oxide coatings. Overall, these modeling results indicate that amorphous iron oxides (the formation of which is more kinetically favorable than crystalline iron oxides) might be present, although potentially unstable, at some locations within the UA.

The Eh-pH diagrams for manganese show that solid phase manganese minerals, including manganese oxides, are not predicted to be thermodynamically stable under conditions across the Site (Figure 8). Background UA well G280 is the exception, as manganese carbonate mineral rhodochrosite was predicted to be thermodynamically stable. Mineralogical analyses were not completed at well G280 to verify the presence of rhodochrosite, although manganese-bearing carbonate mineral kutnohorite was detected in XRD results throughout the site.⁶

4.3.4 Total and Dissolved Iron and Manganese Concentrations

The distribution of iron and manganese between total and dissolved phases can provide insights on Site redox conditions and constituent behavior. Paired total and dissolved iron and manganese data are only available across the Site for the Q2 and Q3, 2023 sampling events, with results also available for Q4 2023 at the background locations. A comparison of the total and dissolved iron and manganese data for these events is provided in Table 7.

⁵ Field ORP measurements were converted to Eh by adding +200 millivolts to correct for the Ag/AgCl electrode.

⁶ Kutnohorite is a solid-solution carbonate mineral with the chemical formula $(Ca,Mn^{2+})(CO_3)_2$ which is not included in most thermodynamic databases used for geochemical model calculations. Rhodochrosite (manganese carbonate) represents the most analogous mineral to kutnohorite in geochemical modeling efforts.

Total iron concentrations ranged from 0.012 mg/L at UA compliance well G406 on 31 May 2023 to 101 mg/L at downgradient UA well G401 on 11 August 2023. Dissolved iron concentrations ranged from below reporting limits to 93.8 mg/L at downgradient UA well G401 on 11 August 2023. The total and dissolved iron concentrations detected at G401 were over an order of magnitude higher than the reported values elsewhere in the network. Where dissolved iron was detected, the dissolved concentration was at typically less than 50% of the total iron value, and frequently only about 10%, indicating that iron is largely associated with suspended particulates across the AP2 monitoring network. However, dissolved iron concentrations at G401 are more than 93% of the total iron, consistent with the Eh-pH diagram results indicating geochemical conditions favor the stability of dissolved iron at this location driven by consistently lower pH and ORP (Figure 7a).

Total manganese concentrations ranged from 0.0159 mg/L at background UA well G280 on 14 August to 28.8 mg/L at downgradient UA well G401 on 11 August 2023 (Table 7). Dissolved manganese concentrations ranged from 0.0014 mg/L at background UA well G280 on 8 June to 36 mg/L at downgradient UA well G401 on 11 August 2023. Total and dissolved manganese were also much higher at G401 compared to other locations in the monitoring network, consistent with the iron results. Dissolved manganese represents the majority of total manganese concentrations at all locations except for UA background wells G270, G280, and G281 and LCU well G1001. This is consistent with the predicted greater manganese-carbonate mineral stability at G280 (Figure 8).

4.3.5 Major Ion Distribution and Groundwater Signatures

A Piper diagram was constructed using data from AP2 to visualize major ion distributions in groundwater (Figure 9). Piper diagrams are a common tool for assessing geochemical similarities or differences between aqueous samples. The cation composition of the AP2 leachate is dominated by calcium, with the major anion composition sulfate-dominated. Groundwater composition for background wells G270, G280, and G281 has lower contributions of sulfate, greater contributions of carbonate alkalinity (consistent with the presence of carbonates in the UA solids), and major cation distributions of near equal contributions of both monovalent and divalent cations. Groundwater from side gradient UA compliance well G403 and downgradient LCU well G1001 (neither of which exhibited GWPS exceedances) cluster with these background wells. Groundwater from the compliance network wells spans the range between the background wells and AP2 leachate, indicating variable influences from the AP2 CCR unit on groundwater at these locations. G401 groundwater composition is most similar to AP2 porewater leachate, consistent with the relatively higher concentrations of sulfate detected at this location (Figure 4a). These results provide further evidence for the influence of AP2 source water on compliance wells for the unit.

5. EVALUATION OF PARTITION COEFFICIENT RESULTS

Batch test studies combine soil and groundwater collected from the Site to evaluate the attenuation of chemical constituents. Batch attenuation testing was conducted for sulfate and boron to evaluate the potential for sorption and to attempt to generate Site-specific distribution coefficients between the solid and aqueous phase.

5.1 Batch Attenuation Testing

In 2021, Geosyntec conducted a field investigation at AP2 which included completion of one soil boring at G270 ranging in depth from 12 to 16 feet below ground surface. As part of that investigation, soil and groundwater samples were submitted to SiREM Laboratories (Guelph, ON) for batch solid/liquid partitioning testing. One groundwater sample (G401) and one soil sample (G270) were used for batch attenuation testing at five soil:solution ratios (Table 8), each ran in duplicate. Statistically significant exceedances of for boron, sulfate, and TDS were identified at G401, as well as being below the bounds of the GWPS for pH, while G270 is representative of background conditions at AP2. For each treatment, ~0.1 liter of groundwater was brought into contact with varying amounts of soil (0.003 to 0.17 kg, depending on the ratio) and equilibrated over a seven-day period.

An initial sample of the stock solution for each experimental design was collected on Day 0, and a control sample (i.e., G401 groundwater with no aquifer solids) was collected on Day 7 after tumbling in polypropylene bottleware to evaluate any loss to interactions with the bottleware or ambient conditions. Duplicates were constructed for each microcosm, including the control samples. After seven days of contact time, an aliquot of the free liquid was collected and filtered through a 0.45-micron (μ m) filter prior to analysis for dissolved concentrations of sulfate and/or boron. Analysis of the dissolved phase is important to adequately measure the partitioning of mass between the solid and liquid fractions of the experiment. The redox and pH were measured for each batch test at the beginning and end of the contact period and in the control samples.

Data obtained from the tests (Table 8) were used to construct isotherms for boron and sulfate; 5point isotherms were constructed by averaging duplicate results for each soil:solution ratio. Mathematical fitting was used to calculate the attenuation distribution coefficients (K_d), assuming linear adsorption. The linear adsorption equation was used:

$$q_e = K_d \times C_e$$
 Eq. 1

where q_e is the mass of constituent adsorbed to the solid phase at equilibrium, C_e is the remaining aqueous constituent concentration at equilibrium, and K_d is the linear sorption coefficient (reported in liters per kilogram [L/kg]).

Some of the data showed a deviation from a linear trend, and so were also fitted using non-linear isotherms. The non-linear Langmuir isotherm was used:

Geosyntec^D consultants

$$q_e = \frac{q_m K_L C_e}{1 + K_L C_e}$$
Eq. 2

where q_m is the inverse of the slope and K_L is the Langmuir distribution coefficient. The adsorption data were linearized according to:

$$\frac{C_e}{q_e} = \frac{1}{(K_L \times q_m)} + \frac{C_e}{q_m}$$
 Eq. 3

A common non-linear Freundlich equation was also used:

 $q_e = K_F (C_e)^{1/n}$ Eq. 4

where q_e is the mass of constituent adsorbed to the solid phase at equilibrium, C_e is the remaining aqueous constituent concentration at equilibrium, K_F is the Freundlich distribution coefficient, and l/n is a non-linearity constant. The adsorption data were plotted as log-transformed values to perform the non-linear isotherm fitting using the linearized Freundlich equation:

$$log(q_e) = \log(K_F) + (1/n)\log(C_e)$$
Eq. 5

The calculated linear, Langmuir, and Freundlich distribution coefficients (K_d, K_L, and K_F, respectively) and 1/n values are shown in Table 9.

5.2 Partition Coefficient Results

The partition coefficient values for G401 groundwater combined with G270 geologic material are presented in Table 9. The linear and Langmuir isotherms for sulfate and boron are provided in Figures 10a and 10b, respectively.

The G401 partition coefficient for boron ranged from -464,440 L/kg for the Langmuir isotherm to -11.08 L/kg for the linear isotherm. A Freundlich isotherm was not fit to the data due to the lack of suitability for log transformation. Neither isotherm showed a high goodness-of-fit (i.e., R^2), with the highest correlation constant 0.44. An accurate boron coefficient could therefore not be calculated from the data.

The G401 partition coefficient for sulfate ranged from -564 L/kg for the Langmuir isotherm to -11.08 L/kg for the linear isotherm. A Freundlich isotherm was not fit to the data due to the lack of suitability for log transformation. Both of the isotherms showed reasonable goodness-of-fit with correlations between 0.56 and 0.60, but both isotherms predicted a negative relationship. An accurate sulfate partition coefficient could therefore not be calculated from the data.

6. GEOCHEMICAL CONCEPTUAL SITE MODEL

6.1 Source and Mobilization Mechanisms

Boron is naturally abundant in coals associated with organic matrices and is concentrated within CCR, primarily as polyborate (B₂O₃) surface coatings on particles (EPRI, 1998; Izquierdo & Querol, 2012). Boron was identified in the CCR porewater or leachate at concentrations up to 14 mg/L. The likely primary source of boron to the UA is the AP2 CCR porewater based on boron concentrations within the source.

Reduced sulfur species (e.g. pyrite) can be naturally abundant in coals; after coal fly ash production, sulfate is the dominant sulfur species associated with fly ash. Sulfate is concentrated on the surface of fly ash particles and the majority of sulfate mineral phases are soluble under environmental conditions, such that sulfate associated with fly ash is leachable (Izquierdo & Querol, 2012). The primary source of sulfate to the UA is AP2 CCR porewater. Sulfate was identified in the CCR leachate or porewater at concentrations up to 2,300 mg/L. Elevated concentrations of sulfate are a major contributor to the exceedances of TDS identified at G401, G402, G404 and G405.

Statistical exceedances of sulfate and TDS indicate that AP2 porewater is influencing groundwater at G401. The reported pH values at G401 (5.6 to 6.4 SU) are lower than those reported in AP2 leachate or porewater (6.4 to 7.2 SU), suggesting that geochemical reactions driven by interaction of porewater with the underlying UCU materials and/or mixing of porewater with groundwater may cause a low pH. These reactions may include iron oxidation and precipitation or carbonate mineral precipitation. Geochemical modeling to support evaluation of corrective actions may clarify the drivers of low pH at AP2. The low pH values at G401 are likely to be buffered further downgradient by the abundance of carbonate minerals identified in site solids via XRD.

6.2 Potential and Observed Attenuation Mechanisms

Boron exceedances were identified in the UA. Boron is anticipated to largely be present as the neutral $B(OH)_{3^{\circ}}$ boric acid species as groundwater pH values in the UA are below the pK_a for boric acid (9.2). The presence of iron oxides in some UA solids (Table 4) and the potential for amorphous ferrihydrite formation based on modeling of Eh-pH conditions indicates a portion of the boron in the groundwater system might be attenuated via surface complexation reactions within portions of the UA. Given the low abundance of total manganese in the solids (Table 2) and the predicted instability of solid manganese phases (Figure 8), manganese oxides are not expected to be an important source of adsorption sites. Boron is also known to be attenuated via interactions with clay minerals (Goldberg 1997); the XRD results identified the presence of clay minerals across the UA (Table 4). These lines of evidence are not supported by batch attenuation testing for boron, which indicated boron chemical attenuation is limited at locations downgradient of AP2.

Sulfate exceedances are currently limited to the UA. Sulfate is typically considered to be a conservative species within groundwater at circumneutral pH conditions, although sorption onto mineral surfaces is a potential attenuation mechanism. Sulfate attenuation is expected to occur largely as the result of sorption onto positively charged iron oxides and oxyhydroxides associated with solids. XRD analyses (Table 4) support the presence of iron oxides crystalline phases across the Site in the UA, with the additional potential for amorphous phases to form at some locations based on modeled redox conditions. However, chemical attenuation of sulfate is anticipated to be limited, as batch attenuation testing was not able to determine a partition coefficient for sulfate at the Site. Any attenuation of sulfate will likely contribute to a reduction of TDS in the groundwater. The low pH values at G401 are likely to be buffered by the abundance of carbonate minerals identified in site solids via XRD.

7. REFERENCES

- AECOM. 2017. Closure and Post-Closure Care Plan for the Coffeen Ash Pond No. 2 at Illinois Power Generating Company, Coffeen Power Station, 134 Cips Lane, Coffeen IL 62107. January.
- Bolan, S., Wijesekara, H., Amarasiri, D., Zhang, T., Ragályi, P., Brdar-Jokanović, M., Rékási, M.,
 Lin, J., Padhye, L., Zhao, H., Wang, L., Rinklebe, J., Wang, H., Siddique, K., Kirkhamn,
 M., Bolan, N. 2023. "Boron contamination and its risk management in terrestrial and
 aquatic environmental settings". *Science of the Total Environment*. 164744
- Brezonik, P. L., W.A. Arnold. 2011. Water Chemistry: An Introduction to the Chemistry of Natural and Engineered Aquatic Systems. Oxford University Press.
- Brown, G E J, V Henrich, W Casey, D Clark, C Eggleston, A Felmy, D W Goodman, M Gratzel, G Maciel, M I McCarthy, K H Nealson, D Sverjensky, M Toney, J M Zachara. 1999.
 "Metal Oxide Surfaces and Their Interactions with Aqueous Solutions and Microbial Organisms". *Chemical Reviews*, 99, p. 77-174.
- EPRI. 1998. "Leaching of Inorganic Constituents from Coal Combustion By-Products Under Field and Laboratory Conditions, Volume 1." Final Report TR-111773-V1.
- IEPA. 2024a. "Coffeen Power Plant Ash Pond No. 2; W1350150004-02, Alternative Source Demonstration Submittal." Letter from Darin LeCrone (Illinois Environmental Protection Agency) to Diana Tickner (Electric Energy, Inc.). January 11.
- Ghalib, H B, M B Yaqoob, A M Al-Abadi. 2020. "Assessment of the Groundwater at Ali Al-Garbi Area, Iraq using Geochemical Modeling and Environmental Isotopes." Desalination Water Treat. 176, 114-122.
- IEPA. 2024b. "Coffeen Power Plant Ash Pond No. 2; W1350150004-02, Alternative Source Demonstration Submittal." Letter from Darin LeCrone (Illinois Environmental Protection Agency) to Diana Tickner (Electric Energy, Inc.). January 11.
- Maria Izquierdo, Xavier Querol. 2012. Leaching behaviour of elements from coal combustion fly ash: An overview. International Journal of Coal Geology, 194, 54-66.
- Lemarchand, D, A D Jacobson, D Cividini, and F Chabaux. 2015. "The major ion, 87Sr/86Sr, and d11B geochemistry of groundwater in the Wyodak-Anderson coal bed aquifer (Powder River Basin, Wyoming, USA)". Comptes Rendus Geoscience, 347, 348-357.
- Geosyntec Consultants, Inc. (Geosyntec). 2023a. "Alternative Source Demonstration. Coffeen Power Plant Ash Pond No. 2 (Unit ID #102), IEPA ID: W1350150004-02, 35 IAC 845.650." December.

- Geosyntec Consultants, Inc. (Geosyntec). 2023b. "Alternative Source Demonstration G407 Sulfate and Total Dissolved Solids. Coffeen Power Plant Ash Pond No. 2 (Unit ID #102), IEPA ID: W1350150004-02, 35 IAC 845.650." December.
- Goldberg, S. 1997. "Reactions of Boron with Soils". Plant and Soil, 193, 35-48.
- Goldberg, S. and Glaubig, R.A. 1985. Boron Adsorption on Aluminum and Iron Oxide Minerals. Soil Science Society of America Journal, 49: 1374-1379.
- National Center for Biotechnology Information (NCBI). 2024a. PubChem Compound Summary for CID 7628, Boric Acid. https://pubchem.ncbi.nlm.nih.gov/compound/Boric-Acid. Accessed Feb. 6, 2024.National Center for Biotechnology Information (NCBI)b. 2024. PubChem Compound Summary for CID 24414, Barium Sulfate. https://pubchem.ncbi.nlm.nih.gov/compound/Barium-Sulfate. Accessed Feb. 6. 2024
- Natural Resource Technology, Inc. (NRT). 2017. Hydrogeologic Site Characterization Report, Ash Pond 2, Coffeen Power Station, Coffeen, Illinois. January.
- Ramboll Americas Engineering Solutions, Inc. (Ramboll). 2021. "Addendum to the Groundwater Monitoring Plan. Coffeen Power Plant, Ash Pond No. 2, Coffeen, Illinois. Illinois Power Generating Company." October.
- Ramboll. 2024. 35 I.A.C. § 845.610(B)(3)(D) Groundwater Monitoring Data and Detected Exceedances – 2023 Quarter 4. Ash Pond No.2, Coffeen Power Plant, Coffeen, Illinois. Ramboll Americas Engineering Solutions, Inc. March.
- Rusydi, A. 2018. "Correlation Between Conductivity and Total Dissolved Solids in Various Types of Water: A Review." IOP Conference Series: Earth and Environmental Science. 118, 012019.
- Stumm, W., J J Morgan. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters, 3rd ed., Wiley-Interscience.
- United States Environmental Protection Agency (USEPA). 2014. "Human and Ecological Risk Assessment of Coal Combustion Residuals (2050-AE81)". December.

FIGURES

Flour

rra - Groundwater Compliance - Documents/General/GCSM/ Coffeen/ Figur

Total Dissolved Solids vs. Total Sulfate Across AP2 Monitoring Network

Vistra - Groundwater Compliance - Documents/General/GCS/

3roundwater Compliance - Documents/General/GCSM/Co

TABLES

Table 1. CEC and LOI of Site Solids Geochemical Conceptual Site Model Coffeen Power Plant - Ash Pond No. 2

Well ID	G270	G306	G311	G313	G316	G314	G314	G314	G401	G407	G410	G410	G307D
Depth (ft bgs)	(12-16)	(14-16)	(14-15)	(8-9)	(13-14, 15-16)	(13-18)	(18-23)	(38-43)	(16-20)	(10-13)	(11-12)	(12.5-13)	(4-12.8)
Well Characterization	AP2 Background	AP1 Background	AP1 Adjacent	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP2 Compliance	AP2 Compliance	AP2 Sidegradient	AP2 Sidegradient	AP1 Compliance
Sampled Aquifer Unit	UA	UA	UA	UA	UA	LCU	LCU	DA	UA	UA	UA	UA	UCU
Field Boring Log Description	Silty Sand	Sand	Sand	Sand	Sand	Sandy to silty till	Sandy to silty till	Sand and sandy silt/clay	Sand to Sandy Clay	Sandy to gravelly silt	Sandy to gravelly silt	Sandy to gravelly silt	Clay
CEC (meq/100 g solid)	-	-	-	-	-	17.84	18.95	14.39	-	11.41	15.39	31.02	18.82
LOI (%)	-	-	-	-	-	12.43	12.33	12.30	-	2.54	3.75	11.96	-
TOC (%)	0.14	0.41	0.77	0.78	0.26	-	-	-	0.08	-	-	-	0.06
AVS (mg/kg)	< 0.19	< 0.18	0.24	<0.16M	0.28	< 0.22	< 0.22	< 0.22	< 0.19	< 0.23	< 0.23	< 0.21	-
Total Carbon (%)	-	1.65	2.76	3.26	0.46	-	-	-	-	-	-	-	-
Sulfur (%)	< 0.005	0.01	0.01	0.01	0.01	-	-	-	0.01	-	-	-	0.01
Sulfide (%)	< 0.04	< 0.04	< 0.04	< 0.04	< 0.04	-	-	-	< 0.04	-	-	-	-

Well ID	G307D	G307D	G307D	G307D	G311D	G311D	G311D	G311D	G314D	G314D	G314D	G1001
Depth (ft bgs)	(12.8-14)	(18-34.9)	(40-54)	(54-60)	(4-12)	(12-14)	(18-42)	(44-52)	(4.2-17)	(17.3-21.6)	(21.8-45.5)	(6-11)
Well Characterization	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP1 Adjacent	AP1 Adjacent	AP1 Adjacent	AP1 Adjacent	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP2 Compliance
Sampled Aquifer Unit	UA	UA	LCU	LCU	UCU	UA	UA	LCU	UCU/UA	UA/LCU	LCU	LCU
Field Boring Log Description	Sand	Sandy to gravelly silt	Clay	Clay	Clay	Sand and sandy silt/clay	Clay	Clay	Clay with trace sand	Clay with trace sand	Clay	Clay with trace sand
CEC (meq/100 g solid)	3.32	3.91	8.31	17.24	9.36	9.23	9.61	13.05	9.44	9.72	12.45	-
LOI (%)	-	-	-	-	-	-	-	-	-	-	-	-
TOC (%)	1.12	1.67	1.24	0.11	< 0.0318	1.15	1.48	0.06	< 0.0498	1.74	0.85	0.85
AVS (mg/kg)	-	-	-	-	-	-	-	-	-	-	-	-
Total Carbon (%)	-	-	-	-	-	-	-	-	-	-	-	-
Sulfur (%)	< 0.0066	0.14	0.09	0.01	0.01	0.08	0.08	0.08	0.01	0.11	< 0.008	0.03
Sulfide (%)	-	-	-	-	-	-	-	-	-	-	-	0.05

Notes

Sample depth is shown in feet below ground surface (ft bgs) Dashes indicate sample was not analyzed for analyte meq/100 g solid: milliequivalents per 100 grams solids M - Reporting limit elevated due to matrix interference LOI: loss on ignition TOC: total organic carbon AVS: acid volatile sulfides mg/kg: milligrams per kilogram AP1: Ash Pond 1 AP2: Ash Pond 2 CCR: Coal combustion residual UCU: Upper Confining Unit LCU: Lower Confining Unit DA: Deep Aquifer UA: Uppermost Aquifer

Table 2. Bulk Characterization of Site Solids Geochemical Conceptual Site Model Coffeen Power Plant - Ash Pond No. 2

Well ID	G270	G306	G311	G313	G316	G307D	G307D	G307D	G307D	G307D	G311D	G311D	G311D	G311D	G314D	G314D	G314D	G401	G1001
Depth (ft bgs)	(12-16)	(14-16)	(14-15)	(8-9)	(13-14, 15-16)	(4-12.8)	(12.8-14)	(18-34.9)	(40-54)	(54-60)	(4-12)	(12-14)	(18-42)	(44-52)	(4.2-17)	(17.3-21.6)	(21.8-45.5)	(16-20)	(6-11)
Well Characterization	AP2	AP1	A D1 A diagont	AP1	AP1	AP1	AP1	AP1	AP1	AP1	AD1 Adjacent	A D1 A discont	A D1 A diagont	A D1 A diagont	AP1	AP1	AP1	AP2	AP2
wen Characterization	Background	Background	AFT Adjacent	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance	Compliance	AFI Aujacent	API Aujacent	AFI Aujacent	AFT Aujacent	Compliance	Compliance	Compliance	Compliance	Compliance
Sampled Aquifer Unit	UA	UA	UA	UA	UA	UCU	UA	UA	LCU	LCU	UCU	UA	UA	LCU	UCU/UA	UA/LCU	LCU	UA	LCU
Field Boring Log Description	Silty Sand	Sand	Sand	Sand	Sand	Clay	Sand	Sandy to gravelly silt	Clay	Clay	Clay	Sand and sandy silt/clay	Clay	Clay	Clay with trace cand	Clay with trace sand	Clay	Sand to Sandy Clay	Clay with trace sand
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
Aluminum	9600	13000	11000	31000	32000	-	-	-	-	-	-	-	-	-	-	-	-	9700	8200
Antimony	<0.8	<0.8	<0.8	<0.8	< 0.8	<2.6	<2	<2.6	<2.8	<2.4	<3	<3.2	<3	<2.8	<2.8	<3	<2.4	< 0.8	< 0.8
Arsenic	12	6.7	2.7	5.6	5.1	7.5	1.7	2.9	5.7	4.2	3.2	3.5	2.8	3.2	1.3	2.7	3.8	5.5	6.2
Barium	210	98	58	310	320	150	10	20	93	110	57	44	69	90	63	27	140	190	120
Beryllium	0.48	0.5	0.4	0.7	0.7	< 0.86	< 0.66	< 0.87	< 0.93	< 0.79	<1	<1.1	<1	< 0.95	< 0.93	<1	<0.8	0.35	0.45
Bismuth	0.18	0.1	0.1	0.1	0.1	-	-	-	-	-	-	-	-	-	-	-	-	0.25	0.23
Boron	5	-	-	-	-	<8.6	<6.6	<8.7	<9.3	<7.9	<10	<11	<10	<9.5	<9.3	<10	<8	4	6
Cadmium	0.12	0.1	0.1	0.2	0.1	1.2	< 0.66	< 0.87	< 0.93	< 0.79	<1	<1.1	<1	< 0.95	< 0.93	<1	< 0.8	0.03	0.13
Calcium	5000	35000	52000	69000	10000	-	-	-	-	-	-	-	-	-	-	-	-	1900	42000
Chloride	-	-	-	-	-	<10	19	<10	<10	<10	<1	<1	<1	<1	<10	<10	<10	-	-
Chromium	16	130.0	100.0	130.0	150.0	9.5	3.8	8.5	10.0	8.5	10.0	8.0	10.0	12.0	8.7	9.9	25.0	14	15
Cobalt	10	6.0	4.0	7.0	4.0	25.0	1.4	4.5	7.1	6.0	3.1	4.0	5.0	5.9	<1.9	5.2	10.0	6.1	8.8
Copper	12	14	10	12	10	-	-	-	-	-	-	-	-	-	-	-	-	7.8	11
Fluoride	-	-	-	-	-	3.1	<2.5	<2.5	4.2	6.8	< 0.25	< 0.25	< 0.25	< 0.25	<2.5	<2.5	3.1	-	-
Iron	22000	-	-	-	-	20000	4900	11000	10000	19000	10000	8600	11000	12000	4900	11000	21000	14000	16000
Lead	12	9.0	7.0	11.0	12.0	15.0	3.3	5.9	7.7	7.2	8.1	5.4	6.9	8.7	5.5	7.3	11.0	9.5	11
Lithium	11	11.0	11.0	19.0	14.0	<4.3	<3.3	10.0	7.1	6.8	<5	6.4	8.4	10.0	<4.6	9.1	28.0	7	9
Magnesium	4700	15000	27000	35000	6700	-	-	-	-	-	-	-	-	-	-	-	-	1600	18000
Manganese	1200	470	310	1200	260	3100	120	290	430	470	110	250	290	380	34	320	370	54	450
Mercury	-	-	-	-	-	< 0.17	< 0.13	< 0.17	< 0.19	< 0.16	< 0.2	< 0.21	< 0.2	< 0.19	< 0.19	< 0.2	< 0.16	-	-
Molybdenum	0.8	5.8	2.7	1.6	8.1	1.3	< 0.66	< 0.87	1.4	< 0.79	<1	1.2	1.2	1.3	< 0.93	1.2	< 0.8	0.4	1.5
Nickel	20	15	11	17	13	-	-	-	-	-	-	-	-	-	-	-	-	10	15
Nitrogen (total)	-	-	-	-	-	160	<63	260	360	310	510	360	370	530	140	360	260	-	-
Potassium	1400	3700	3600	13000	14000	-	-	-	-	-	-	-	-	-	-	-	-	770	1100
Selenium	<0.7	< 0.7	< 0.7	< 0.7	< 0.7	< 0.86	< 0.66	< 0.87	< 0.93	< 0.79	<1	<1.1	<1	< 0.95	< 0.93	<1	1.0	< 0.7	< 0.7
Silver	< 0.05	< 0.5	< 0.5	< 0.5	< 0.5	-	-	-	-	-	-	-	-	-	-	-	-	< 0.05	< 0.05
Sodium	110	590	830	6000	6400	-	-	-	-	-	-	-	-	-	-	-	-	80	110
Strontium	10	26	35	100	89	-	-	-	-	-	-	-	-	-	-	-	-	9.1	35
Sulfate	-	-	-	-	-	220	170	30	<10	<10	2	<1	<1	<1	76	210	<10	-	-
Thallium	0.16	0.2	0.1	0.3	0.3	< 0.86	< 0.66	< 0.87	< 0.93	< 0.79	<1	<1.1	<1	< 0.95	< 0.93	<1	< 0.8	0.12	0.16
Tin	< 0.5	<6	<6	<6	<6	-	-	-	-	-	-	-	-	-	-	-	-	< 0.5	0.6
Titanium	230	370	320	1500	1200	-	-	-	-	-	-	-	-	-	-	-	-	65	170
Uranium	1.46	0.5	0.6	1.0	1.0	-	-	-	-	-	-	-	-	-	-	-	-	0.39	0.82
Vanadium	22	28	20	35	29	-	-	-	-	-	-	-	-	-	-	-	-	14	19
Yttrium	9.4	9	8	11	10	-	-	-	-	-	-	-	-	-	-	-	-	8.2	8.1
Zinc	50	35	27	41	34	-	-	-	-	-	-	-	-	-	-	-	-	28	35

Notes:

Sample depth is shown in feet below ground surface (ft bgs) Dashes indicate analyte was not reported by lab for sample Non-detect values are shown as less than the reporting limit mg/kg: milligrams per kilogram AP1: Ash Pond 1 AP2: Ash Pond 2 CCR: Coal Combustion Residual UCU: Upper Confining Unit LCU: Lower Confining Unit UA: Uppermost Aquifer

Table 3. XRF Analysis of Site SolidsGeochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

Well ID	G314	G314	G314	G407	G410	G410
Depth (ft bgs)	(13-18)	(18-23)	(38-43)	(10-13)	(11-12)	(12.5-13)
Well Characterization	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP2 Compliance	AP2 Sidegradient	AP2 Sidegradient
Sampled Aquifer Unit	LCU	LCU	DA	UA	UA	UA
Field Boring Log Description	Sandy to silty till	Sandy to silty till	Sand and sandy silt/clay	Sandy to gravelly silt	Sandy to gravelly silt	Sandy to gravelly silt
Analyte	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Al ₂ O ₃	8.36	8.41	8.35	6.73	8.14	4.92
CaO	6.73	6.72	6.69	0.52	1.04	9.10
Cr ₂ O ₃	< 0.01	0.02	0.02	0.01	< 0.01	< 0.01
Fe ₂ O ₃	3.19	3.48	3.71	2.08	2.77	1.69
K ₂ O	1.88	1.88	1.89	2.01	2.42	1.59
MgO	3.71	3.66	3.62	0.54	0.77	4.44
Mn ₃ O ₄	0.07	0.07	0.07	0.03	0.13	0.08
Na ₂ O	0.79	0.80	0.77	0.82	0.85	0.69
P_2O_5	0.07	0.08	0.08	0.06	0.06	0.05
SiO ₂	SiO ₂ 62.07		61.72	84.59	80.21	64.55
TiO ₂	TiO ₂ 0.49		0.50	0.36	0.40	0.26
V ₂ O ₅	0.01	< 0.01	0.01	< 0.01	0.01	< 0.01

Notes

Sample depth is shown in feet below ground surface (ft bgs).

Non-detect values are shown as less than the reporting limit.

Results are not normalized to 100%, with some portion of sample mass uncharacterized.

Analytes are presented as the respective oxide species of the element of interest, consistent with the sample processing prior to analysis.

wt %: percentage by weight

AP1: Ash Pond 1

AP2: Ash Pond 2

LCU: Lower Confining Unit

DA: Deep Aquifer

UA: Upper Aquifer

Table 4. XRD Analysis of Site SolidsGeochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

	Well ID		G270	G306	G311	G313	G316	G314	G314	G314	G401
	Depth (ft bgs)		(12-16)	(14-16)	(14-15)	(8-9)	(13-14, 15-16)	(13-18)	(18-23)	(38-43)	(16-20)
	Well Characterization		AP2 Background	AP1 Background	AP1 Adjacent	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP1 Compliance	AP2 Compliance
	Sampled Aquifer Unit		UA	UA	UA	UA	UA	LCU	LCU	DA	UA
	Field Boring Log Description		Silty Sand	Sand	Sand	Sand	Sand	Sandy to silty till	Sandy to silty till	Sand and sandy silt/clay	Sand to Sandy Clay
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	SiO ₂	Silicate	60.6	70.9	58.9	51.3	67.6	53.9	67.5	73.5	68.9
Dolomite	CaMg(CO ₃) ₂	Carbonate	0.6	3.5	12.1	15.7	1.9	13.3	0.5	0.0	-
Calcite	CaCO ₃	Carbonate	-	0.5	2.5	4.1	-	4.1	0.4	-	-
Ankerite	CaFe(CO ₃) ₂	Carbonate	0.5	2.1	5.0	7.7	0.8	7.2	1.2	0.5	0.1
Kutnohorite	CaMn(CO ₃) ₂	Carbonate	-	-	-	-	-	0.5	0.3	0.2	-
Albite	$NaAlSi_3O_8$	Feldspar	9.1	9.6	8.6	7.9	9.6	6.1	8.3	8.2	8.6
Microcline	KAlSi ₃ O ₈	Feldspar	9.8	8.5	7.4	7.6	9.8	5.1	9.7	7.8	7.8
Actinolite	$Ca_2(Mg,Fe)_5Si_8O_{22}(OH)_2$	Amphibole	3.3	-	-	-	-	0.3	0.7	0.8	1.4
Diopside	$CaMgSi_2O_6$	Pyroxene	1.3	3.1	3.8	4.6	1.3	1.0	0.7	0.7	1.4
Magnetite	Fe_3O_4	Oxide	-	-	-	-	-	-	0.2	0.0	-
Pyrite	FeS ₂	Sulfide	0.2	-	-	-	-	-	-	-	-
Biotite	$K(Mg,Fe)_3(AlSi_3O_{10})(OH)_2$	Mica	2.4	-	-	-	-	-	-	-	2.1
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	Mica	9.0	-	-	-	7.3	1.0	4.8	3.3	6.8
						Clay Minerals					
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg) ₂ Si ₄ O ₁₀ (OH) ₂ ·10H ₂ O	Clay	-	-	-	-	-	1.1	1.0	1.1	-
Illite	(K,H ₃ O)(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)]	Clay	-	-	-	-	-	4.0	2.0	1.7	-
Illite-Montmorillonite	KAl ₄ (Si,Al) ₈ O ₂₀ (OH) ₄ ·8H ₂ O	Clay	-	-	-	-	-	-	-	-	-
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	Clay	-	-	-	-	-	0.7	1.1	0.7	-
Stilpnomelane	$K(Fe^{2+},Mg,Fe^{3+})_8(Si,Al)_{12}(O,OH)_{27} \cdot n(H_2O)$	Sheet silicate	2.0	-	-	-	-	-	-		2.7
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Sheet silicate	1.4	1.8	1.7	1.1	1.7	1.6	1.7	1.5	-
	Clay Minerals Total		3.4	1.8	1.7	1.1	1.7	7.4	5.8	5.0	2.7

Notes

Dashes indicate mineral was not identified by lab Sample depth is shown in feet below ground surface (ft bgs). ft bgs: feet below ground surface wt %: percentage by weight AP1: Ash Pond 1 AP2: Ash Pond 2 LCU: Lower Confining Unit DA: Deep Aquifer UA: Uppermost Aquifer Table 4. XRD Analysis of Site SolidsGeochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

	Well ID		G407	G410	G410	G1001
	Depth (ft bgs)		(10-13)	(11-12)	(12.5-13)	(6-11)
	Well Characterization		AP2 Compliance	AP2 Sidegradient	AP2 Sidegradient	AP2 Compliance
	Sampled Aquifer Unit		UA	UA	UA	LCU
	Field Boring Log Description		Sandy to gravelly silt	Sandy to gravelly silt	Sandy to gravelly silt	Clay with trace sand
Mineral/Compound	Formula	Mineral Type	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	SiO ₂	Silicate	51.2	50.7	50.5	46.3
Dolomite	CaMg(CO ₃) ₂	Carbonate	6.0	7.6	8.1	11.3
Calcite	CaCO ₃	Carbonate	2.4	2.6	2.8	4.2
Ankerite	$CaFe(CO_3)_2$	Carbonate	9.4	8.4	8.1	1.5
Kutnohorite	CaMn(CO ₃) ₂	Carbonate	0.1	-	0.2	-
Albite	NaAlSi ₃ O ₈	Feldspar	6.8	7.4	7.5	10.4
Microcline	KAlSi ₃ O ₈	Feldspar	7.2	5.9	5.8	7.8
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂	Amphibole	0.5	0.6	0.6	0.9
Diopside	CaMgSi ₂ O ₆	Pyroxene	0.4	0.5	0.7	0.8
Magnetite	Fe_3O_4	Oxide	0.1	0.1	0.2	-
Pyrite	FeS_2	Sulfide	-	-	-	0.1
Biotite	K(Mg,Fe) ₃ (AlSi ₃ O ₁₀)(OH) ₂	Mica	-	-	-	2.4
Muscovite	KAl ₂ (AlSi ₃ O ₁₀)(OH) ₂	Mica	5.5	4.4	4.3	10.3
Montmorillonito	(N_2, C_2) $(A1, M_2)$ Si O (OH) (10H O	Clay	2.2	2.2	2.0	1
Monunormonite		Clay	3.2	3.2	2.9	-
Illite	$(K,H_3O)(AI,Mg,Fe)_2(SI,AI)_4O_{10}[(OH)_2,(H_2O)]$	Clay	3.3	3.0	2.9	-
Illite-Montmorillonite	KAl ₄ (Si,Al) ₈ O ₂₀ (OH) ₄ ·8H ₂ O	Clay	-	1.3	1.7	-
Kaolinite	Al ₂ Si ₂ O ₅ (OH) ₄	Clay	0.9	0.6	0.6	-
Stilpnomelane	$K(Fe^{2+},Mg,Fe^{3+})_8(Si,Al)_{12}(O,OH)_{27} \cdot n(H_2O)$	Sheet silicate	-	-	-	2.6
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈	Sheet silicate	3.0	3.9	3.2	1.5
	Clay Minerals Total		10.4	12.0	11.3	4.1

Notes

Dashes indicate mineral was not identified by lab Sample depth is shown in feet below ground surface (ft bgs). ft bgs: feet below ground surface wt %: percentage by weight AP1: Ash Pond 1 AP2: Ash Pond 2 LCU: Lower Confining Unit DA: Deep Aquifer UA: Uppermost Aquifer Geosyntec Consultants, Inc.

Table 5. AP2 Porewater ChemistryGeochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

Location Name		AP2e	AP2f	AP2g	AP2h	CO 102 PumpQbox
Sample Date		2016/10/24	2016/10/24	2016/10/24	2016/10/24	2020/05/06
Total Boron	(mg/L)	5.3	2	4.3	14	2.6
Dissolved Iron	(mg/L)	-	-	-	-	530
Total Iron	(mg/L)	-	-	-	-	530
Dissolved Manganese	(mg/L)	-	-	-	-	3.2
Total Manganese	(mg/L)	-	-	-	-	3.2
pH	(SU)	6.5	6.4	6.5	7.2	4.82Q
Total Sulfate	(mg/L)	1500	1500	2300	1300	1600
Total Dissolved Solids	(mg/L)	1700	1700	2400	1500	2100
Total Lithium	(mg/L)	0.19	0.13	0.18	0.12	0.14
Dissolved Cobalt	(mg/L)	-	-	-	-	0.0041

Notes

Q - Analysis performed after the acceptable holding time window

SU: standard units

mg/L: milligrams per liter

- : Analyte not included in analyses for sampling date

Table 6. AP2 Eh-pH Diagram InputsGeochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

Well ID		G402
Sample Date		6/6/2023
Aquifer Unit		UA
Input Parameter	Unit	
Temperature	°C	23.2
pН	SU	6.62
Calcium	mg/L	210
Chloride	mg/L	3.4
Bicarbonate Alkalinity	mg/L	500
Magnesium	mg/L	130
Sodium	mg/L	44
Potassium	mg/L	1
Sulfate	mg/L	580
Total Manganese	mg/L	1.3
Total Iron	mg/L	3.5

Notes

°C - degrees Celsius mg/L - milligrams per liter

SU - standard units

UA - uppermost aquifer

Table 7. Total and Dissolved Aqueous Iron and Manganese ResultsGeochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

Well ID	Well Characterization	Sompled Aquifor Unit	Data	Total Iron	Dissolved Iron	Total Manganese	Dissolved Manganese
wen iD		Sampled Aquiter Unit	Date	(mg/L)	(mg/L)	(mg/L)	(mg/L)
G1001	AP2 Compliance	LCU	2023/06/07	0.12	< 0.01	0.19	0.14
			2023/06/08	0.68	0.044	0.85	0.079
G270	AP2 Background	UA	2023/08/14	0.147	0.019	0.244	0.157
			2023/11/17	0.119	0.0115	0.197	0.0675
			2023/06/08	0.97	0.0061	0.043	0.0014
G280	AP2 Background	UA	2023/08/14	0.264	< 0.0175	0.0159	0.0032
			2023/11/20	0.31	0.0115	0.0452	0.0123
C281	AD2 Deckground	ΙΙΛ	2023/06/08	0.88	0.016	0.7	0.31
0201	AP2 Background	UA	2023/08/14	0.194	< 0.0175	0.352	0.291
C401	AD2 Compliance	ΙΙΛ	2023/06/07	60	84	22	27
0401	AF2 Compnance	UA	2023/08/11	101	93.8	28.8	36
C402	AD2 Compliance	ΙΙΛ	2023/06/06	3.5	0.0033	1.3	0.86
0402	AF2 Compnance	UA	2023/08/11	3.58	< 0.0115	1.2	0.867
C402	AD2 Compliance	ΙΙΛ	2023/06/07	0.23	0.011	0.4	0.36
0403	AF2 Compnance	UA	2023/08/11	0.284	0.0763	0.486	0.376
C404	AD2 Compliance	ΙΙΛ	2023/06/07	0.11	0.058	1.3	1.2
0404	AF2 Compnance	UA	2023/08/14	3.42	0.0718	5.42	2.85
C405	AD2 Compliance	ΤīΛ	2023/06/06	0.31	0.13	1.1	1.1
0405	AF2 Compnance	UA	2023/08/11	0.239	0.165	1.15	1.07
C406	AD2 Compliance	ΙΙΛ	2023/05/31	0.012	< 0.00072	4.5	4.4
0400	AF2 Compnance	UA	2023/08/11	0.016	< 0.0115	4.76	4.45
C407	AD2 Compliance	ΤΤΛ	2023/05/31	0.073	0.01	0.42	0.38
0407	Ar 2 Compnance	UA	2023/08/10	0.0501	0.015	0.285	0.445

Notes

mg/L: milligrams per liter

Non-detect values are shown as less than the reporting limit.

AP2: Ash Pond 2

LCU: Lower Confining Unit

UA: Uppermost Aquifer

Table 8. Batch Attenuation Testing Results, G401Geochemical Conceptual Site ModelCoffeen Power Plant - Ash Pond No. 2

Groundwater Sample ID	Geologic Material Sample ID	Treatment	Actual Ratio	Date	Day	Replicate	Dissolved Boron	Dissolved Sulfate	рН	ORP
							Beplicate Dissolved Boron Dissolved Sulfate pH mg/L mg/L SU G401-1a 2.6 1,677 3.15 G401-2b 1.9 1,597 3.15 rage Concentration (mg/L) 2.2 1,637 3.15 G401-1 3.2 1,713 3.05 G401-2 3.2 1,618 2.95 rage Concentration (mg/L) 3.2 1,618 2.95 rage Concentration (mg/L) 3.2 1,618 2.95 rage Concentration (mg/L) 1.9 1,394 6.42 G270:G401 2:1-2 1.9 1,431 6.48 rage Concentration (mg/L) 1.9 1,394 6.42 G270:G401 1:1-1 2.2 1,658 6.46 rage Concentration (mg/L) 2.2 1,557 6.44 G270:G401 1:5-1 3.2 1,708 6.33 G270:G401 1:5-2 3.0 1,805 6.20 rage Concentration (mg/L) 3.1	mV		
						G401-1a	Built Instant Dissolved Boron Dissolved Sulfate mg/L mg/L mg/L G401-1a 2.6 1,677 G401-2b 1.9 1,597 verage Concentration (mg/L) 2.2 1,637 G401-2 3.2 1,618 verage Concentration (mg/L) 3.2 1,618 verage Concentration (mg/L) 3.2 1,666 G270:G401 2:1-1 1.8 1,356 G270:G401 2:1-2 1.9 1,431 verage Concentration (mg/L) 1.9 1,394 G270:G401 1:1-1 2.2 1,658 G270:G401 1:1-2 2.2 1,658 G270:G401 1:1-2 2.2 1,658 G270:G401 1:5-1 3.2 1,708 G270:G401 1:5-2 3.0 1,805 verage Concentration (mg/L) 3.1 1,756 G270:G401 1:10-1 2.7 1,881 G270:G401 1:10-2 3.1 1,785 G270:G401 1:10-2 3.1 1,785 G270:G401 1:10-2 3.1 <td< td=""><td>3.15</td><td>518</td></td<>	3.15	518	
				19-Aug-21	0	G401-2b	1.9	1,597	3.15	520
G401		Groundwater Only Control				Average Concentration (mg/L)	2.2	1,637	3.15	519
0401		Groundwater Only Control				G401-1	3.2	1,713	3.05	312
				26-Aug-21	7	G401-2	3.2	1,618	2.95	369
						Average Concentration (mg/L)	3.2	1,666	3.00	341
				19-Aug-21	0					
		2.1 Soil:Water Patio	2.1.6			G270:G401 2:1-1	1.8	1,356	6.35	156
		2.1 5011. Water Katlo	2.1.0	26-Aug-21	7	G270:G401 2:1-2	1.9	1,431	6.48	160
						Average Concentration (mg/L)	1.9	1,394	6.42	158
				19-Aug-21	0					
		1.1 Soil:Water Ratio	1:1.4			G270:G401 1:1-1	2.2	1,456	6.42	170
		1.1 Soll. Water Katlo		26-Aug-21	7	G270:G401 1:1-2	2.2	1,658	6.46	174
						Average Concentration (mg/L)	2.2	1,557	6.44	172
				19-Aug-21	0					
C401	C270(12.16hm)	1.5 Sail Water Datia	1.6.1			G270:G401 1:5-1	3.2	1,708	6.33	347
G401	$G_{2}/0$ (12-10 bgs)	1:5 Soll: water Ratio	1:0.1	26-Aug-21	7	G270:G401 1:5-2	3.0	1,805	6.20	327
				_		Average Concentration (mg/L)	3.1	1,756	6.27	337
				19-Aug-21	0					-
		1.10 S - 1.W-4 D - 4:-	1.12.0			G270:G401 1:10-1	2.7	1,881	6.10	312
		1:10 Soll: water Ratio	1:12.0	26-Aug-21	7	G270:G401 1:10-2	3.1	1,785	6.05	299
				C		Average Concentration (mg/L)	2.9	1,833	6.08	306
				19-Aug-21	0					-
		1-20 S-11 W-ton D (1.20.0			G270:G401 1:20-1	2.9	1,784	6.05	285
		1:20 Soil: Water Ratio	1:29.9	26-Aug-21	7	G270:G401 1:20-2	3.0	1,683	5.86	275
				Ŭ		Average Concentration (mg/L)	2.9	1,734	5.96	280

Notes

ID - identification

mg/L - milligrams per liter

mV - millivolts

SU - Standard Units

ORP - oxidation/reduction potential

Geosyntec Consultants, Inc.

Table 9. Partition Coefficient Results, G401 Geochemical Conceptual Site Model Coffeen Power Plant - Ash Pond No. 2

Materials	Analyte	Isotherm	Variable	Value
		Lincor	\mathbf{R}^2	0.442
		Linear	K _D (L/kg)	-11.08
			\mathbf{R}^2	0.294
	ron	Langmuir	q _m (mg/g)	0.000
	Bol		K _L (L/kg)	-4.64E+05
			\mathbf{R}^2	
(G270		Freundlich	1/n	
			K _F (L/kg)	
401,		Lincor	\mathbf{R}^2	0.603
9		Linear	K _D (L/kg)	-6.18
			\mathbf{R}^2	0.563
	fate	Langmuir	q _m (mg/g)	-0.035
	Sul		$K_L (L/kg)$	-5.64E+02
			\mathbf{R}^2	
		Freundlich	1/n	
			K _F (L/kg)	

Notes

--- Freundlich isotherm not calculated because the data were not conducive to log transformation

- K_D linear partition coefficient
- K_L Langmuir partition coefficient
- K_F Freundlich partition coefficient
- \boldsymbol{q}_m inverse of the slope of the linearized Langmuir isotherm
- n non-linearity constant of the Freundlich isotherm

Attachment A Site Layout Figure

Y:\Mapping\Projects\22\2285\MXD\Nature_and_Extent\COF\Nature_and_Extent_Report\102\Figure 2-1_Site Location Map AP2.mxd

SITE LOCATION MAP

FIGURE 2-1

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

Attachment B

Proposed Part 845 Groundwater Monitoring Network

- COMPLIANCE MONITORING WELL
- BACKGROUND MONITORING WELL
- STAFF GAGE, RIVER

REGULATED UNIT (SUBJECT UNIT)

SITE FEATURE

LIMITS OF FINAL COVER

PROPERTY BOUNDARY

0 275 550

MONITORING WELL LOCATION MAP

FIGURE 2-2

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

Attachment C Monitoring Well Construction Information

TABLE 2-1. MONITORING WELL LOCATIONS AND CONSTRUCTION DETAILS GROUNDWATER MONITORING PLAN COFFEEN POWER PLANT ASH POND NO. 2 COFFEEN, ILLINOIS

Well Number	Туре	HSU	Date Constructed	Top of PVC Elevation (ft)	Measuring Point Elevation (ft)	Measuring Point Description	Ground Elevation (ft)	Screen Top Depth (ft BGS)	Screen Bottom Depth (ft BGS)	Screen Top Elevation (ft)	Screen Bottom Elevation (ft)	Well Depth (ft BGS)	Bottom of Boring Elevation (ft)	Screen Length (ft)	Screen Diameter (inches)	Latitude (Decimal Degrees)	Longitude (Decimal Degrees)
G1001	С	UA	04/05/2021	597.61		Top of PVC	594.82	6.00	11.00	588.82	583.82	11.00	562.82	5	4	39.063324	-89.391236
G270	В	UA	02/26/2008		625.86	Top of Disk	623.73	13.13	17.92	610.60	605.81	18.27	605.50	4.8	2	39.066564	-89.397403
G280	В	UA	02/26/2008	625.35	625.35	Top of Riser	623.11	12.79	17.63	610.32	605.48	17.98	605.10	4.8	2	39.067216	-89.394992
G281	В	UA	09/08/2015		626.36	Top of Disk	623.82	15.51	20.16	608.31	603.66	20.30	603.50	4.7	2	39.065405	-89.399322
G401	С	UA	09/14/2015		625.57	Top of Disk	623.03	14.36	18.79	608.67	604.24	19.29	603.70	4.4	2	39.060259	-89.395295
G402	С	UA	08/27/2010		613.37	Top of Disk	610.36	10.00	20.00	600.36	590.36	20.40	590.00	10	2	39.060207	-89.391712
G403	С	UA	09/11/2015		626.47	Top of Disk	623.81	13.11	17.78	610.70	606.03	18.15	605.70	4.7	2	39.063167	-89.398779
G404	С	UA	05/01/2007		615.67	Top of Disk	613.57	6.42	11.17	607.15	602.40	11.62	601.60	4.8	2	39.064329	-89.392493
G405	С	UA	05/01/2007		623.63	Top of Disk	621.40	9.01	13.76	612.39	607.64	14.21	607.20	4.8	2	39.064345	-89.396234
G406	С	UA	08/19/2016	625.36	625.36	Top of PVC	621.86	13.56	18.37	608.30	603.49	18.75	603.10	4.8	2	39.060309	-89.398508
G407	С	UA	08/16/2016	621.32	621.32	Top of PVC	618.35	13.78	18.61	604.57	599.74	19.04	598.40	4.8	2	39.061574	-89.402004
SG-02	WLO	SW			605.87	Top of Prot Casing	605.87									39.059695	-89.391429
SG-03	WLO	SW			594.94	Top of Prot Casing	594.94									39.059092	-89.390342
SG-04	WLO	SW			599.52	Top of Prot Casing	599.52									39.064146	-89.390504

Notes:

All elevation data are presented relative to the North American Vertical Datum 1988 (NAVD88), GEOID 12A Type refers to the role of the well in the monitoring network: background (B), compliance (C), or water level measurements only (WLO) WLO wells are temporary pending implementation of impoundment closure per an approved Construction Permit application --- = data not available

BGS = below ground surface

ft = foot or feet

HSU = Hydrostratigraphic Unit PVC = polyvinyl chloride

SW = surface water

UA = uppermost aquifer

generated 10/05/2021, 3:12:20 PM CDT

Attachment D Boring Logs

FIGURE 2-6

RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.

UPPERMOST AQUIFER POTENTIOMETRIC SURFACE MAP MAY 30, 2023 (E001)

> NATURE AND EXTENT REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS

GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88) COMPLIANCE MONITORING WELL BACKGROUND MONITORING WELL INFERRED GROUNDWATER ELEVATION CONTOUR GROUNDWATER FLOW DIRECTION REGULATED UNIT (SUBJECT UNIT) SITE FEATURE LIMITS OF FINAL COVER

PROPERTY BOUNDARY

0 325 650 - Feet 1

MONITORING WELL

PORE WATER WELL

STAFF GAGE, RIVER

STAFF GAGE, CCR UNIT

LEACHATE WELL

÷

÷

₽

÷ \oplus

Geosyn	tec	Clien	t: Dynegy		N	/EL	L LOG					
consul	ants	Proje	ct: GLP8005, Coffeen Power Station		Well No. Page [.]	G1	001 f 2					
engineers scientists ir	novators	Addr	ess: Coffeen, IL 62017		raye.		1 2					
Drilling Start Date: 04	/05/2021		Boring Depth (ft): 32	Well D	Depth (ft):	12						
Drilling End Date: 04	/05/2021 borte Drillir	na	Boring Diameter (in): 6	Well L	Diameter (in):	1	IO					
Drilling Method: D	rect Push	'9	DTW After Drilling (ft):	Riser I	Material:	Sch	40 PVC					
Drilling Equipment: G	eoprobe		Top of Casing Elev. (ft)	Scree	n Material:	Sch	40 PVC Slotte	ed				
Driller:			Ground Elev. (ft):	Seal N	/laterial(s):	Ben	tonite Chips					
Logged By: A.	Тоуе		Northing, Easting (NAD83):	Filter F	Pack:	San	d					
	COL	LECT	-				MEASURE					
DEPTH (ft) LITHOLOGY ATER LEVE WELL	imple Type covery (in)	ow Counts I Value (QD (%)	SOIL/ROCK VISUAL DESC	CRIPTI	ON		b Sample)ЕРТН (ft)				
	Se Re						Га					
0	DP 24/48		(0') SILT (ML); very dark gravish brown (2.5Y	3/2), m	edium soft, m	oist,		Γ 0				
	DP 48/48		 (4') CLAY (CL); with trace sand, yellowish brown (2.01' moist, trace gravel. (8') As above: medium stiff, brown (10YR 4/3) (10YR 5/6) mottling. 	wn (10Y	/R 5/6), stiff, ellowish brown		- Chem (6-11')	- - - - - -				
	DP 48/48		(12') CLAY (CL); dark gray (10YR 4/1), mediu	m stiff,	moist.			- 10 - -				
	C DP 48/48		(16') As above: dark gray (2.5Y 4/1).					- 15 20				
NOTES: No gro	NOTES: No groundwater encountered.											

	Ge	OS	synte	ec			Client:DynegyWELL LProject:GLP8005, Coffeen Power StationWell No. G1001						
	engineers	CC	Insultai	nts			Addr	ess: Coffeen, IL 62017		Page:	20	f 2	
Drillir Drillir Drillir Drillir Drillir Drille Logg	ig Start ig End I ig Com ig Meth ig Equij r: ed By:	Date Date pany od:	e: 04/0: : 04/0: /: Rob Dire nt: Geo A. Te	5/202 5/202 erts I ct Pu prob	21 21 Drillin Ish Ie	ıg		Boring Depth (ft): 32 Boring Diameter (in): 6 DTW During Drilling (ft): DTW After Drilling (ft): Top of Casing Elev. (ft) Ground Elev. (ft): Northing, Easting (NAD83):	Well I Well I Scree Riser Scree Seal M Filter	Depth (ft): Diameter (in): n Slot (in): Material: n Material: Material(s): Pack:	12 1 0.01 Sch Sch Ben San	10 40 PVC 40 PVC Slotte tonite Chips d	ed
	7	VEL	NO	e		LEC	T					MEASURE	
DEPTH (fi	ΓΙΣΗΟΓΟΟ	WATER LE'	WELL	Sample Typ	Recovery (in	Blow Counts	N Value RQD (%)	SOIL/ROCK VISUAL DESC	CRIPTI	ON		Lab Sample	DEPTH (ft)
20-				DP	48/48			(20') As above: gravel at 1 ft.					_ 20
				DP	48/48			(24') As above: dry pocket at 2.8 ft. (28') As above: trace gravel and silt at 2 ft.					- 25 - 25 - 30
								(32') End of Boring.					- 35
Ν	IOTES:	: N	lo groun∉	dwate	er en	coun	tered.						

FI	EL]	D] T: A	BOR EG Coffe	EIN en P	NG ower	Station) G	CONTRACTOR: Testing Service Corp.	C HANSON			
]	Sit Locatio	te: C n: C	CB Mana offeen, Ill	igem linois	ent F s	acility		Rig mfg/model: CME-650 Track Drill Drilling Method: 3 ¹ / ₄ " HSA w/SS & CME sam	plers Well ID: G270			
WE	Projec DATE ATHE	et: 05 S: S1 Fir R: 0	5S3004A cart: 2/2 nish: 2/2 vercast, c	6/20 6/20 old	08 08			FIELD STAFF: Driller: B. Williamson Helper: R. Keedy Eng/Geo: .	Surface Elev: 622.92 ft. MSL Completion: 18.27 ft. BGS Station: 874,801.92N 2,514,996.84E			
S	AMPL	E	Т	EST	TINC	;	TOPOG	RAPHIC MAP INFORMATION:	WATER LEVEL INFORMATION:			
	tal (ii y		u	(%)	lb/ft ³)	<i>p</i> (tsf be	Quad Town	rangle: Coffeen, IL ship: East Fork	$\Psi = 16.00$ - While drilling $\Psi = 5.62 - 3/12/08$			
er.	/ / To cover.		s/6i	ure (Den. ($f_{\rm C} D_{\rm C}$	Sectio	n 11, Tier 7N; Range 3W	<u> </u>			
Numb	Recov % Rec	Type	Blows N - V RQD	Moist	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	Borehole Elevation Detail ft. MSL Remarks			
	20/24 83%	ss	2-2 2-4					Dark grayish brown (10YR4/2), moist, firm, clayey SII	$T \qquad			
1.4	0270	A	N=4	24				Dark grayish brown (10YR4/2), moist, firm, silty CLA	Y			
2A	19/24		3-4	24		2.33	2	Dark grayish brown (10YR4/2) with 5% yellowish brow (10YR5/8) mottles, moist, firm, silty CLAY, slight trac 				
211	79%	\int_{0}^{∞}	5-9 N=9			B		Gray (10YR5/1) with 70% yellowish brown (10YR5/8 mottles moist firm silty CLAX slight trace sand and				
2B		$\overline{\mathbf{M}}$	145	20		5.04 Sh	4	gravel				
3A	20/24 83%	ss	7-8 N=12	17		2.52 Sh	⊻ 6-	Dark gray (10YR4/1) with 5% yellowish brown (10YR5 mottles, moist, firm, silty CLAY, trace sand, slight trac gravel	(/8) e			
4A	24/24 100%	ss	8-6 7-5	21		1.24 BSh			616			
4B		$\left(\right)$	N=13	21		1.20 B	8	Gray (10YR5/1) with 10% yellowish brown (10YR5/8				
5A	22/24 92%	ss	2-3 4-4 N=7	21		1.36 B		mottles, moist, firm, silty CLAY, trace sand, slight trac gravel	e614			
6A	24/24	N ss	<i>1-2</i> 2-3	21		0.74	10	Gray (10YR5/1) with 60% yellowish brown (10YR5/8 mottles, moist, firm, silty CLAY, trace sand, slight trac gravel	b)			
6B	100%	Λ	N=4	24		BSh 0.78	12	Gray (10YR5/1), moist, soft, sandy CLAY				
-	17/24 71%	ss	2-2 2-3 N=4			В		Gray (10YR5/1), moist, soft, sandy CLAY, trace grave	el 610			
/A		\square	11.4	21				Gray (10YR5/1), moist, soft, fine- to coarse-grained SAN	\overline{D} , \overline{D}			
8A	10/24	M	1-3	20					AY /			
8B	19/24 79%	ss	5-6 N=8	17		4.46 Sh		Gray (10YR5/1) with 10% yellowish brown (10YR5/8 mottles, moist, firm, silty CLAY, slight trace sand and gravel				
9A	24/24 100%	ss	6-8 30-35	20			16	Yellowish brown (10YR5/4), wet, soft, fine to coarse SAND				
9B	10070	\wedge	N=38	8			18-	Gray (10YR5/1), moist, hard, silty CLAY, trace sand as gravel	nd			
	End of Boring = 18.27 ft. BGS											
	TEAN											
	1E(S):											

FI () WE	ELIENT Site Location Projec DATES	D] F: Na e: Ca n: Ca t: 15 f: St Fin R: St	atural Re offeen Po offeen, III 5E0030 art: 5/3 hish: 5/3 unny, cali	sourd wer S linois /2016 /201 m, wa	neering LLC 800ATV pler	C BOREHOLE ID: G306 Well ID: G306 Surface Elev: 622.84 ft. MSL Completion: 18.00 ft. BGS Station: 2,516,120.41N 871,140.98E						
S	SAMPL (ii)	E	T	EST		(tsf)	TOPOGF Quadr	APHIC MAP INFORMATION: angle: Coffeen, IL	WATER	LEVEL 5.50 -	INFORMA During Drilli	ΓΙΟΝ: ng
er	/ Total		/ <i>6 in</i> alue	ure (%)	en. (lb/	f) Qp (e Type	Towns Section	hip: East Fork n 14, Tier 7N; Range 3W	$\bar{\mathbf{\Lambda}} =$			
Numb	Recov % Rec	Type	Blows N - V; RQD	Moist	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	B	orehole Detail	Elevation ft. MSL	Remarks
1A	12/24 50%	ss	<i>1-3</i> <i>3-4</i> N=6	14				Very dark brown (10YR2/2), moist, medium, SILT v little clay and few very fine- to medium-grained sand, r trace coal fragments.	vith poots,			
2A			5 /	21			2	Dark gray (10YR4/1) with 5% dark yellowish brow (10YR3/6) mottles, moist, stiff, SILT with little clay a	n			
2B	24/24 100%	ss	5-4 N=9	19				Gray (10YR6/1) with 10% yellowish brown (10YR5 mottles, moist, very stiff, SILT with little clay and tra very fine-grained sand.	5/6) ace		620	
3A	22/24 92%	ss	2-2 3-3 N=5	30			¥	Gray (10YR6/1) with 20% yellowish brown (10YR5	5/6)		618	
4A	20/24 83%	ss	3-4 6-6 N=10	26			8	very fine-grained sand.			616	
5A	24/24 100%	ss	2-2 3-3 N=5	23			10	Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, very stiff, silty CLAY with	trace		614	
6A	22/24 92%	ss	1-2 3-4 N=5	20			12	very fine- to coarse-grained sand.			612	
7A	20/24 83%	ss	5-6 6-6 N=12	21				Gray (10YR5/1) with 30% dark yellowish brown (10YR4/6) mottles, moist, stiff, silty CLAY with few fine- to coarse-grained sand.	very		610	
8A	20/24	N	2-2	15				Yellowish brown (10YR5/6), wet, soft, very fine-to coarse-grained sandy CLAY with little silt.	0		608	
8B	83%		N=10	12			16	Yellowish brown (10YR5/6), wet, medium dense, sil very fine- to medium-grained SAND with trace coarse-grained sand.	lty,			
9A	23/24	ss	14-17 28-50/5'	10				coarse-grained SAND with little silt, little very fine-gra sand, and trace small gravel.	ained		606	
9B	2070	/\	N=45	13			18	(10YR4/6) mottles, moist, hard, SILT with little clay, very fine- to coarse-grained sand, and trace small grav End of boring = 18.0 feet	few vel.			

F	[EL]	D F: III	BOR	Ner (IG Gener	L tating C	DG	CONTRACTOR: Bulldog Drilling, Inc.		С? Н	ANSON	
	Sit Location Project	e: Co n: Co	offeen Po offeen, II	ower linois	Stati s	on Ash	Pond 1	Rig mfg/model: CME 55LC Track Drill Drilling Method: 4 ¹ / ₄ " Hollow Stem Auger v Spoon	/Continuous Split	BOREHOLE ID: Well ID: Surfees Flow	G307 G307 622.08 ft MSI	
WF	DATE	S: St Fin	art: 07/2 ish: 07/2 vercast x	26/20 27/20	016 016 0 & h	umid (i	mid-80s)	FIELD STAFF: Driller: J. Gates Helper: C. Clines Fng/Geo: R. Hasenvager		Completion: Station:	18.22 ft. BGS 871,398.55N 2 515 553 26E	
	SAMPL	к. О Е	T	TEST	TING	iunnu (i i	TOPOCO				2,515,555.20E	
	(in)				t3)	sf)	Quadr	angle: Coffeen	$\mathbf{\Psi} = 14.0$	0 - during drilling	UN:	
	otal		in	(%)	(lb/f	<i>Qp</i> (t ype	Towns	hip: East Fork	$\underline{\Psi} = -1.7$	6 - 7/27/2016 @ 0	7:30	
lber	р <i>лоза</i> Г / лс	d)	vs/6 Value	sture	Den.	tsf) ure T	Section		<u> </u>	1 51		
Nun	Rec % R	Typ	Blov N - J	Moi	Dry	Qu (Failt	ft. BGS	Description	Detai	il ft. MSL	Remarks	
	18/24	M	1-3					Brown (10YR5/3), moist, stiff, SILT with few clay, t sand, gravel and roots.	race			
1A	75%	ss	3-2 N=6	22								
							2	Gray (10YR5/1), moist, soft, CLAY, with some silt, t	race	620		
	22/24	M	2-1					suite, graver and roots.				
24	92%	ss	3-3 N=4	28								
2/1		/ \		20			4			- (19		
		\mathbb{N}	1.2					Gray (10YR5/1) with 30% yellowish brown (10YR5 mottles, moist, soft, CLAY with some silt, trace sar	5/8) nd,			
	24/24 100%	ss	1-2 3-4 N=5					gravel and roots.				
3A		$\langle \rangle$	IN-3	26								
							6			616		
	24/24	ss	1-3 3-3									
4A	10070	\mathbb{N}	N=6	18								
							8			614		
	24/24	ss	3-3 4-5					Yellowish brown (10YR5/6) with 20% gray (10YR5 mottles, moist, medium CLAY, with some silt, few v	ery			
5A	100%	A	N=7	19				tine- to medium-grained sand, and trace gravel.				
							10			612		
	24/24	$\mathbb{V}_{\mathbb{R}}$	3-3									
6A	100%	N ³³	N=7	20								
							12	Gray (10YR5/1), moist, medium, CLAY with little sil	t and	610		
7.4	24/24	V	woh-2	20				Gray (10YR5/1) with 25% yellowish brown (10YR5 mottles, moist, soft, CLAY with some silt, trace sand	and			
/A	100%	ss	5-13 N=7	20				gravel.				
7B	-			11			⊻ 14	Gray (10YR6/1), wet, medium dense, very fine- to v coarse-grained SAND with few silt and trace clay	ery	••••• ••••• •••••		
	24/24	M	12-9						• • • • • • •	· · · · · · · · · · · · · · · · · · ·		
84	100%	ss	6-9 N=15	20				Yellow brown (10YR5/6), wet. medium dense, very to very coarse-grained SAND, with little silt and tra	ine-	**** <u>-</u>		
04		/ \		20			16	gravel. Vallowish brown (10VP5/8) moist hard SII T with				
	18/18	\bigvee_{\sim}	8-30					clay, little very fine- to very coarse-grained sand and gravel.	race	- 606		
0.4	100%	$\int_{-\infty}^{\infty}$	N=80	0				Gray (10YR5/1), moist, hard, SILT with some clay, I	ittle			
ЭA	0/9	BD		Ó			18	very mile- to very coarse-grained sand and trace grav	·CI.			
	0/0		I		1	I	10	End of boring = 18.2 feet		604		
NC	DTE(S):											
1												

FI	ELD) B	ORII	NG	۶L	.00	;		6	H	
	CLIEN Sit Locatio Projec DATE	T: IIIi e: Co n: Co ct: 20 S: St Fin	nois Pow offeen Pa offeen, III 0E0111A (art: 2/5/ ish: 2/5/	ver G art 84 linois 2021 /202	iener 15 Gr ; I 1	rating (roundw	Co. <i>v</i> ater	CONTRACTOR: Roberts Rig mfg/model: Drilling Method: 4.25" HSA w/SS sampler FIELD STAFF: Driller: Matt Helper: Corey		BOREHOLE ID: Well ID: Surface Elev: Completion: Station:	G311 G311 618.32 ft. MSL 14.40 ft. BGS 872,238.70N
N N		R: CI	ear, cold	(205	3) 		. <u> </u>	Eng/Geo: C. Colin Winter			2,515,881.80E
nber	ov / Total (in)	Ξ υ	<i>ws / 6 in</i> Value D	er Content (%)	Density (Ib/ft ³)	(tsf) <i>Qp</i> (tsf) ure Type	TOPOGRAI Quadrar Townsh Section	PHIC MAP INFORMATION: Igle: Coffeen, IL ip: East Fork 11, Tier 7N; Range 3W	Develop		
Nun	Rec % R	Typ,	Blov N - V	Wat	Dry	Qu (Faill	ft. BGS	Lithologic Description	Borehole Detail	Elevation ft. MSL	Remarks
							2 4 4 10 12 14				

FI	FIELD BORING LOG CLIENT: Illinois Power Generating Co. CONTRACTOR: Roberts												
	CLIEN Sit Locatio Projec DATE	T: 1111 ne: Co n: Co n: Co st: 20 S: St Fin	inois Pov offeen Pa offeen, II DE0111A t art: 2/5/ ish: 2/5	ver G art 84 linois 2021 /202	Gene 45 G s 1	erating (Groundv	Co. vater	CONTRACTOR: Roberts Rig mfg/model: CME-75 Track Rig Drilling Method: 3.25" HSA w/SS sampler FIELD STAFF: Driller: Matt Helper: Corey	BOREI Surfa Cor	HOLE ID: G311D Well ID: G311D ace Elev: 618.39 ft. MSL npletion: 60.00 ft. BGS Station: 872.238.70N			
v	/EATHE	R : C	lear, cold	1 (20	s)			Eng/Geo: C. Colin Winter		2,515,881.80E			
	SAMPLE (ii)	Ξ	1	TEST	p/tt ₃)	sf)	TOPOGR Quadr	APHIC MAP INFORMATION: V angle: Coffeen, IL	VATER LEVEL INFORI 및 = 11.20 - Durin	MATION: Ig Drilling			
	Total very		6 in e	ontent	sity (I	Qp (t Vpe	Towns Sectio	ship: East Fork Township n 11. Tier 7N: Range 3W	⊻ = ▼ =				
Jumber	kecov / % Reco	ype	slows / J - Valu ROD	Vater Co	Den	ວິມ (tsf) ailure	Depth ft BGS	Lithologic Description	Borehole Ele	vation MSI Remarks			
1A	13/24 54%	ss	0-4 4-4 N=8					Yellowish brown (10YR5/6), moist, stiff, lean CLAY, with some silt, few very fine- to fine-grained sand, trace small gravel.	e	518			
2A	24/24 100%	ss	3-4 5-6 N=9				2	Gray (10YR5/1) with 20% yellowish brown (10YR5/6) and 5% very dark grayish brown (10YR3/2) mottles, moist, stiff, lean CLAY, with some silt, trace very fine- to fine-grained sand, an small gravel.	d to the second se	516			
3A 4A	24/24 100%	ss	2-4 5-7 N=9					Very dark grayish brown (10YR3/2) with 10% gray (10YR5/1) mottles, moist, stiff, lean CLAY, with some silt, trace very fine to fine-grained sand, and small gravel.		514			
54	24/24 100% 18/24	SH	1-2 4-5				8	Gray (10YR5/1) with 15% yellowish brown (10YR5/6) mottles moist, stiff, lean CLAY, with some silt, little very fine- to		312			
6A	24/24 100%	ss	N=6 1-3 3-4 N=6				10 -	Gray (10YR5/1) with 10% yellowish brown (10YR5/6) mottles		508			
7A	24/24 100%	ss	2-6 12-13 N=18				12	moist to wet, medium stift, lean CLAY, with some very fine- to fine-grained sand, little silt, few small gravel. Yellowish brown (10YR5/6), moist to wet, medium stiff, lean CLAY, with some very fine- to fine-grained sand, little silt, few small gravel. Gray (10YR5/1), moist to wet, medium stiff, SILT, with some very fine- to fine-grained sand, few clay, trace small gravel.		1" wet, SAND at 13.5			
8A	24/24 100%	ss	2-6 12-13 N=18				14			504			
9A	24/24 100%	ss	6-15 18-22 N=33					Yellowish brown (10YR5/6), moist, hard, SILT, with some clay some to little sand, few small gravel.	، و م م م م م م م م م م م م م م م م	Vertical fracture with very fine- to fine-grained sand from 16.9 to 18 ft.			
10A	24/24 100%	ss	6-13 16-22 N=29					Dark grayish brown (10YR4/2) with frequent yellowish red (5YR4/6) oxidation along fractures, moist, hard, lean CLAY, with some silt, few very fine- to fine-grained sand, trace smal gravel.		500			
NO	DTE(S):	G311	D install	ed in	bor	ehole.	20						

FI	FIELD BORING LOG CLIENT: Illinois Power Generating Co. CONTRACTOR: Roberts														
	CLIEN Site Location Projec DATES	T: IIIi e: Co n: Co n: Co t: 20 S: St	nois Pow offeen Pa offeen, III 0E0111A c art: 2/5/3	ver G art 84 inois 2021	Gener 15 G	rating (roundv	Co. /ater	CONTRACTOR: Roberts Rig mfg/model: CME-75 Track Rig Drilling Method: 3.25" HSA w/SS sampler FIELD STAFF: Driller: Matt	E	BOREHOLE I Well I Surface Ele Completio	D: G311D D: G311D ev: 618.39 ft. MSL n: 60.00 ft. BGS				
	EATHER	Fin R: Cl	ish: 2/5/ ear. cold	/2021 (20s	1 s)			Helper: Corey Eng/Geo: C. Colin Winter		Statio	n: 872,238.70N 2.515.881.80E				
	SAMPLE		1	EST	ING		TOPOGRA	PHIC MAP INFORMATION:	WATER LEVEL IN	FORMATIO	N:				
ber	v / Total (in) covery		s / 6 <i>in</i> alue	Content (%)	ensity (Ib/ft ³)	sf) Q <i>p</i> (tsf) re Type	Quadra Townsh Section	ngle: Coffeen, IL iip: East Fork Township 11, Tier 7N; Range 3W	⊻ = 11.20 - ⊻ = ⊻ =	During Drilli	ng				
Numt	Reco % Re	Type	Blow: N - V; RQD	Water	DryD	Qu (t Failur	Depth ft. BGS	Lithologic Description	Borehole Detail	Elevation ft. MSL	Remarks				
11A	24/24 100%	ss	5-15 20-26 N=35				22			598	No oxidation below				
12A	12/24 596 SS 2-3 No oxidation below 12/4 50% 14-17 14-17 14-17 No 24 14-17 14-17 14-17 12/24 14-17 14-17 14-17 12/24 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17 14-17														
13A	$\begin{array}{c c c c c c c c c c c c c c c c c c c $														
14A	24/24 100%	ss	4-8 11-16 N=19				26			592					
15A	24/24 100%	ян					28	Dark gray (10YR4/1) with frequent yellowish red (5YR4/6) oxidation along fractures, moist, hard, lean CLAY, with som	e						
16A	24/24 100%	ss	0-3 5-8 N=8				32	silt, few very fine- to fine-grained sand, trace small gravel.		588					
17A	24/24 100%	ss	2-4 6-8 N=10							586					
18A	24/24 100%	ss	2-5 7-7 N=12							- 584	Gravel plugged shoe in Run 18. Trace large gravel from 35 to 36 ft.				
19A	13/24 54%	ss	2-7 8-11 N=15				36			582	Trace lignite and wood fragments below 36 ft.				
20A	24/24 100%	ss	2-6 <i>10-8</i> N=16							580					
NO	TE(S): (G311	D installe	ed in	bore	ehole.	+0				Page 2 of 4				

FI	FIELD BORING LOG CONTRACTOR: Roberts CLIENT: Illinois Power Generating Co. CONTRACTOR: Roberts												
CLIENT: Illinois Power Generating Co. CONTRACTOR: Roberts Site: Coffeen Part 845 Groundwater Rig mfg/model: CME-75 Track Rig BOREHOLE ID: G311D Location: Coffeen, Illinois Drilling Method: 3.25" HSA w/SS sampler Well ID: G311D Project: 20E0111A Surface Elev: 618.39 DATES: Start: 2/5/2021 FIELD STAFF: Driller: Matt Completion: 60.00 Finish: 2/5/2021 Helper: Corev Station: 872.2													
w	DATE	5: 20 S: St Fin R: Cl	art: 2/5/ ish: 2/5 ear, cold	2021 /202 (202	l 1 s)			FIELD STAFF: Driller: Matt Helper: Corey Eng/Geo: C. Colin Winter			Completion Station	 618.39 ft. MSL 60.00 ft. BGS 872,238.70N 2,515,881.80E 	
	SAMPLE		•	TEST		i	TOPOGRA	APHIC MAP INFORMATION:	WATER LEVI	EL IN	FORMATION	l:	
	(in) la			nt (%)	(Ib/ft ³	(tsf)	Quadra	ingle: Coffeen, IL	<u>▼</u> = 11. ▼ -	20 -	During Drillir	g	
	Tota very		6 in Je	onter	Jsity	Q D D D	Section	n 11, Tier 7N; Range 3W	_ <u>₹</u> - <u>₹</u> =				
mbe	Cov /	e	D valu	Iter C	/ Der	(tsf) ilure	Depth		Bore	hole	Elevation		
Ž	& %	 	a z z	Ň	5	Fa	ft. BGS	Lithologic Description	Dei	ail	ft. MSL	Remarks	
21A	16/24 67%	ss	3-3 6-8 N=9					Dark gray (10YR4/1) with frequent yellowish red (5YR4, oxidation along fractures, moist, hard, lean CLAY, with so silt, few very fine- to fine-grained sand, trace small grav [Continued from previous page]	(6) ome el.		- 578		
22A							42	Greenish gray (GLEY15/1) with 20% dark reddish brow	/n — — —		ŧ		
	24/24	VI	3-4					(10YR3/2) mottles, moist, medium stiff, lean CLAY, with s	ome		576		
22B	100%	\int_{0}^{∞}	7-8 N=11										
							44						
	04/04	M	1-3								574		
23A	24/24 100%	ss	5-7 N=8								E I		
		/ \					16						
							40				- 572		
24A	20/24 83%	ss	3-4 10-8										
		$\langle \rangle$	IN-14					Dark grayish brown (10YR4/1) with frequent yellowish n (5YR4/6) oxidation along fractures, moist, hard, lean CL	ed AY,				
							48-	with some silt, few very fine- to fine-grained sand, trace s to large gravel.	mall		570		
25A	24/24	ss	3-5 8-13								E I		
	100%	\mathbb{N}	N=13										
							50 -		-		569		
264	24/24	$\mathbb{V}_{\mathbb{R}}$	2-5								- 500		
20A	100%	\int	N=15								–		
							52 -				E I		
	24/24	V	2-6										
274	100%	ss	10-14 N=16										
214							54				E I		
		M	4-7					Dark gray (10YR4/1) with 20% greenish gray (GLEY15/1) 5% yellowish brown (10YR5/6) mottles, moist, very stiff, I	and ean		- 564	Trace small gravel below 54.3 ft.	
28A	24/24 100%	ss	7-11 N=14					CLAY, with some silt, trace very fine-grained sand and si gravel.	mall		E I		
		\square					56						
		$\langle $									562		
29A	24/24 100%	ss	2-5 9-11					Greenish gray (GLEY16/1) with 40% yellowish brown (10YR5/6) mottles, moist, very stiff, lean CLAY, with some troop very fing greined and and area, with	e silt,				
		$\langle \rangle$	11-14					u ace very nine-granned sand and small gravel.				0.5" small to medium	
							58				560	GRAVEL.	
30A	24/24	ss	3-7 10-13					Yellowish brown (10YR5/6) with 30% greenish gray (GLEY16/1) mottles, moist, very stiff, lean CLAY, with so	ome		E I		
1	100%	\mathbb{N}	N=17					silt, trace very fine-grained sand and small gravel.					
NO) (TE(S): (G311	l D installe	 ed in	bore	 ehole.	60				2- I		
1	<u> </u>												

FI	ELD	B	ORII	NG) L	.00	3			6	H	ΔΝΙSΟΝΙ
	CLIEN Sit Locatio Projec	T: te: C on: C ct: 20	inois Pow offeen Pa offeen, III 0E0111A	ver G art 84 inois	Gene 45 G	rating roundv	Co. vater	CONTRACTOR: Rig mfg/model: Drilling Method:	: Roberts : CME-75 Track Rig : 3.25" HSA w/SS sampler	E	BOREHOLE ID: Well ID: Surface Elev:	G311D G311D 618.39 ft. MSL
v	DATE /EATHE	S: S Fir R: C	tart: 2/5/2 hish: 2/5/ lear, cold	2021 /202 (20:	l 1 s)		T	FIELD STAFF	: Driller: Matt Helper: Corey Eng/Geo: C. Colin Winter		Completion: Station:	60.00 ft. BGS 872,238.70N 2,515,881.80E
er	/ Total (in)	<u> </u>	/6 in lue	Content (%)	ensity (Ib/ft ³)	f) Qp (tsf) t Type	TOPOGRAPHIC Quadrangle: Township: E Section 11, T	MAP INFORMATION Coffeen, IL East Fork Township Fier 7N; Range 3W	:	WATER LEVEL IN 및 = 11.20 - 및 = 및 =	IFORMATION: During Drilling	
Numbe	Recov % Rec	Type	Blows N - Va RQD	Water	Dry De	Qu (ts Failure	Depth ft. BGS	Litholog	gic Description	Borehole Detail	Elevation ft. MSL	Remarks
		~~~										

FI	ELD CLIEN Sit Locatio Projec DATE	B T: III te: C on: C on: C ct: 20 S: SI Fin	ORI nois Pov offeen Pa offeen, II DE0111A cart: 1/14 ish: 1/14	NC ver C art 84 linois 4/202 4/202	<b>G</b> L Gene 45 G 21 21	.OG	Co. vater	CONTRACTOR: Roberts Rig mfg/model: GeoProbe 8040DT Drilling Method: 4.25" HSA w/SS sampler FIELD STAFF: Driller: Matt Helper: Corey	BOREHOLE ID: G313 Well ID: G313 Surface Elev: 611.51 ft. MSL Completion: 12.00 ft. BGS Station: 871,976.80N				
~	SAMPLI	R: 0	vercasi,	COOI	(40s	)		Eng/Geo: C. Colin Winter	2,510,803.70E				
ber	v / Total (in) covery		s / 6 <i>in</i> alue	Content (%)	ensity (Ib/ft ³ )	sf) Qp (tsf) e Type	TOPOGF Quad Town Section	RAPHIC MAP INFORMATION: Irangle: Coffeen, IL aship: East Fork Township on 11, Tier 7N; Range 3W	WATER LEVEL INFORMATION:         ♀         ♀         ♀         ♀         ♀         ♀         ♀         ♀         ♀         ♀         ♀				
Numb	Reco % Re	Type	Blows N - V	Water	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	Borehole Elevation Remarks Detail ft. MSL				
1A 1B	17/24 71%	ss	0-2 3-3 N=5					Dark yellowish brown (10YR4/4), wet, stiff, lean CLAY, wi some silt, few roots, trace small gravel.	ith				
		$\wedge$	N-5					Gray (10YR6/1) with 15% yellowish brown (10YR5/6) mott moist, very stiff, SILT, with little clay, few roots.	les,				
2A	13/24 54%	ss	0-2 2-3 N=4				4	Dark gray (10YR4/1) with 5% black (10YR2/1) mottles, mo stiff, lean CLAY, with some silt.	oist, 608				
3A	19/24 79%	ss	2-3 5-5 N=8				6	Dark gray (10YR4/1) with 20% yellowish brown (10YR5// mottles, moist, stiff, lean CLAY, with some silt, trace very f to fine-grained sand and small gravel.	6) ine- 606				
4A	22/24 92%	ss	2-3 4-5 N=7				8	Very dark gray (10YR3/1), moist, stiff, lean CLAY, with so silt, little very fine- to fine-grained sand and small grave	me I. 604				
5A	22/24 92%	ss	2-5 9-12 N=14				<u> </u>	Yellowish brown (10YR5/6) with 10% very dark gray (10YR mottles, moist, stiff SILT, with some very fine- to fine-grain sand and clay, few small gravel.	13/1) ned 602				
6A	21/24 88%	ss	9-12 21-22				10	Yellowish brown (10YR5/4), wet, medium dense, very fine medium-grained SAND, with some silt, few small gravel	- to I.				
6B		$\wedge$	N=33				12	Dark grayish brown (10YR4/2) with 10% yellowish brown (10YR5/6) mottles, moist, hard, SILT, with some very fine- fine-grained sand, few clay and small gravel, trace mediu aravel.	n - to im				
	End of boring = 12.0 feet												

FI	ELD	B	ORII	NG	) L	.00	;				H	ANSON
	CLIEN Sit Locatio Projec	T: Illi te: Co on: Co ct: 20 S: St	nois Pov offeen Pa offeen, III 0E0111A <b>art:</b> 2/10	ver G art 84 linois	Gene 45 G S	rating ( roundv	Co. vater	CONTRACTOR: Roberts <b>Rig mfg/model:</b> CME-75 Track Rig <b>Drilling Method:</b> 4.25" HSA w/SS sampler <b>FIELD STAFE: Driller:</b> Matt		BOREHO N Surfac	DLE ID: Vell ID: e Elev:	: G314D : G314D : 610.87 ft. MSL : 100.30 ft. BGS
	DAIL	Fin	ish: 2/1	2/202	21			Helper: Corey		5	tation	871,642.00N
<b>–</b> "		R: 0	vercast, v	very	cold	(10s)		Eng/Geo: C. Colin Winter				2,516,853.90E
er	/ Total (in)		/ 6 in lue	Content (%)	ensity (Ib/ft ³ )	f) Q <i>p</i> (tsf) e Type	TOPOGRA Quadra Townsh Section	PHIC MAP INFORMATION: ngle: Coffeen, IL iip: East Fork Township 11, Tier 7N; Range 3W	WATER LEVEI ♀ = ♀ = ♀ =	. INFORM	ATION: Drilling	1
Numb	Recov % Rec	Type	Blows N - Va <b>RQD</b>	Water	Dry De	Qu (ts Failure	Depth ft. BGS	Lithologic Description	Boreho Deta	ole Eleva il ft. N	ition SL	Remarks
1A	4/24 17%	ss	<i>13-7</i> <i>4-5</i> N=11					Moist, dense, small to large GRAVEL. [FILL]		61	D	
	1/24 4%	ss	3-4 5-5 N=9				2	Gray (10YR6/1) with 30% yellowish brown (10YR5/6) mot moist, stiff, lean CLAY, with some silt, few very fine- to fine-grained sand, trace small gravel.	tles,	60	8	
ЗA	24/24 100%	ss	1-3 4-5 N=7				6			60	6	
4A	24/24 100%	ss	2-5 15-17 N=20				8	Yellowish brown (10YR5/6) with occasional yellowish re (5YR4/6) oxidation along fractures, moist, hard, lean CL/ with some silt and very fine- to fine-grained sand, trace si gravel.	d AY, mall	60	2	
5A	24/24 100%	ss	4-10 12-16 N=22				10			- 60	0	
6A	24/24 100%	ss	4-5 14-18 N=19				12	Yellowish brown (10YR5/6) with 10% very dark grayish br (10VP3/2) mottles and occasional vellowish red (5YR4/	own		1 s 8	l" wet, SAND, with some silt at 11.6 ft.
7A	24/24 100%	ss	3-11 14-18 N=25				14	oxidation along fractures, moist, hard, lean CLAY, with so silt and very fine- to fine-grained sand, trace small grav	ome el.		6	
8A	24/24 100%	ss	3-9 13-18 N=22				16	Yellowish brown (10YR5/6) with 10% very dark gravish br	own		4	
9A	24/24 100%	ss	1-7 9-13 N=16				18	<ul> <li>(10YR3/2) and 10% dark yellowish brown (10YR4/6) mot and occasional yellowish red (5YR4/6) oxidation along fractures, moist, hard, lean CLAY, with some silt and very to fine-grained sand, trace small gravel.</li> <li>Dark grayish brown (10YR4/2) with 15% yellowish brow (10YR5/6) mottles and occasional yellowish red (5YR4/ oxidation along fractures, moist, hard, lean CLAY, with sc silt and very fine- to fine-grained sand, trace small grave</li> </ul>	ttes fine- / m 6) me el.	59	2	
NC	DTE(S):	G314	D installe	ed in	bore	ehole.	20					

	ELD	B	ORII	NC	j L	-06	j			<	<b>X</b> 41	ANSON
	CLIEN	T: IIIi	nois Pov	ver G	Gene	rating	Co.	CONTRACTOR: Roberts				
	Sit Locatio	e: Co n: Co	offeen Pa	art 84 Iinois	45 G	roundv	vater	Rig mfg/model: CME-75 Track Rig Drilling Method: 4 25" HSA w/SS sampler		E	OREHOLE   Well	D: G314D
	Projec	t: 20	)E0111A		,						Surface Ele	ev: 610.87 ft. MSL
	DATE	S: St	art: 2/10	)/202	21			FIELD STAFF: Driller: Matt			Completio	on: 100.30 ft. BGS
		Fin	i <b>sh:</b> 2/12	2/202	21 cold	(10c)		Helper: Corey			Static	on: 871,642.00N
		R. 0		TEST		(105)	1	Eng/Geo. C. Contrivinter				2,510,655.90E
		-		<b>0</b>	E.		TOPOGRA	PHIC MAP INFORMATION:		EVEL IN		N:
	al (i			int (%	(Ib/	o (tsf e	Towns	hip: East Fork Township	= <u>v</u> =			ng
<u> </u>	/ Tot		'6 in ue	Conte	nsity	Q dy dy T	Sectior	11, Tier 7N; Range 3W	<u> </u>			
mbe	Rec	e	<b>D</b> Val	Iter O	/ De	(tsf ilure	Depth		В	orehole	Elevation	
Ž	Re %	Ě	a z <b>z</b>	Ň	ā	ЪО Га	ft. BGS	Lithologic Description		Detail	ft. MSL	Remarks
104	24/24	$M_{\infty}$	1-5								F	some silt at 20 ft.
IUA	100%	X	N=15								590	
		$\langle \rangle$						Dark grayish brown (10YR4/2) with 15% yellowish brown			F	
							22	(10YR5/6) and 5% dark yellowish brown (10YR4/6) mottle and occasional yellowish red (5YR4/6) oxidation along	s		F	Frequent oxidation below 21.7 ft.
	24/24	VI	1-6					fractures, moist, hard, lean CLAY, with some silt and very fi	ne-		F	
11A	100%	ss	9-12 N=15					[Continued from previous page]			588	
		/\								HI	F	
							24				F	
		M							{///		Ŧ	
12A	24/24	ss	4-7 10-13								586	
	10070	Λ	N=17								F	
							26				F	
	24/24	VI.	3-7								584	
13A	100%	$\int_{1}^{8}$	10-13 N=17								F	
		/ \					28				F	
												1 ft vertical fracture
		M	16								582	(5YR4/6) oxidation at
14A	24/24 100%	ss	10-10					Dark grayish brown (10YR4/2), moist, hard, lean CLAY, wi	th		ŧ.	28.3 ft.
		Λ	N=16				30	some slit and very line- to line-grained sand, trace small gravel.				
		M								NN	580	
15A	24/24	ss	3-9 10-12								1	
	100%	A	N=19				32					
											578	
	24/24	VI.	2-3								Ŧ	
16A	100%	∬ ^{ss}	7-8 N=10				34			NN	F	Trace roots below 34
		/ \								h N	F	ft.
17A									{///	HF	576	
1		VI	24					Gray (GLEY15/), moist, stiff, lean CLAY, with some silt.			1	
	24/24 100%	ss	7-9				36				F	
		Λ	N=11				30					
194											574	
								Dark gravish brown (10YR4/2), moist, hard, lean CLAY, wi	th 💋		Ŧ	
1	21/24	54					38	some silt and very fine- to fine-grained sand, trace small gra	ivel		F	
1	88%							and roots.			F	
1											- 572	
		V					=				F	
		Μ	2-5				40				۶L	
NO	TE(S):	G314	D installe	ed in	bore	ehole.	70					
1												Dama Calif.
1												Page 2 of 6

.....

FI	ELD	B	ORII	NG	) L	-00	<b>;</b>				0		ANSON
	CLIEN Sit Locatio	T: Illi	nois Pow offeen Pa offeen, III	ver G art 84 linois	iene 45 G	rating ( roundv	Co. vater	CONTRACTOR: Roberts Rig mfg/model: CME-75 Track Rig Drilling Method: 4.25" HSA w/SS sampler			вс	OREHOLE I Well I	<b>D:</b> G314D <b>D:</b> G314D
	DATE	.st: 20 .S: St	)E0111A (art: 2/1(	)/202	21			FIELD STAFF: Driller: Matt			;	Surface Ele Completio	n: 100.30 ft. BGS
		Fin	i <b>sh:</b> 2/1	2/202	21	(10)		Helper: Corey				Statio	n: 871,642.00N
			vercast, v	very		(10s)	I	Eng/Geo: C. Colin Winter					2,516,853.90E
e	/ Total (in)	-	/ 6 in lue	Content (%)	ensity (Ib/ft ³ )	f) <i>Qp</i> (tsf) e Type	TOPOGR/ Quadra Towns Section	<b>VPHIC MAP INFORMATION:</b> angle: Coffeen, IL hip: East Fork Township n 11, Tier 7N; Range 3W	WATE ⊻ ⊻ ⊻	R LEVE = = =	L INF	ORMATIOI	N: ng
Numb	Recov % Rec	Type	Blows N - Va <b>RQD</b>	Water	Dry De	Qu (ts Failure	Depth ft. BGS	Lithologic Description		Boreh Deta	ole iil	Elevation ft. MSL	Remarks
19A	24/24 100%	X SS	7-12 N=12									 570	
		$\overline{\mathbb{N}}$	4-8				42						Trace medium gravel below 41.3 ft.
20A	100%	ss	<i>10-14</i> N=18					Dark grayish brown (10YR4/2), moist, hard, lean CLAY, v some silt and very fine- to fine-grained sand, trace small g and roots.	with ravel			 568 	
	24/24	$\left  \right $	3-9				44	[Continued from previous page]					
21A	100%		13-16 N=22									566 	
22A	24/24	ss	12-31 14-11				46	Gray (10YR5/1), wet, dense, SAND, with some silt, few si gravel.	mall			 	
22B	100%		N=45									564 	
23A	24/24 100%	ss	3-4 6-9				48	Gray (GLEY15/) with 10% yellowish brown (10YR5/6) mot moist. stiff. lean CLAY, with some silt. trace very fine-grai	tles, ned			 562	1" SILT, with some sand at 48.2 ft.
		$\left\  \right\ $	N=10				50 -	sand.					
24A	24/24 100%	ss	5-11 14-17 N=25									 560	
		$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$					52 -						
25A	24/24 100%	ss	4-6 11-15 N=17					Yellowish brown (10YR5/6) with 20% gray (GLEY15/) mot moist, stiff, lean CLAY, with some silt, trace very fine-grai sand.	tles, ned			558 	
		$\begin{bmatrix} \square \end{bmatrix}$					54 -					 	
26A	20/24 83%	ss	4-5 18-30 N=23									— 556 	
	:	$\square$					56 <u> </u>	Yellowish brown (10YR5/6), moist, hard, lean CLAY, wit some silt, little very fine- to fine-grained sand and small gra	th avel.			 554	
27A	20/24 83%	ss	9-22 33-33 N=55				58	Yellowish brown (10YR5/6) with 20% gray (GLEY15/) mot moist, hard, lean CLAY, with some silt, little very fine- t	tles, o			- - 	
		$\square$						fine-grained sand and small gravel. Yellowish brown (10YR5/6) with 10% gray (GLEY15/) and dark yellowish brown (10YR4/6) mottles, moist, hard, lea	   5% an			 552 	
28A	24/24 100%	∬ss G314	7-19 29-43 D install	ed in	bore	ehole	60	CLAY, with some silt, little very fine- to fine-grained sand small gravel.	and			 	
	(3).	2017			~010								

ואן	ELU	В	ORI	NĊ	ίL	.00	j				С Ф Н	ANSON
	CLIEN	T: Illi	nois Pov	ver G	Gene	rating (	Co.	CONTRACTOR: Roberts				
	Sit	te: Co	offeen Pa	art 84	45 G	roundv	vater	Rig mfg/model: CME-75 Track Rig		I	BOREHOLE ID:	G314D
	Locatio	<b>n:</b> Co	offeen, II	linois	S			Drilling Method: 4.25" HSA w/SS sampler			Well ID:	G314D
	Projec	ct: 20	E0111A								Surface Elev:	610.87 ft. MSL
	DATE	S: St	art: 2/10	)/202	21			FIELD STAFF: Driller: Matt			Completion:	100.30 ft. BGS
		Fin	ish: 2/1	2/202	21	(40.)		Helper: Corey			Station:	871,642.00N
	EATHE	<b>R</b> : 0	/ercast, ·	very	cold	(10s)		Eng/Geo: C. Colin Winter				2,516,853.90E
-	SAMPLI	E	1	TEST		1	TOPOGR	APHIC MAP INFORMATION:	WATER I	EVEL I	NFORMATION:	
	(in)			(%)	o/ft ³	sf)	Quadra	ingle: Coffeen, IL	<u>▼</u> =		During Drilling	
	۲ tal		5	ent	۲ ۲	p (t	Towns	hip: East Fork Township	<u> </u>			
L	/ To		'6 ii Je	ont	nsit	Q Z	Sectio	n 11, <b>Tier</b> 7N; <b>Range</b> 3W	<b>T</b> =			
nbe	Seco	Ð	vs/ Val	er O	De	(tsf) ure	Depth			Darahala	Flavation	
Nur	Red % F	Typ	80 - N	Wat	Dry	Qu Fail	ft. BGS	Lithologic Description	I	Detail	ft. MSL	Remarks
		M	N=48		+		=					
		Ň										
											550	
		M										
204	20/24	V ss	13-20									
237	83%	$ \Lambda ^{\circ\circ}$	N=50				62					
1		$\mathbb{N}$					=					
1							=				548	
l I		N						Yellowish brown (10YR5/6) with 10% gray (GLEY15/) and	d 5%			
	24/24	$ V _{}$	8-15				64	CLAY, with some silt, little very fine- to fine-grained sand	and			
30A	100%	A ss	30-34 N=45					small gravel.				
		/ \						[Continued from previous page]			546	
	:										- 540	
		M								1 8		
	24/24	V	5-17				66 -			1 8		
31A	100%	ss	28-29 N=45									
		/\	11-40								544	
							E				- ° · ·	
										96		
		M	7-18				68			A 6		
32A	24/24	ss	29-43					Yellowish brown (10YR5/6) with 10% gray (GLEY15/), 5%	dark			
	10070	$ \Lambda $	N=47					yellowish brown (10YR4/6) and 5% very dark grayish brown (10YR2/2) motifies maint hard loop CLAX with some sill	own	3 6	542	
		/ \						very fine- to fine-grained sand and small gravel.	., iitte	3 8		
										2 2		
		M					70			3 6		
	24/24	V ss	5-14 32-26					Dark grayish brown (10YR4/2) with 5% gray (GLEY15/),	5%	3 8		
	100%	$\Lambda$	N=46					mottles. moist, hard, lean CLAY, with some silt, little sand	and		540	
33A		/ \						gravel.				
										4 4		
		M					72 -			1 8		
	24/24	VI.	8-17				=	Vellowish brown (10VD5/6) with 50/ grov (CLEV15/) 50/	dark			
34A	100%	A ss	26-38 N=43				=	grayish brown (10YR4/2), and 5% light gray (10YR7/1			538	
1		$\langle \rangle$					=	mottles.				
	:											
1		N					/4 =			A 4		
	24/24	V	5-12									
35A	100%		24-24 N=36								536	
1		/ \	00				=	Dark grayish brown (10YR4/2) with 5% gray (GLEY15/),	5%			
1		$\Box$					76	yellowish brown (10YR5/6), and 5% light gray (10YR7/	1)			
							`` ]	moures.				
L	0.1/2 -	M	14-24				=				- 52A	
l I	24/24	ss	20-33									
36A			N=44				]	Dark grayish brown (10YR5/2) with 20% reddish brown (5YR4/4) and 5% light gray (10YR7/1) motilize mainting	n			
	.						78 -	lean CLAY, with some silt, trace very fine- to fine-grained	sand			
l I		$\Box$					=	and small gravel.			<i>#</i>	
l I		M					=	Dark gray (10YR4/1) with 5% light gray (10YR7/1) moth	les,		532	
37A	24/24	ss	6-14 17-31				=	moist, hard, lean CLAY, with some silt, trace very fine-	to			
	100%	/ \	N=31					tine-grained sand and small gravel.				
		11		1	I	I 	80 =		(//,	~/ K/	///	
	TE(S):	G314	D installe	ed in	bore	ehole.						

-

...

FI	ELD	В	ORII	NG	) L	.OG	j				0		ANSON
	CLIENT	[:    i	nois Pov	ver G		rating (	Co.	CONTRACTOR: Roberts					
	Location	9: Co 1: Co	offeen, III	art 84 linois	45 G	rounaw	/ater	Drilling Method: 4.25" HSA w/SS sampler			BC	Well I	<b>D:</b> G314D <b>D:</b> G314D
	Project	<b>t:</b> 20	E0111A								;	Surface Ele	v: 610.87 ft. MSL
	DATES	S: St	art: 2/10	)/202 2/201	21 24			FIELD STAFF: Driller: Matt				Completio	n: 100.30 ft. BGS
w	EATHER	רווי ג: סי	/ercast, v	very	cold	(10s)		Eng/Geo: C. Colin Winter				Statio	2,516,853.90E
	SAMPLE		٦	TEST	ING		TOPOGR		W/ATI		INE		N•
	(in)			(%)	o/ft ³ )	sf)	Quadr	angle: Coffeen, IL	<u></u>			During Drillin	ng
	otal		in	tent	ty (It	λp (t: pe	Towns	hip: East Fork Township	Ž	<u> </u>			
ber	v / T		s / 6 alue	Con	ensi	e Ty	Sectio	n 11, Tier 7N; Range 3W	7	_ =			
Aumk	% Re	<b>Lype</b>	3/ows	Vater	Dry D	Qu (ts Failur	Depth ft_BGS	Lithologic Description		Boreho Deta	ole il	Elevation ft_MSI	Remarks
<u> </u>	2	4	428									1	
	Γ	7										_ 530	
	24/24		7-17					Dark gray (10YR4/1) with 5% light gray (10YR7/1) mottle	es,				
38A	100%		21-29 N=38					moist, hard, lean CLAY, with some silt, trace very fine- t fine-grained sand and small gravel.	0			<u> </u>	Turner un etc. et 00 ft
							02	[Continued from previous page]					Trace roots at 62 ft.
												- 	
	24/24	/	8-24									-	
39A	100%	SS	26-27 N=50				84	Very dark gray (10YR3/1), moist, hard, lean CLAY. with sc	ome			F	
								silt.					
		7										526	
	24/24		5-9										
40A	100%	ss	10-13 N=19				86 -	Dark gray (10YR4/1) with 5% black (10YR2/1) mottles, mo hard, lean CLAY, with some silt.	oist,				
		V											
										- ##		<u> </u>	
			6 10									<u> </u>	
41A	24/24 100%	ss	25-33				88 -	Dark greenish gray (GLEY14/1) with 5% yellowish brow (10XP5/6) mottles, moist, bard loan CLAX, with some si	'n			<u> </u>	Few very fine- to
		$\backslash$	N=35						nı.			-	below 88 ft.
42A													
	11/11	ss	3-50/5"									_	
	L	Ν					90 -					_	
												- 520	
43A	5/5 5	7 1											
	100%	A ss	50/5"									_	
							92	Light reddish brown (2.5YR6/3) with 10% gray (GLEY15/),	dry,			_	
								hard, SILT, with few clay and very fine-grained sand.					
444	5/5 <b>-</b>												
	100%	{ ss	50/5"				94					<b>–</b>	
												516	
A = 1													
45A	8/8	ss	49-50/2'				96 -						
		4										-	
								Light reddish brown (2.5YR6/3) with 10% gray (GLEY15/)	and				
46A	11/11	7	05 55 55				98 -	5% dark yellowish brown (10YR4/6) mottles, dry, hard, Sll with few clay and very fine-grained sand.	LT,				
	100%	$\int_{-\infty}^{\infty}$	25-50/5'									- -	
												512	
NO	TE(S): 0	3314	D installe	। ed in	bore	ehole.	100 —			11111	1111	1	
		-			-								

F	IELC	) B	ORII	١G	L	.OC	3		•	H	
	CLIE	NT: 111	inois Pow	er Ge	ener	ating (	Co. CONTRACTOR:	Roberts			
	S Locatio	ite: Co on: Co	offeen Pa offeen, Ill	irt 84 inois	5 Gi	roundw	water Rig mfg/model: Drilling Method:	CME-75 Track Rig 4.25" HSA w/SS sampler		BOREHOLE ID: Well ID:	G314D G314D
	Proje	ct: 20	0E0111A					Duilleur Matt		Surface Elev:	610.87 ft. MSL
	DAT	-5: 51 Fin	art: 2/10	/202* 2/202	1		FIELD STAFF:	Helper: Corey		Station:	871,642.00N
L	WEATHE	<b>R</b> : 0	vercast, \	ery c	cold	(10s)	E	ng/Geo: C. Colin Winter			2,516,853.90E
⊢		.E	T	ESTI	NG	_				NFORMATION:	
	y Y		~	ent (%	/(Ib/f	o (tsf) e	Quadrangle: Coffeen, IL Township: East Fork Township		<u>▼</u> =	During Drilling	
e.	//To		alue	Conte	ensity	e Typ	Section 11, Tier 7N; Range 3W		<b>▼</b> =		
Numb	Recov % Re	Type	Blows N - Va <b>RQD</b>	Water	Dry D	Qu (ts Failur	Depth ft. BGS Litholog	ic Description	Borehole Detail	Elevation ft. MSL	Remarks
47/	A 3/3 100%	⊠ ss	50/3"				End of bo	ring = 100.3 feet			
	OTE(S):	G314	D installe	ed in I	bore	hole.					

FI	ELD	B	ORII	NG	) L	.00	;		
	CLIEN Sit Locatio Projec	T: III e: Co n: Co n: Co	inois Pov offeen Pa offeen, III )E0111A	ver C art 84 linois	Gene 45 G	rating ( roundv	Co. vater	CONTRACTOR: Roberts Rig mfg/model: GeoProbe 8040DT Drilling Method: 4.25" HSA w/SS sampler	BOREHOLE ID: G316 Well ID: G316 Surface Elev: 599.64 ft. MSL
w	DATE:	S: Si Fin R: O	t <b>art:</b> 1/14 hi <b>sh:</b> 1/14 vercast, 6	4/202 4/20: cold	21 21 (30s	)		FIELD STAFF: Driller: Matt Helper: Corey Eng/Geo: C. Colin Winter	Completion: 15.75 ft. BGS Station: 871,643.10N 2,517,211.60E
	SAMPLE	=	1	TEST	<b>FING</b>		торос		
ber	ov / Total (in) scovery		s / 6 <i>in</i> 'alue	r Content (%)	Density (Ib/ft ³ )	sf) Qp (tsf) re Type	Quad Towi Secti	rangle: Coffeen, IL Iship: East Fork Township In 11, Tier 7N; Range 3W	$\mathbf{Y}$ = 8.60 - During Drilling $\mathbf{Y}$ = 13.80 - During Drilling $\mathbf{Y}$ =
Num	Recc % Re	Type	Blow N - V <b>RQD</b>	Wate	Dry	Qu (t Failu	Depth ft. BGS	Lithologic Description	Borehole Elevation Remarks Detail ft. MSL Remarks
1A	15/24 63%	ss	10-9 5-4 N=14					Brown (10YR5/3), moist, medium dense, small to large GRAVEL, with some clay and fine to coarse grained sar [FILL]	d. 508
2A	10/24 42%	ss	1-3 4-6 N=7				2	Gray (10YR5/1), moist, hard, lean CLAY, with some silt, small gravel and very fine- to fine-grained sand.	ew 596
ЗA	14/24 58%	ss	2-2 3-3 N=5				6	Gray (10YR5/1) with 10% yellowish brown (10YR5/6) mot moist, stiff, lean CLAY, with some silt, few small gravel a very fine- to fine-grained sand.	les, nd 594
4A 5A	10/24 42%	ss	0-1 1-2 N=2				8-	Gray (10YR5/1) with 30% black (10YR2/1) mottles, moist, lean CLAY, with some silt, few very fine-grained sand, organics and wood fragments.	stiff, 592
5B	22/24 92%	ss	1-1 1-2 N=2				¥ 10-	Very dark gray (10YR3/1), wet, medium stiff to stiff, SILT, some clay and very fine- to fine-grained sand.	with 590
6A	20/24 83%	ss	1-2 4-7 N=6					Brown (10YR4/3), moist, very stiff, lean CLAY, with some little very fine- to fine-grained sand, few small gravel.	silt,
7A	22/24 92%	ss	0-2 3-3 N=5				<b>T</b>	Dark gray (10YR4/1) with 20% yellowish brown (10YR5/ mottles, moist, medium stiff to stiff, lean CLAY, with some little very fine- to fine-grained sand, few small gravel.	6) silt, 586
8A	21/17 124%	ss	2-2 26-50/3" N=28	,			14	Brown (10YR4/3), wet, loose, very fine- to fine-grained SA with some silt, trace clay.	
8B	1							Yellowish brown (10YR5/6), moist, hard, SILT, with some fine- to fine-grained sand, trace small gravel. End of boring = 15.75 feet	very 584
1									

FI	FIELD BORING LOG CLIENT: Natural Resource Technology, Inc. Site: Coffeen Energy Center Location: Coffeen, Illinois Project: 15E0030 DATES: Start: 9/14/2015 Finish: 9/14/2015 WEATHER: Sunny, hi 60's							CONTRACTOR: Ramsey Geotechnical Engine Rig mfg/model: D-50 Turbo Tracked MST 8 Drilling Method: Hollow Stem Auger (3¼"ove FIELD STAFF: Driller: D. Crump Helper: D. Groves Eng/Geo: R. Hasenyager	eering, LLC 00ATV erdrill / 4¼") BOREHOLE ID: G401 Well ID: G401 Surface Elev: 623.03 ft. MSL Completion: 19.30 ft. BGS Station: 2,515,614.84N 872,510.57E
S	SAMPL	E	Т	EST	TINC	Ĵ	TOPOG	RAPHIC MAP INFORMATION:	WATER LEVEL INFORMATION:
	al (in ,		~	(0)	$b/\hat{H}^3$	o (tsf) e	Quad Town	rangle: Coffeen, IL ship: East Fork	$\Psi$ = Dry - During Drilling $\Psi$ =
er	/ Tot		/6 <i>ir</i> alue	ure (9	en. (l	$^{\rm f)}_{\rm Typ}$	Sectio	n 11, Tier 7N; Range 3W	<u> </u>
Numb	Recov % Rec	Type	Blows N - Vi <b>RQD</b>	Moist	Dry D	Qu (ts Failur	Depth ft. BGS	Lithologic Description	Borehole Elevation Detail ft. MSL Remarks
1A	16/24 67%	ss	2-2 3-7 N=5	17			2	Dark grayish brown (10YR4/2), moist, soft, CLAY wit little silt and trace very fine- to fine-grained sand - FILI 	h 
2A	21/24 88%	ss	8-11 8-9	17		1.80		Dark gray (10YR4/1), moist, stiff, SILT with little clay a trace very fine-grained sand.	und 620
2B		N	N=19	25				Yellowish brown (10YR5/6), moist, stiff, CLAY with so silt and trace very fine- to fine-grained sand.	me
3A	23/24 96%	ss	3-4 7-8 N=11	23		2.50		Gray (10YR5/1) with 20% yellowish brown (10YR5/6 mottles, moist, medium, CLAY with some silt and trac very fine- to fine-grained sand.	 
4A	24/24 100%	ss	8-9 12-14 N=21	21		3.30			616
4B		()		19		2.80	8	Gray (10YR5/1) with 30% yellowish brown (10YR5/8 mottles, moist, stiff, SILT and very fine-grained SAND w trace clay.	b) vith
5A	24/24 100%	ss	2-3 4-5 N=7	21		1.30	10 -		614
6A	24/24 100%	ss	2-4 5-6 N=9	17		2.50	12	Gray (10YR5/1) with 30% yellowish brown (10YR5/6 mottles, moist, medium, CLAY with some silt and trac very fine- to fine-grained sand.	612 e
7A	24/24 100%	ss	9-7 8-9 N=15	21		1.40	14		610
8A 8B	24/24 100%	ss	2-3 2-4 N=5	17 19		1.30	16	Gray (10YR6/1), moist soft, CLAY with very fine- to fine-grained sand and little silt. Yellowish brown (10YR5/6), wet, loose, very fine- to	
9A	20/24 83%	ss	5-4 5-10 N=9	21			1 mpm	fine-grained SAND with trace silt. Yellowish brown (10YR5/6), wet medium, SILT with so very fine-grained sand and little clay. Yellowish brown (10YR5/6), wet, loose, very fine- to	me 606
9B	12/16		72 11	16			18	medium-grained SAND with trace silt.	
10A	75%	Å ss	50/4''	6		4.50		little very fine- to very coarse sand.	
								End of boling - 19.5 feet	

NOTE(S): G401 installed in borehole.

F	EL	DI	BOR	IN	NG	G L(	OG CAR HANSON	J				
	CLIEN Sit Location Project	<b>Γ:</b> Ν e: C n: 13	atural Re offeen Po 34 CIPS 1 550080	sour wer f	ces T Statio , Cof	echnolo on - Asl feen, II	ogy, Inc.     CONTRACTOR: Bulldog Drilling, Inc.       h Pond 2     Rig mfg/model: CME-750 ATV Drill       L 62017     Drilling Method: 4 1/4" Hollow Stem Auger         BOREHOLE ID: G407       Surface Flay:     618 35 ft	U				
WE	DATE	S: St Fir R: R	tart: 8/1 nish: 8/1 ain, (mid-	6/20 6/20 -70s)	16 16		FIELD STAFF: Driller: J. Dittmaier     Completion:     20.00 ft. BGS       Helper: M. Hill     Station: 2,513,705.87N       Eng/Geo: K. Theesfeld     2,513,705.87E					
5	SAMPL	E	Т	TEST	TINC	,	TOPOGRAPHIC MAP INFORMATION:     WATER LEVEL INFORMATION:					
	tal (i		ı	(%	$(\mathbf{h}^3)$	o (tsf oe	Quadrangle: Coffeen $\underline{\Psi} = 16.00$ - During DrillingTownship: East Fork $\underline{\Psi} =$					
er	/ To		/6in alue	ure (9	en. (]	$f_{\rm Typ}$ e Typ	Section 10, Tier 7 N.; Range 3 W. $\overline{\Sigma} =$					
Numb	Recov % Rec	Type	Blows N - Va RQD	Moist	Dry D	Qu (ts Failur	DepthLithologicBoreholeElevationft. BGSDescriptionDetailft. MSLRemarks					
	12/24 50%	ss	4-3 3-3				Very dark gray (10YR3/1), wet, medium, SILT with some organics. [Fill] Gray (10YR6/1) wet loose SAND with some gravel and					
1A		$\left( \right)$	N=6	14		3.50	2 - Vallowich brown (10/P5/6) with 5% dark vallowich					
2A	20/24 83%	ss	2-2 4-4 N=6	18		1.50	brown (10YR3/6) mottles, moist, very stiff, SILT with / 					
3A	23/24 96%	ss	1-2 3-4 N=5	19		1.75	Brown (10YR5/3) with 25% yellowish brown (10YR5/6) mottles, moist, stiff, CLAY with some silt, trace fine-grained sand and trace small gravel.					
4A	24/24 100%	ss	<i>1-3</i> 3-5 N=6	19		1.50	6					
5A	21/24 88%	ss	1-2 4-4 N=6	19		0.50	8 Yellowish brown (10YR5/6) with 25% brown (10YR5/3) mottles, moist, medium, CLAY with few silt, few fine-grained sand, and trace small gravel.					
6A	22/24 92%	ss	1-2 2-1 N=4	17			10       Yellowish brown (10YR5/8) with 5% gray (10YR5/1) mottles, moist, very loose, fine-grained SAND with some clay and trace small gravel.       608					
7A	24/24 100%	ss	7-29 33-17 N=62	8			12 Gray (10YR5/1) with 25% yellowish brown (10YR5/8) mottles, moist, very dense, fine-grained SAND					
		-					14 Brown (10 Y R5/3), moist, hard, SIL 1 with some clay and 14 little fine- to coarse-grained sand.					
8A	24/24 100%	ss	3-7 12-17 N=19	12		4.50	Yellowish brown (10YR5/4) with 5% yellowish brown (10YR5/6) and 5% black (10YR2/1) mottles, SILT with some clay and little fine- to coarse-grained sand.					
9A	24/24 100%	ss	4-9 14-20 N=23	13		4.00	Yellowish brown (10YR5/4) with 5% yellowish brown (10YR5/6), 5% dark gray (10YR4/1) and 5% black (10YR2/1) mottles, moist, hard, SILT with little fine- to coarse-grained sand and trace small gravel.					
10A	24/24 100%	ss	2-8 14-19 N=22	14		4.50	Yellowish brown (10YR5/4) with 5% yellowish brown (10YR5/6), 5% dark gray (10YR4/1) and 5% black (10YR2/1) mottles, wet, stiff, SILT with little fine- to coarse-grained sand and little small gravel. Dark grayish brown (10YR4/2) with 10% dark yellowish					
	brown (10YR3/6) mottles, moist, hard, CLAY with some silt, little fine- to coarse-grained sand and trace small gravel.											
							End of Boring = 20.0 ft. BGS					
NO	<b>VOTE(S):</b> G407 installed in boring.											
						-						

	CLIENT: Illinois Power Generating Company       CONTRACTOR: Bulldog Drilling, Inc.         Site: Coffeen Power Station - Ash Pond 2       Rig mfg/model: CME-750 ATV Drill         Location: Coffeen, Illinois       Drilling Method: 4¼" HSA with continuous split spoon         Project: 16E0031A       Surface Elev: 617.21 ft. MSL         DATES: Start: 2/23/2018       FIELD STAFF: Driller: C. Dutton													
	DATE	S: St Fin	art: 2/23 ish: 2/2	3/201 3/20	18 18			FIELD STAFF: Driller: C. Dutton Helper: M. Baetje			Completion: Station:	14.09 ft. BGS 872,968.54N		
Ň		R: 0	vercast,	mild	(mid	-40s)		Eng/Geo: R. Hasenyager			2,513,206.33E			
		E					TOPOGR	APHIC MAP INFORMATION:	WATER	LEVEL IN	FORMATION:			
	la (in			nt (%	(Ib/f	(tsf)	Quadi	rangle: Coffeen	<u>▼</u> =	11.00 -	During drilling	<b>a</b> n		
	Tota very		6 in e	ontei	sity	Q Type	Sectio	on 10, Tier 7N; Range 3W	$\nabla =$	4.82 -	1 March 2018			
Jumber	kecov / % Reco	ype	slows / J - Valu <b>ROD</b>	Vater C	Dry Der	λu (tsf) ailure ⁻	Depth ft_BGS	Lithologic Description		Borehole	Elevation	Remarks		
1A	14/24 58%	ss	2-3 1-5 N=4	26.7		<u>U</u>	2	FILL - Light gray (10YR7/1), moist, loose, very fine- to coarse-grained SAND with few small to medium grav Very dark grayish brown (10YR3/2), moist, soft, CLAY some silt and trace very fine- to fine-grained sand. Yellowish brown (10YR5/4), moist, soft, CLAY with som and trace very fine- to fine-grained sand.	very el. with e silt		616			
2A	15/24 63%	ss	4-4 4-5 N=8	25.2			4	Gray (10YR6/1) with 25% yellowish brown (10YR5/6) me	ottles,		614			
3A	17/24 71%	ss	2-3 4-6 N=7	17.9			∑ ¶	fine-grained sand.			612			
4A	20/24 83%	ss	3-4 5-6 N=9	17.2			8				610			
5A	11/24 46%	ss	3-3 5-6 N=8	17.5			10	Gray (101R3/1) with 30% yenowish brown (101R3/8) mo moist, medium, CLAY with some silt, little very fine- to coarse-grained sand, and trace small to medium grav	very el.		608			
6A 6B	22/24 92%	ss	2-3 4-6 N=7	16.9 16.8			¥ 12	Gray (10YR6/1), moist, loose, very fine- to medium-gra SAND with few silt and few clay. Yellowish brown (10YR5/8) with 10% gray (10YR5/1) mo moist, medium, CLAY with some silt, little very fine- to coarse-grained sand, and trace small to medium grav	ined ittles, very el.		606			
7A	24/24 100%	ss	6-28 36-42 N=64	10.3			Ā –	Yellowish brown (10YR5/6), moist, hard, SILT with some few very fine- to very coarse-grained sand, and trace sn medium gravel.	e clay, nall to		604			
	0/1 0%	⊟вр					14 –	End of Boring = 14.09 ft bgs			∐⊢ I			

NOTE(S):

Attachment E

Site Solids Bulk Characterization Analytical Data



September 15, 2021

Michael Healy SiREM 130 Stone Road West Guelph, Ontario, Canada N1G 3Z2

#### RE: Report of Findings, Measurement of AVS Client ID: Coffeen AP1 MNA PRIMA ID: Sirem 08312021-Coffeen AP1

Dear Mr. Healy:

This letter report describes the results of analyses conducted on four soil samples. Each soil was analyzed for acid volatile sulfide (AVS). Results are reported herein.

#### **Sample Receipt and Preparation**

Samples were received on August 31, 2021. The samples were placed in an anaerobic glovebox upon receipt. All sample preparation was conducted in the glove box.

#### Procedures

AVS was measured via sequential extraction of soil based on methods provided by Microseeps, Inc. In order to minimize exposure of the soil or extraction fluid to oxygen, the soil samples were transferred to the extraction vessel while in the glove box and the extractions were carried out on the bench top under a flow of nitrogen. A brief description of the extraction procedure is provided below.

**WAS-Fe.** Approximately 10 g of soil is extracted with 1 N hydrochloric acid (HCl) for 30 minutes at room temperature (approximately 20° C), after which an aliquot of the HCl is withdrawn and analyzed for ferrous iron and total iron colorimetrically using a Hach DR2800 spectrophotometer and appropriate Hach test kit reagents. Dilutions are made as needed using deoxygenated, deionized (DO/DI) water.

**AVS.** Hydrogen sulfide generated during the WAS extraction step is collected in a trap filled with 1.25 N sodium hydroxide (NaOH). After collection of the WAS Fe sample, concentrated HCl is added to the soil and the mixture is heated for 30 minutes. The concentration of sulfide in trap is then measured using the methylene blue method via a

Hach DR2800 spectrophotometer and appropriate Hach test kit reagents. Dilutions are made as needed using DO/DI water.

#### Results

The amount of AVS in each sample is shown in **Table 1** (attached). QC results are given in **Table 2** (attached).

If you have any questions regarding these results, please give me a call at 916-939-7300. Thank you for the opportunity to be of service.

# Sincerely, **PRIMA Environmental, Inc.**

Cendy G. Schreier

Cindy G. Schreier, Ph.D. President

Attachments

Sample	AVS, mg/kg
SB-306-(14-16)	< 0.18
SB-311-(14-15)	0.24
SB-313-(8-9)	< 1.6 M
SB-316-(13-14, 15-16)	0.28

Table 1. AVS Results.

M Reporting limit elevated due to matrix interference

Sample ID	Result	Units
Blank *		
AVS	< 0.025	mg/L
FeS standard		
Sulfide concentration	365	g/kg
AVS	378	g/kg
% Recovered as AVS	104	%

#### Table 2. QC Results for AVS.

* A blank was run in the absence of a solid material. Therefore, values are concentrations in the extraction fluids or traps.



5070 Robert J Mathews Parkway, Suite 300 El Dorado Hills, CA 95762 916-939-7300 www.primaenvironmental.com

Sample Receipt Summary	/		
Date/Time: 83121 10:40			
Client/Company: <u>SiRem - Avs 088</u> Project: <u>Coffeen AP1 MNA</u>	3 2021		
Custody seals intact? Chain of custody Present? If no, list number of samples and Sample ID	Yes	No □	N/A X
Ice present? If no, what is temperature? Samples in good condition? If no, explain:	× Blue		
Do sample IDs on containers match IDs on COC? If no, explain:	Ŕ		

Other Comments: efectrical tape around lids. Store in glove box



### CHAIN of CUSTODY

Page <u>1</u> of <u>1</u>

Project Manager:	Michael He								Phone	e:	(519) 822-2265				
Project Name:	Coffeen AF	1 MNA									Fax:		(519)	822-3	151
lob Number:	lob Number:											:	mhealey@siremlab.com		
Sampler Signature											TAT		1 week		
Gampler Olghature.												•			
SAMPLE	ID	Date	Time						Analysis						Comments
. /				Matrix	# Containers	Acid Volatile Sulfide									
<b>V \$</b> B-306-(14-16)		26-Aug-21	12:15	S	1	Х									
SB-311-(14-15)		26-Aug-21	12:30	S	1	X									
SB-313-(8-9)		26-Aug-21	12:45	S	1	X				_					
SB-316-(13-14,15-16)		26-Aug-21	1:00	S	1	X									
										_					
										_					
															L
Special Instr	uctions		Rel	inquis	hed by:							0.000	Received by:		
		Company	SIREM						e 26A	ng	21	Drint	Company		
	Printed Name Pach Signature					an		im	e 12.	000	m.	Cian	eu marne	5	
										/		Signa	Signature		
		Company	Ker	inquisi	nea by:			Dat		112		Com	nany	0	
Distant Name							A 404	Tim	Time ball of the			Print	rinted Name in all a Scatt		
		Signature								10	,	Sign	indure monthly source		
Matrix kary C. c-il/	limont: \\/								51			Signa	ignature . White Starts		



September 1, 2021

Michael Healy SiREM 130 Stone Road West Guelph, Ontario, Canada N1G 3Z2

#### RE: Report of Findings, Measurement of AVS Client ID: Coffeen MNA PRIMA ID: Sirem 08202021-Coffeen

Dear Mr. Healy:

This letter report describes the results of analyses conducted on two soil samples. Each soil was analyzed for acid volatile sulfide (AVS). Results are reported herein.

#### Sample Receipt and Preparation

Samples were received on August 20, 2021. The samples were frozen upon receipt, then thawed in a nitrogen-filled glove box. All sample preparation was conducted in the glove box.

#### Procedures

AVS was measured via sequential extraction of soil based on methods provided by Microseeps, Inc. In order to minimize exposure of the soil or extraction fluid to oxygen, the soil samples were transferred to the extraction vessel while in the glove box and the extractions were carried out on the bench top under a flow of nitrogen. A brief description of the extraction procedure is provided below.

**WAS-Fe.** Approximately 10 g of soil is extracted with 1 N hydrochloric acid (HCl) for 30 minutes at room temperature (approximately 20° C), after which an aliquot of the HCl is withdrawn and analyzed for ferrous iron and total iron colorimetrically using a Hach DR2800 spectrophotometer and appropriate Hach test kit reagents. Dilutions are made as needed using deoxygenated, deionized (DO/DI) water.

**AVS.** Hydrogen sulfide generated during the WAS extraction step is collected in a trap filled with 1.25 N sodium hydroxide (NaOH). After collection of the WAS Fe sample, concentrated HCl is added to the soil and the mixture is heated for 30 minutes. The

concentration of sulfide in trap is then measured using the methylene blue method via a Hach DR2800 spectrophotometer and appropriate Hach test kit reagents. Dilutions are made as needed using DO/DI water.

#### Results

The amount of AVS in each sample is shown in **Table 1** (attached). QC results are given in **Table 2** (attached).

If you have any questions regarding these results, please give me a call at 916-939-7300. Thank you for the opportunity to be of service.

Sincerely, **PRIMA Environmental, Inc.** 

Cendy G. Schreier

Cindy G. Schreier, Ph.D. President

Attachments

Sample	AVS, mg/kg
401B-(16-20)	< 0.19
270A-(12-16)	< 0.19

#### Table 1. AVS Results.

		5.
Sample ID	Result	Units
Blank *		
AVS	< 0.025	mg/L
FeS standard		
Sulfide concentration	365	g/kg
AVS	364	g/kg
% Recovered as AVS	100	%

#### Table 2. OC Results for AVS.

* A blank was run in the absence of a solid material. Therefore, values are concentrations in the extraction fluids or traps.



5070 Robert J Mathews Parkway, Suite 300 El Dorado Hills, CA 95762 916-939-7300 www.primaenvironmental.com

**Sample Receipt Summary** 8 AW Date/Time: lichae Client/Company: Project: 4 No N/A MNA Custody seals intact? M Chain of custody Present? If no, list number of samples and Sample ID Ice present? If no, what is temperature? _____ Samples in good condition? If no, explain: I've appears metted

Do sample IDs on containers match IDs on COC? If no, explain:

3 Chains of <usture

Other Comments:



CHAIN of CUSTODY

Page <u>1</u> of <u>1</u>

Project Manager:	Michael Hea	aley								F	^o hone:	(519) 822-22	265		
Project Name:	Coffeen MN	IA							Fax:			(519) 822-3151			
Lab Number										E	Email:	mhealey@si	remlab.com		
	2.11	111.	/							7	τατ·	1 week			
Sampler Signature:	frant	form									.,		-		
SAMPLE	EID	Date	Time						Ana	lysis			Co	mments	
					ainers	olatile									
			1.1	Matrix	# Conta	Acid Vo Sulfide									
401B-(16-20)	V	18-Aug-21	3:00	S	1	Х				N-					
270A-(12-16)		18-Aug-21	3:15	S	1	X		_							
						+									
				-											
Special Instr	ructions		Reli	elinquished by:								Received by:			
		Company	Sik	EM.	Lab	5		Date	18	Ango	2/ Co	mpany PR	ma	10/20/21	
Printed Name Re Signature		ne Ra	chet	Ha	Um	hm	Time	5:	30 pm	Pri	inted Name Chrise 10:00				
		Lo	ochel the						1	Sig	gnature				
		0	🖊 Reli	inquis	hed by	:		Data				mpany	Received by:		
		Company						Time			Pri	nted Name			
		Printed Nan	10								Sic	inature			
		Signature										jiataro			

Matrix key: S - soil/sediment; W - water; OT - other



SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

#### SiREM Laboratory

Attn : Michael Healey

130 Stone Road W, Guelph Canada, N1G 3Z2 Phone: 519-822-2265, Fax:519-822-3151 13-September-2021

Date Rec.: 13 September 2021 LR Report: CA15261-SEP21 Reference: P.O# 800003210A

#1 Copy:

### CERTIFICATE OF ANALYSIS **Final Report**

Sample ID	Sample Date &	S
-	Time	%
1: Analysis Start Date		13-Sep-21
2: Analysis Start Time		15:44
3: Analysis Completed Date		13-Sep-21
4: Analysis Completed Time		17:17
5: G1001-(6-11)	17-May-21 10:00	0.031
6: 401B-(16-20)	17-May-21 10:15	0.008
7: 270A-(12-16)	17-May-21 10:30	< 0.005

CHARTEREI Catharine Aunold ATHARINE ARNO CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

000263871

Page 1 of 1 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or



**SGS Canada Inc.** P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

#### **SiREM Laboratory**

Attn : Michael Healey

130 Stone Road W, Guelph Canada, N1G 3Z2 Phone: 519-822-2265, Fax:519-822-3151 Project : Coffeen AP1 MNA, PO# 800003210A

21-December-2021

Date Rec. :16 November 2021LR Report:CA14794-NOV21Reference:Project Name: Coffeen AP1<br/>MNA, PO# 800003210A

**Copy:** #1

## CERTIFICATE OF ANALYSIS Final Report

Sample ID	Sample Date &	В
	Time	g/t
5: SB-306-(14-16)	26-Aug-21 10:00	< 40
6: SB-311-(14-15)	26-Aug-21 10:15	< 40
7: SB-313-(8-9)	26-Aug-21 10:30	< 40
8: SB-316-(13-14,15-16)	26-Aug-21 10:45	< 40

atharine Anold CATHARINE ARNO CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0002751323

Page 1 of 1 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples.

SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or



SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

#### SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

13-September-2021

Date Rec. :	31 August 2021
LR Report:	CA19062-AUG21
Reference:	Project Name: Coffeen AP1 MNA, PO# 800003210A

Copy: #1

### CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:	2:	3:	4:	5:	6:	7:	8:
	AnalysisAna Start Date	Ilysis Start Time	Analysis Completed Date	Analysis Completed Time	SB-306-(14-16)	SB-311-(14-15)	SB-313-(8-9) S	B-316-(13-14,15-1 6)
Sample Date & Time					26-Aug-21 10:00	26-Aug-21 10:15	26-Aug-21 10:30	26-Aug-21 10:45
Ag [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	< 0.5	< 0.5	< 0.5	< 0.5
Al [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	13000	11000	31000	32000
As [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	6.7	2.7	5.6	5.1
Ba [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	98	58	310	320
Be [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	0.45	0.37	0.73	0.69
Bi [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	0.10	0.10	0.11	0.12
Ca [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	35000	52000	69000	10000
Cd [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	0.11	0.08	0.20	0.06
Co [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	6	4	7	4
Cr [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	130	100	130	150
Cu [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	14	10	12	10
Fe [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	20000	12000	27000	17000
K [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	3700	3600	13000	14000
Li [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	11	11	19	14
Mg [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	15000	27000	35000	6700
Mn [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	470	310	1200	260
Mo [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	5.8	2.7	1.6	8.1
Na [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	590	830	6000	6400
Ni [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	15	11	17	13
P [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	230	200	250	230
Pb [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	9	7	11	12
Sb [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	< 0.8	< 0.8	< 0.8	< 0.8
Se [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	< 0.7	< 0.7	< 0.7	< 0.7
Sn [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	< 6	< 6	< 6	< 6
Sr [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	26	35	100	89
Ti [μg/g]	09-Sep-21	19:00	10-Sep-21	10:47	370	320	1500	1200
TI [μg/g]	09-Sep-21	19:00	10-Sep-21	10:47	0.15	0.13	0.26	0.31
U [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	0.54	0.55	1.0	1.0
V [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	28	20	35	29
Y [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	9.1	8.2	11	10
Zn [µg/g]	09-Sep-21	19:00	10-Sep-21	10:47	35	27	41	34
C [%]	10-Sep-21	08:20	10-Sep-21	14:51	1.65	2.76	3.26	0.457

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS

General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or


SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

LR Report : CA19062-AUG21

Analysis	1: Analysis Anal	2: Iveis Start	3: Analysis	4: Analysis	5: SB-306-(14-16)	6: SB-311-(14-15)	7: SB-313-(8-0) SB-31	8: 6-(13-14 15-1
	Start Date	Time	Completed Date	Completed Time	38-300-(14-10)	00-011-(14-10)	00-010-010-01	6)
S [%]	10-Sep-21	08:20	10-Sep-21	14:51	0.005	0.014	0.007	0.012
TOC [%]	10-Sep-21	14:26	10-Sep-21	16:31	0.413	0.772	0.775	0.257
Sulphide [%]	10-Sep-21	18:37	13-Sep-21	09:15	< 0.04	< 0.04	< 0.04	< 0.04

CHARTERED THARME ARN Catharine Aunold CHEMIST Catharine Arnold, B.Sc., C.Chem

Project Specialist, Environment, Health & Safety

0002638704

Page 2 of 2 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or



SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365

#### SiREM Laboratory

Attn : Michael Healey

130 Stone Road W Guelph, ON N1G 3Z2, Canada

Phone: 519-822-2265 Fax:519-822-3151

Project : Coffeen MNA

09-June-2021

Date Rec.: 18 May 2021 LR Report: CA12646-MAY21 Reference: P.O# 800003210A

#1 Copy:

# CERTIFICATE OF ANALYSIS **Final Report**

Analysis	1:	2:	3:	4:	5:	6:	7:
	AnalysisAna Start Date	lysis Start Time	Analysis Completed	Analysis Completed Time	G1001-(6-11)	401B-(16-20)	270A-(12-16)
Sample Date & Time			Date	Time	17-May-21 10:00	17-May-21 10:15	17-May-21 10:30
Temp Upon Receipt [°C]					5.0	5.0	5.0
Sulphide1 [%]	03-Jun-21	15:12	03-Jun-21	16:31	0.05	< 0.04	< 0.04
TOC [%]	07-Jun-21	09:12	07-Jun-21	15:08	0.852	0.082	0.138
Ag [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	< 0.05	< 0.05	< 0.05
Al [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	8200	9700	9600
As [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	6.2	5.5	12
Ba [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	120	190	210
Be [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.45	0.35	0.48
B [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	6	4	5
Bi [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.23	0.25	0.18
Ca [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	42000	1900	5000
Cd [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.13	0.03	0.12
Co [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	8.8	6.1	10
Cr [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	15	14	16
Cu [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	11	7.8	12
Fe [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	16000	14000	22000
K [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	1100	770	1400
Li [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	9	7	11
Mg [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	18000	1600	4700
Mn [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	450	540	1200
Mo [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	1.5	0.4	0.8
Na [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	110	80	110
Ni [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	15	10	20
Pb [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	11	9.5	12
Sb [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	< 0.8	< 0.8	< 0.8
Se [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	< 0.7	< 0.7	< 0.7
Sn [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.6	< 0.5	< 0.5
Sr [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	35	9.1	10
Ti [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	170	65	230
ΤΙ [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.16	0.12	0.16
U [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.82	0.39	0.46
V [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	19	14	22
W [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	0.07	0.04	0.13

Page 1 of 2

Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS

General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or



SGS Canada Inc. P.O. Box 4300 - 185 Concession St. Lakefield - Ontario - KOL 2HO Phone: 705-652-2000 FAX: 705-652-6365 Project : Coffeen MNA

LR Report : CA12646-MAY21

Analysis	1:	2:	3:	4:	5:	6:	7:
	Start Date	Time	Completed Date	Completed Time	G1001-(6-11)	4016-(10-20)	270A-(12-16)
Y [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	8.1	8.2	9.4
Zn [µg/g]	04-Jun-21	15:33	07-Jun-21	10:42	35	28	50

Catharine Arnold ATHARINE ARNO CHEMIST

Catharine Arnold, B.Sc., C.Chem Project Specialist, Environment, Health & Safety

0002522990

Page 2 of 2 Data reported represents the sample submitted to SGS. Reproduction of this analytical report in full or in part is prohibited without prior written approval. Please refer to SGS General Conditions of Services located at https://www.sgs.ca/en/terms-and-conditions (Printed copies are available upon request.) Test method information available upon request. "Temperature Upon Receipt" is representative of the whole shipment and may not reflect the temperature of individual samples. SGS Canada Inc. Environment-Health & Safety statement of conformity decision rule does not consider uncertainty when analytical results are compared to a specified standard or

# **Attachment F** X-Ray Fluorescence Analytical Data



### ANALYSIS REPORT BBM23-31378

To F400101 SGS CANADA INC LISA THOMPSON 185 Concession Street Lakefield K0L 2H0 ON CANADA

Order Number Submission Number	PO# CA19113-JUL23 / 6 Pulp 6	Date Received Date Analysed	23-Aug-2023 30-Aug-2023 - 06-Sep-2023
Number of Samples	0	SGS Order Number	09-Sep-2023 BBM23-31378

#### Methods Summary

Number of Sample	Method Code	Description
6	G_PHY01V	Loss on ignition (LOI), Furnace, variable wt, variable temp
6	GO_XRF72	Borate Fusion, XRF, Ore Grade

#### **Comments**

Preparation of samples was performed at the SGS Lakefield site. Analysis of samples was performed at the SGS Burnaby site.

Authorised Signatory

John Chiang Laboratory Operations Manager



This document is issued by the Company under its General Conditions of Service accessible at https://www.sgs.com/en/Terms-and-Conditions.aspx. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

**WARNING:** The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted. The findings report on the samples provided by the client and are not intended for commercial or contractual settlement purposes.

- not analysed | -- element not determined | I.S. insufficient sample

_ . . . .

| L.N.R. listed not received

13-Sep-2023 11:00PM BBM_U0046911720

Page 1 of 3

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAMMinerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486

www.sgs.com



Order Number Submission Number Number of Samples

PO# CA19113-JUL23 / 6 Pulp 6

# **ANALYSIS REPORT BBM23-31378**

Element	LOI	@Al2O3	@CaO	@Cr2O3	@Fe2O3	@K2O
Method	G_PHY01V	GO_XRF72	GO_XRF72	GO_XRF72	GO_XRF72	GO_XRF72
Lower Limit	-10	0.01	0.01	0.01	0.01	0.01
Upper Limit	100	100	60	5	100	70
Unit	%	%	%	%	%	%
COF1-13-18- 20230619	12.4300	8.36	6.73	<0.01	3.19	1.88
COF1-18-23- 20230619	12.3300	8.41	6.72	0.02	3.48	1.88
COF1-38-43- 20230619	12.3000	8.35	6.69	0.02	3.71	1.89
COF2-10-13- 20230619	2.53949	6.73	0.52	0.01	2.08	2.01
COF3-11-12- 20230619	3.75000	8.14	1.04	<0.01	2.77	2.42
COF3-12.5-13- 20230619	11.9572	4.92	9.10	<0.01	1.69	1.59
*Std OREAS 70b	6.78796	-	-	-	-	-
*Std OREAS 70b	-	7.12	4.28	0.18	7.95	0.71
*Blk BLANK	-	<0.01	<0.01	<0.01	<0.01	<0.01
*Std OREAS 751	-	15.87	1.04	<0.01	2.40	2.89

Element Method Lower Limit Upper Limit Unit	@MgO GO_XRF72 0.01 100 %	Mn3O4 GO_XRF72 0.01 100 %	@Na2O GO_XRF72 0.01 60 %	@P2O5 GO_XRF72 0.01 55 %	@SiO2 GO_XRF72 0.01 100 %	@TiO2 GO_XRF72 0.01 100 %
COF1-13-18- 20230619	3.71	0.07	0.79	0.07	62.07	0.49
COF1-18-23- 20230619	3.66	0.07	0.80	0.08	61.80	0.50
COF1-38-43- 20230619	3.62	0.07	0.77	0.08	61.72	0.50
COF2-10-13- 20230619	0.54	0.03	0.82	0.06	84.59	0.36
COF3-11-12- 20230619	0.77	0.13	0.85	0.06	80.21	0.40
COF3-12.5-13- 20230619	4.44	0.08	0.69	0.05	64.55	0.26
*Std OREAS 70b	22.38	0.16	1.04	0.05	48.48	0.30
*BIk BLANK	<0.01	<0.01	0.01	<0.01	<0.01	<0.01
*Std OREAS 751	0.50	0.10	3.40	0.27	71.34	0.24

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

13-Sep-2023 11:00PM BBM_U0046911720

Page 2 of 3

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAMMinerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA **t** +1 (604) 638 2349 **f** +1 (604) 444 5486

www.sgs.com



Order Number Submission Number Number of Samples

PO# CA19113-JUL23 / 6 Pulp 6

Element Method Lower Limit Upper Limit Unit	@V2O5 GO_XRF72 0.01 10 %	Sum GO_XRF72 0.01 100 %
COF1-13-18- 20230619	0.01	87.60
COF1-18-23- 20230619	<0.01	87.86
COF1-38-43- 20230619	0.01	87.81
COF2-10-13- 20230619	<0.01	97.81
COF3-11-12- 20230619	0.01	96.90
COF3-12.5-13- 20230619	<0.01	87.45
*Std OREAS 70b	0.01	93.40
*Blk BLANK	<0.01	0.03
*Std OREAS 751	<0.01	98.27

## **ANALYSIS REPORT BBM23-31378**

SGS Canada Minerals Burnaby conforms to the requirements of ISO/IEC17025 for specific tests as listed on their scope of accreditation found at https://www.scc.ca/en/search/laboratories/sgs Tests and Elements marked with an "@" symbol in the report denote ISO/IEC17025 accreditation.

- not analysed | -- element not determined | I.S. insufficient sample | L.N.R. listed not received

13-Sep-2023 11:00PM BBM_U0046911720

Page 3 of 3

MIN-M_COA_ROW-Last Modified Date: 05-Nov-2019

SGS Canada Inc. NAMMinerals Geochemistry 3260 Production Way Burnaby BC. V5A 4W4 CANADA t +1 (604) 638 2349 f +1 (604) 444 5486

Member of the SGS Group (SGS SA)

www.sgs.com

# **Attachment G** X-Ray Diffraction Analytical Data



### **Quantitative X-Ray Diffraction by Rietveld Refinement**

Report Prepared for:	Environmental Services
Project Number/ LIMS No.	Custom XRD/MI4544-MAY21
Sample Receipt:	May 27, 2021
Sample Analysis:	May 31, 2021
Reporting Date:	June 17, 2021
Instrument:	BRUKER AXS D8 Advance Diffractometer
Test Conditions:	Co radiation, 35 kV, 40 mA Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°
Interpretations:	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.
Contents:	<ol> <li>Method Summary</li> <li>Quantitative XRD Results</li> <li>XRD Pattern(s)</li> </ol>

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

Haym Low

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: <u>http://palcan.scc.ca/SpecsSearch/GLSearchForm.do</u>.

SGS Minerals a division of SGS Canada Inc.

 SGS Minerals
 P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0

 S Canada Inc.
 Tel: (705) 652-2000 Fax: (705) 652-6365 www.sgs.com www.sgs.com/met

 Member of the SGS Group (SGS SA)



### **Method Summary**

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

#### Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

#### Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

**DISCLAIMER:** This document is issued by the Company under its General Conditions of Service accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

**WARNING:** The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

SGS Minerals	P.O. Box 4300, 185 (	Concession Street, Lal	kefield, Ontario,	Canada K0L 2H0
a division of SGS Canada Inc.	Tel: (705) 652-2000	Fax: (705) 652-6365	www.sgs.com	www.sgs.com/met
	Member of the SGS Group (SGS SA)			

.



## Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

	G1001-(6-11)	401B-(16-20)	270A-(12-16)	
Mineral/Compound	MAY4544-01	MAY4544-02	MAY4544-03	
	(wt %)	(wt %)	(wt %)	
Quartz	46.3	68.9	60.6	
Muscovite	10.3	6.8	9.0	
Biotite	2.4	2.1	2.4	
Microcline	7.8	7.8	9.8	
Albite	10.4	8.6	9.1	
Calcite	4.2	-	-	
Dolomite	11.3	-	0.6	
Ankerite	1.5	0.1	0.5	
Chlorite	1.5	-	1.4	
Pyrite	0.1	-	0.2	
Stilpnomelane	2.6	2.7	2.0	
Diopside	0.8	1.4	1.3	
Actinolite	0.9	1.4	3.3	
TOTAL	100	100	100	

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Muscovite	KAI ₂ (AISi ₃ O ₁₀ )(OH) ₂
Biotite	K(Mg,Fe) ₃ (AlSi ₃ O ₁₀ )(OH) ₂
Microcline	KAISi ₃ O ₈
Albite	NaAlSi ₃ O ₈
Calcite	CaCO ₃
Dolomite	CaMg(CO ₃ ) ₂
Ankerite	CaFe(CO ₃ ) ₂
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Pyrite	FeS ₂
Stilpnomelane	K(Fe ²⁺ ,Mg,Fe ³⁺ ) ₈ (Si,Al) ₁₂ (O,OH) ₂₇ ·n(H ₂ O)
Diopside	CaMgSi ₂ O ₆
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂







SGS Minerals Services, P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0





SGS Minerals Services, P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0



### **Quantitative X-Ray Diffraction by Rietveld Refinement**

Report Prepared for:	Environmental Services		
Project Number/ LIMS No.	Custom XRD/MI4509-SEP21		
Sample Receipt:	September 9, 2021		
Sample Analysis:	September 24, 2021		
Reporting Date:	October 22, 2021		
Instrument:	BRUKER AXS D8 Advance Diffractometer		
Test Conditions:	Co radiation, 35 kV, 40 mA Regular Scanning: Step: 0.02°, Step time: 1s, 2θ range: 3-80°		
Interpretations :	PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.		
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.		
Contents:	<ol> <li>Method Summary</li> <li>Quantitative XRD Results</li> <li>XRD Pattern(s)</li> </ol>		

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist

Haym they

Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

ACCREDITATION: SGS Minerals Services Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada - Minerals Services - Lakefield: <a href="http://palcan.scc.ca/SpecsSearch/GLSearchForm.do">http://palcan.scc.ca/SpecsSearch/GLSearchForm.do</a>.

SGS Minerals a division of SGS Canada Inc.

P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0nc.Tel: (705) 652-2000Fax: (705) 652-6365www.sgs.comWember of the SGS Group (SGS SA)



### **Method Summary**

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Minerals Services is accredited to the requirements of ISO/IEC 17025.

#### Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

#### Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

**DISCLAIMER:** This document is issued by the Company under its General Conditions of Service accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

**WARNING:** The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.

	SB-306-(14-16)	SB-311-(14-15)	SB-313-(8-9)	SB-316-(13-14,15-16)
Mineral/Compound	SEP4509-01	SEP4509-02	SEP4509-03	SEP4509-04
	(wt %)	(wt %)	(wt %)	(wt %)
Quartz	70.9	58.9	51.3	67.6
Microcline	8.5	7.4	7.6	9.8
Albite	9.6	8.6	7.9	9.6
Calcite	0.5	2.5	4.1	-
Dolomite	3.5	12.1	15.7	1.9
Ankerite	2.1	5.0	7.7	0.8
Chlorite	1.8	1.7	1.1	1.7
Diopside	3.1	3.8	4.6	1.3
Muscovite	-	-	-	7.3
TOTAL	100	100	100	100

# Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Microcline	KAISi ₃ O ₈
Albite	NaAlSi ₃ O ₈
Calcite	CaCO ₃
Dolomite	CaMg(CO ₃ ) ₂
Ankerite	CaFe(CO ₃ ) ₂
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Diopside	CaMgSi ₂ O ₆
Muscovite	$KAI_2(AISi_3O_{10})(OH)_2$





SGS Minerals Services, P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0





SB-311-(14-15)





SGS Minerals Services, P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0



SEP4509-4 riet.raw 1 Quartz 67.62 % 35,000-Muscovite 2M1 7.35 % 34,000 Microcline intermediate1 9.76 % 33,000-Albite 9.60 % 32,000-Dolomite 1.91 % 31,000-Ankerite Fe0.55 0.75 % 30,000-Chlorite Ilb 1.68 % 29,000 1.33 % Diopside 28,000-27,000 26,000 25,000 24,000 23,000 22,000 21,000 20,000-19,000-18,000-17,000-16,000 15,000-14,000 13,000-12,000-11,000-10.000 9,000-8,000-7,000-6,000-5,000-4,000 3,000-2,000 1,000 0 -1,000--2,000 -3,000 -4,000 and of the second s Հինդ**լ**տել էս ։։ , nu d ייין אונטייב אייג לאג ¹בלי לא אוני - Հայեստ  $m_{\rm H} \geq 1$ -5,000 -6,000 ահատորոներից հայումին։ ЦI 100 -7,000-1.1 1 1 1 Ů<mark>ŮШ P_U P_U P_U</mark> 42 . 44 50 52 . 54 56 60 62 64 66 6 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 46 48 58 68 70 72 74 76 78 2Th Degrees

SB-316-(13-14,15-16)



### **Quantitative X-Ray Diffraction by Rietveld Refinement**

Report Prepared for:	Environmental Services	
Project Number/ LIMS No.	Custom XRD/MI4528-AUG23	
Sample Receipt:	August 10, 2023	
Sample Analysis:	August 31, 2023	
Reporting Date:	September 15, 2023	
Instrument:	BRUKER AXS D8 Advance Diffractometer	
Test Conditions:	Co radiation, 35 kV, 40 mA; Detector: LYNXEYE Regular Scanning: Step: 0.02°, Step time: 0.75s, 2θ range: 6-80° Clay Section Scanning: Step: 0.01°, Step time:0.2s, 2θ range: 3-40°	
Interpretations :	tations: PDF2/PDF4 powder diffraction databases issued by the International Center for Diffraction Data (ICDD). DiffracPlus Eva and Topas software.	
Detection Limit:	0.5-2%. Strongly dependent on crystallinity.	
Contents:	<ol> <li>Method Summary</li> <li>Quantitative XRD Results</li> <li>XRD Pattern(s)</li> </ol>	

Kim Gibbs, H.B.Sc., P.Geo. Senior Mineralogist Huyun Zhou, Ph.D., P.Geo. Senior Mineralogist

**ACCREDITATION:** SGS Natural Resources Lakefield is accredited to the requirements of ISO/IEC 17025 for specific tests as listed on our scope of accreditation, including geochemical, mineralogical and trade mineral tests. To view a list of the accredited methods, please visit the following website and search SGS Canada Inc. - Minerals: <a href="https://www.scc.ca/en/search/palcan">https://www.scc.ca/en/search/palcan</a>.

 SGS Natural Resources
 P.O. Box 4300, 185 Concession Street, Lakefield, Ontario, Canada K0L 2H0

 a division of SGS Canada Inc.
 Tel: (705) 652-2000
 Fax: (705) 652-6365
 www.sgs.com
 www.sgs.com/met

 Member of the SGS Group (SGS SA)



#### **Method Summary**

The Rietveld Method of Mineral Identification by XRD (ME-LR-MIN-MET-MN-D05) method used by SGS Natural Resources is accredited to the requirements of ISO/IEC 17025.

#### Mineral Identification and Interpretation:

Mineral identification and interpretation involves matching the diffraction pattern of an unknown material to patterns of single-phase reference materials. The reference patterns are compiled by the Joint Committee on Powder Diffraction Standards - International Center for Diffraction Data (JCPDS-ICDD) database and released on software as Powder Diffraction Files (PDF).

Interpretations do not reflect the presence of non-crystalline and/or amorphous compounds, except when internal standards have been added by request. Mineral proportions may be strongly influenced by crystallinity, crystal structure and preferred orientations. Mineral or compound identification and quantitative analysis results should be accompanied by supporting chemical assay data or other additional tests.

#### **Clay Mineral Separation and Identification:**

Clay minerals are typically fine-grained (<2 µm) phyllosilicates in sedimentary rock. Due to the poor crystallinity and fine size of clay minerals, separation of the clay fraction from bulk samples by centrifuge is required. A slide of the oriented clay fraction is prepared and scanned followed by a series of procedures (the addition of ethylene glycol and high temperature heating). Clay minerals are identified by their individual diffraction patterns and changes in their diffraction pattern after different treatments. Clay speciation and mineral identification of the bulk sample are performed using DIFFRACplus EVA (Bruker AXS).

#### Quantitative Rietveld Analysis:

Quantitative Rietveld Analysis is performed by using Topas 4.2 (Bruker AXS), a graphics based profile analysis program built around a non-linear least squares fitting system, to determine the amount of different phases present in a multicomponent sample. Whole pattern analyses are predicated by the fact that the X-ray diffraction pattern is a total sum of both instrumental and specimen factors. Unlike other peak intensity-based methods, the Rietveld method uses a least squares approach to refine a theoretical line profile until it matches the obtained experimental patterns.

Rietveld refinement is completed with a set of minerals specifically identified for the sample. Zero values indicate that the mineral was included in the refinement calculations, but the calculated concentration was less than 0.05wt%. Minerals not identified by the analyst are not included in refinement calculations for specific samples and are indicated with a dash.

**DISCLAIMER:** This document is issued by the Company under its General Conditions of Service accessible at <a href="http://www.sgs.com/en/Terms-and-Conditions.aspx">http://www.sgs.com/en/Terms-and-Conditions.aspx</a>. Attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein. Any holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents. Any unauthorized alteration, forgery or falsification of the content or appearance of this document is unlawful and offenders may be prosecuted to the fullest extent of the law.

**WARNING:** The sample(s) to which the findings recorded herein (the "Findings") relate was(were) drawn and / or provided by the Client or by a third party acting at the Client's direction. The Findings constitute no warranty of the sample's representativeness of any goods and strictly relate to the sample(s). The Company accepts no liability with regard to the origin or source from which the sample(s) is/are said to be extracted.



# Summary of Rietveld Quantitative Analysis X-Ray Diffraction Results

Mineral/Compound	COF1-13-18- 20230619	COF1-18-23- 20230619	COF1-38-43- 20230619	COF2-10-13- 20230619	COF3-11-12- 20230619	COF3-12.5-13- 20230619
	AUG4528-01	AUG4528-02	AUG4528-03	AUG4528-04	AUG4528-05	AUG4528-06
	(wt %)					
Quartz	53.9	67.5	73.5	51.2	50.7	50.5
Chlorite	1.6	1.7	1.5	3.0	3.9	3.2
Albite	6.1	8.3	8.2	6.8	7.4	7.5
Microcline	5.1	9.7	7.8	7.2	5.9	5.8
Calcite	4.1	0.4	-	2.4	2.6	2.8
Ankerite	7.2	1.2	0.5	9.4	8.4	8.1
Dolomite	13.3	0.5	0.0	6.0	7.6	8.1
Actinolite	0.3	0.7	0.8	0.5	0.6	0.6
Diopside	1.0	0.7	0.7	0.4	0.5	0.7
Kutnohorite	0.5	0.3	0.2	0.1	-	0.2
Muscovite	1.0	4.8	3.3	5.5	4.4	4.3
Magnetite	-	0.2	0.0	0.1	0.1	0.2
Clay	-	-	-	-	-	-
Illite	4.0	2.0	1.7	3.3	3.0	2.9
Montmorillonite	1.1	1.0	1.1	3.2	3.2	2.9
Kaolinite	0.7	1.1	0.7	0.9	0.6	0.6
Illite-Montmorillonite	-	-	-	-	1.3	1.7
TOTAL	100	100	100	100	100	100

Zero values indicate that the mineral was included in the refinement, but the calculated concentration is below a measurable value.

Dashes indicate that the mineral was not identified by the analyst and not included in the refinement calculation for the sample.

The weight percent quantities indicated have been normalized to a sum of 100%. The quantity of amorphous material has not been determined.

Mineral/Compound	Formula
Quartz	SiO ₂
Chlorite	(Fe,(Mg,Mn) ₅ ,Al)(Si ₃ Al)O ₁₀ (OH) ₈
Albite	NaAlSi ₃ O ₈
Microcline	KAISi ₃ O ₈
Calcite	CaCO ₃
Ankerite	CaFe(CO ₃ ) ₂
Dolomite	CaMg(CO ₃ ) ₂
Actinolite	Ca ₂ (Mg,Fe) ₅ Si ₈ O ₂₂ (OH) ₂
Diopside	CaMgSi ₂ O ₆
Kutnohorite	CaMn(CO ₃ ) ₂
Muscovite	KAI ₂ (AISi ₃ O ₁₀ )(OH) ₂
Magnetite	Fe ₃ O ₄
Illite	(K,H ₃ O)(Al,Mg,Fe) ₂ (Si,Al) ₄ O ₁₀ [(OH) ₂ ,(H ₂ O)]
Montmorillonite	(Na,Ca) _{0.3} (Al,Mg)₂Si₄O ₁₀ (OH)₂⋅10H₂O
Kaolinite	$AI_2Si_2O_5(OH)_4$
Illite-Montmorillonite	KAI ₄ (Si,Al) ₈ O ₂₀ (OH) ₄ ·8H ₂ O



COF1-13-18-20230619 AUG4528-1 riet.raw_1 53.92 % 66,000 Quartz 64.000 3.95 % Illite 62,000-Montmorillonite-15A 1.10 % 60,000-0.74 % Kaolinite 58,000 Chlorite Ilb 1.57 % 56,000-6.12 % Albite 54,000 -Microcline intermediate1 5.09 % 52,000 Calcite 4.12 % 50,000 Ankerite Fe0.55 7.22 % 48.000 -Dolomite 13.27 % 46.000-Actinolite 0.33 % 44,000 · 42,000 -1.03 % Diopside 40.000-Kutnahorite 0.51 % 38.000 Muscovite 2M1 1.04 % 36,000 -34,000-32,000 -30,000-28,000 26,000 24,000-22.000 20,000-18,000 · 16,000 -14 000 -12,000 · 10,000 8,000 6,000 -4,000 · 2,000 -0 -2,000--4,000 --6,000 -8,000--10,000 -12,000--14,000 -16,000 -18,000 -20,000 ала станута бала станута на селото селото со станута на станута на станута бала станута со станута со селото на Посто са станута на станута со станута станута станута на станута и макета селото станута на станута на станута -22,000 -24.000--26,000 -28,000--30,000 յի որի երանությունը՝ հայտարին անվանում է հայտարին հայտարին անվանությունը հայտարին հայտարին հայտներին։ -32,000 11,0 1.11, 0, 1.1 -34,000 Ľ 1. <u>, i mining i na ng na na n</u>a -36,000 11110 52 60 70 74 76 78 10 12 14 16 18 20 22 24 26 28 30 32 34 . 36 38 40 42 44 46 48 50 . 54 56 58 . 62 64 66 68 72 2Th Degrees



Environmental Services Custom XRD/MI4528-AUG23 15-Sep-23

# COF1-13-18-20230619



📈COF1-13-18-20230619 - File: AUG4528-1 550.raw



COF1-18-23-20230619 80,000 -- AUG4528-2 riet.raw_1 67.50 % Quartz 1.96 % Illite 75,000 Montmorillonite-15A 1.02 % 1.14 % Kaolinite 70.000 1.68 % Chlorite Ilb 8.28 % Albite 65,000 Microcline intermediate1 9.71 % Calcite 0.41 % 60,000 Ankerite Fe0.55 1.18 % Dolomite 0.48 % 55,000 -0.71 % Actinolite 0.73 % 50,000 Diopside Magnetite 0.15 % Kutnahorite 0.29 % 45,000-Muscovite 2M1 4.77 % 40,000-35.000 30,000 -25,000 20,000 -15,000 -10,000 -5,000 -0 -5,000 -10,000 -15,000 -20,000 a na sena de la sena de sena de s La sena de s La sena de s -25,000 -30,000 -35,000 1.1 -40,000 ահ հան հե <u>, ip , important in the state of the second of the second s</u> 50 52 58 60 68 70 74 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 42 44 46 48 . 54 56 62 64 66 72 76 78 6 2Th Degrees



# COF1-18-23-20230619





COF1-38-43-20230619 AUG4528-3 riet.raw_1 73.51 % Quartz 95,000 1.65 % Illite Montmorillonite-15A 1.12 % 90.000 0.68 % Kaolinite 85,000 Chlorite Ilb 1.55 % 8.19 % Albite 80,000-Microcline intermediate1 7.78 % 75,000 Ankerite Fe0.55 0.48 % 0.03 % Dolomite 70,000 Actinolite 0.79 % 65,000 -0.71 % Diopside Magnetite 0.02 % 60,000 -Kutnahorite 0.20 % Muscovite 2M1 3.27 % 55,000-50,000 45,000 -40.000 -35,000 -30,000-25,000 -20,000 -15,000-10,000 -5,000 -( -5,000 -10,000 -15,000 -20,000 --25,000 -30,000 -35,000 նորեր 11¹⁰ - 1 - 1 -40,000 шů սով -45,000 1.1 -50,000 այիս էս ամարտուստում ամեն հետուհ դատասիտինություն էլ մե . . . . . 12 50 52 60 68 70 72 74 10 14 16 18 20 22 24 26 28 30 32 34 . 36 38 40 42 44 46 . 48 . 54 56 58 62 64 66 76 78 6 2Th Degrees



# COF1-38-43-20230619





COF2-10-13-20230619 62,000 AUG4528-4 riet.raw_1 51.17 % Quartz 60,000 3.29 % Illite 58,000 Montmorillonite-15A 3.15 % 56.000 -0.91 % Kaolinite 54,000-2.99 % Chlorite Ilb 52,000 Albite 6.75 % 50,000 -Microcline intermediate1 7.23 % 48,000-Calcite 2.36 % 46.000 Ankerite Fe0.55 9.44 % 44,000 Dolomite 5.97 % 42,000 -Actinolite 0.52 % 40,000-0.42 % Diopside 38,000 -Magnetite 0.15 % 36,000 -Kutnahorite 0.14 % 34,000 -Muscovite 2M1 5.52 % 32,000 30,000 -28.000 26,000-24.000 22,000 20.000 18,000 -16,000 -14,000 12,000 -10,000 8,000 -6.000 4,000 2,000--2,000--4,000--6,000 -8,000 -10,000 -12,000 -14,000 -16,000 -18,000 արերությունը հարկերին արտել է մինչ երդունը տեղեն ու ու արդեն էրդուրը արդեն էրդուտիսի արդեն էր արտադին էրդումը է Արտել էրել էր հարկերին երդունը էրդում էր տարերարը այդ ու չենտեւները անձանել երդուտիսին երդուտիսին երդուտիսին եր Արտել է էր հարկեր երկերությունը էրդումը արդեն արտել էր ունելուն էր այն արդել երդունը առաջել արդեն արդեն մինչ մին -20.000 . . . -22,000 n (na strangen) Na strangen (na strangen) Na strangen (na strangen) -24,000 -26,000 -28.000 η η πingh. -30,000 нн, ц 1.1 -32,000 Ad the read to the reader of the reader of the transmission with the terms of the reader of the terms of t haari a d'aara amadmaa maa -34,000 36 44 50 52 54 58 60 64 66 68 70 72 74 10 12 14 16 18 20 22 . 24 26 28 30 32 34 38 40 42 46 48 56 62 76 78 2Th Degrees



**Environmental Services** Custom XRD/MI4528-AUG23 15-Sep-23

# COF2-10-13-20230619



COF2-10-13-20230619 - File: AUG4528-4 550.raw



COF3-11-12-20230619 62,000 AUG4528-5 riet.raw_1 Quartz 50.74 % 60,000 2.97 % Illite 58,000 Montmorillonite-15A 3.21 % 56,000 Kaolinite 0.56 % 54,000 3.85 % Chlorite Ilb 52,000 7.36 % Albite 50,000 Microcline intermediate1 5.86 % 48,000-Calcite 2.64 % 46,000 -Ankerite Fe0.55 8.36 % 44,000 Dolomite 7.58 % 42,000 -Actinolite 0.64 % 40.000 0.48 % 38,000 -Diopside Magnetite 0.09 % 36.000 Illite/Mont - 11A 1.26 % 34,000 · 32,000 -Muscovite 2M1 4.40 % 30,000 28,000 · 26.000 24,000 22.000 20,000 -18,000 -16,000 14,000 -12,000 10,000 8 000 6,000 4,000 -2,000 · 0 -2,000--4,000 --6.000 -8,000 -10,000 --12,000 --14,000 --16,000 -18,000 -20,000 -22,000 -24.000n Li -26,000 -28,000 -30,000 <u>нн. ц</u> 1.1 -32,000 -34,000 and -36,000 50 52 54 56 58 38 40 42 44 46 60 62 64 66 68 70 72 74 76 78 10 12 14 16 18 20 22 24 26 28 30 32 34 36 48 6 2Th Degrees



Environmental Services Custom XRD/MI4528-AUG23 15-Sep-23

# COF3-11-12-20230619



COF3-11-12-20230619 - File: AUG4528-5 550.raw



COF3-12.5-13-20230619





Environmental Services Custom XRD/MI4528-AUG23 15-Sep-23

# COF3-12.5-13-20230619



COF3-12.5-13-20230619 - File: AUG4528-6 400.1aw
## Attachment H

Site Evaluation Groundwater Data

## Attachment H. Site Evaluation Groundwater Data

Geochemical Conceptual Site Model Coffeen Ash Pond No. 2 Coffeen Power Plant Coffeen, IL

Г

HSU	Location	Well Type	Date	Parameter	Unit	Result
LCU	G1001	С	2023/02/15	pH (field)	SU	6.8
LCU	G1001	С	2023/06/07	pH (field)	SU	7.0
LCU	G1001	С	2023/11/14	pH (field)	SU	7.0
LCU	G1001	С	2023/02/15	Oxidation Reduction Potential	mV	159
LCU	G1001	С	2023/06/07	Oxidation Reduction Potential	mV	111
LCU	G1001	С	2023/11/14	Oxidation Reduction Potential	mV	<-300
LCU	G1001	С	2023/02/15	Eh	V	0.36
LCU	G1001	С	2023/06/07	Eh	V	0.30
LCU	G1001	C	2023/11/14	Eh	V	-0.11
LCU	G1001	C	2021/05/12	Alkalinity, bicarbonate	mg/L CaCO3	720
LCU	G1001	C	2023/02/15	Alkalinity, bicarbonate	mg/L CaCO3	620
LCU	G1001	C	2023/06/07	Alkalinity, bicarbonate	mg/L CaCO3	580
LCU	G1001	C	2023/11/14	Alkalinity, bicarbonate	mg/L CaCO3	605
LCU	G1001	C	2023/02/15	Barium, total	mg/L	0.200
ICU	G1001	C	2023/06/07	Barium, total	mg/I	0.0710
	G1001	с С	2023/11/14	Barium, total	mg/I	0.0917
	G1001	C	2021/05/12	Boron total	mg/I	1 40
	G1001	C	2023/02/15	Boron total	mg/L	0.720
	G1001	C	2023/06/07	Boron total	mg/l	0.950
	G1001	C	2023/11/14	Boron total	mg/l	1 10
	G1001	C	2023/11/14	Calcium total	mg/L	1.10
	G1001	C	2023/02/15	Calcium total	mg/L	430
	61001	C	2023/06/07	Calcium total	mg/L	140
	G1001	C	2023/00/07	Calcium total	mg/L	131
	G1001	C	2023/11/14	Chloride total	mg/L	29.0
	G1001	C	2021/03/12		mg/L	36.0
	G1001	C	2023/02/13	Chlorido, total	mg/L	15.0
	G1001	C	2023/00/07	Chlorido, total	mg/L	15.0
	G1001	C	2023/11/14		mg/L	0.000200
	G1001	C	2021/03/12		mg/L	0.000200
	G1001		2023/02/13		mg/L	<0.00490
	G1001	C	2023/00/07		mg/L	0.00140
	G1001	C	2023/11/14	Eorrous Iron, dissolved	mg/L	0.00150
	G1001		2023/00/07	Iron dissolved	mg/L	0.0450
	G1001		2021/05/12	Iron, dissolved	mg/L	<0.0072
	G1001		2023/00/07	Magnacium total	mg/L	<0.00072 9E 0
	G1001		2021/03/12	Magnesium, total	mg/L	65.0 160
	G1001		2023/02/13	Magnesium, total	mg/L	100
	G1001		2023/06/07	Magnesium, total	mg/L	61.0
	G1001		2023/11/14	Manganasa dissolved	mg/L	01.0
	G1001		2021/05/12	Manganese, dissolved	mg/L	0.230
	G1001		2023/00/07		mg/L	0.140
	G1001		2021/05/12	Polassium, total	mg/L	6.70
	G1001		2023/02/13	Potassium, total	mg/L	0.70
	G1001		2023/06/07	Potassium, total	mg/L	2.50
	G1001	C	2023/11/14	Ciliare disselyed	rrig/L	2.24
	G1001	C C	2023/06/07	Silicon, dissolved	mg/L	8.40
	G1001		2021/05/12		mg/L	34.0
	G1001	C C	2023/02/15	Sodium, total	mg/L	67.0
	G1001		2023/06/07		mg/L	94.0
	G1001		2023/11/14		mg/L	84.6
	G1001		2021/05/12		mg/L	140
	G1001	C	2023/02/15	Suitate, total	mg/L	630
	G1001		2023/06/07		mg/L	180
	G1001	C	2023/11/14	Suirate, total	mg/L	291
	G1001	C	2023/02/15	Temperature (Celsius)	degrees C	10.2
LCU	G1001	C	2023/06/07	Temperature (Celsius)	degrees C	19.1

LCU	G1001	С	2023/11/14	Temperature (Celsius)	degrees C	16.7
LCU	G1001	С	2023/02/15	Total Dissolved Solids	mg/L	1,700
LCU	G1001	С	2023/06/07	Total Dissolved Solids	mg/L	830
LCU	G1001	С	2023/11/14	Total Dissolved Solids	mg/L	900
UA	G270	В	2015/01/20	pH (field)	SU	7.4
UA	G270	В	2015/04/13	pH (field)	SU	6.9
UA	G270	В	2015/07/22	pH (field)	SU	7.4
UA	G270	В	2015/10/05	pH (field)	SU	7.2
UA	G270	В	2015/11/20	pH (field)	SU	6.8
UA	G270	В	2016/02/10	pH (field)	SU	6.7
UA	G270	В	2016/05/12	pH (field)	SU	7.0
UA	G270	В	2016/08/01	pH (field)	SU	7.0
UA	G270	В	2016/11/16	pH (field)	SU	7.1
UA	G270	B	2017/02/10	pH (field)	SU	7.1
UA	G270	B	2017/05/16	pH (field)	SU	7.2
UA	G270	B	2017/07/12	pH (field)	SU	7.0
UA	G270	B	2017/10/25	pH (field)	SU	7.1
	G270	B	2018/05/11	nH (field)	SU	7.1
	G270	B	2018/08/03	nH (field)	SU	7.1
	6270	B	2019/01/21	nH (field)	SU	7.0
	G270	B	2019/08/15	pH (field)	SU	7.0
	6270	B	2010/00/15	pH (field)	SU SU	7.1
	6270	B	2020/01/24	pH (field)	SU	7.5
	6270	B	2020/00/12	pH (field)	SU	6.8
	6270	B	2020/10/14	pH (field)	SU SU	7 1
	6270	B	2021/01/21	pH (field)	SU	7.1
	6270	B	2021/03/30	pH (field)	SU	7.1
	6270	D	2021/04/21	pH (field)	SU SU	7.1
	6270	B	2021/05/00	pH (field)	SU SU	7.0
	6270	D	2021/05/15	pH (field)	SU SU	7.2
	G270	D	2021/06/15	pH (field)	SU SU	7.0
	6270	D	2021/00/23	pH (field)	50	7.0
	G270	D	2021/07/12	pH (field)	SU	7.2
	6270	D	2021/07/27	pH (field)	50	7.2
	G270	D	2021/08/18	pH (field)	SU	7.1
	6270	D	2021/10/20	pH (field)	50	7.0
	G270	D	2022/02/08	pH (field)	SU SU	6.0
	G270	D	2022/03/10	pH (field)	SU	7.2
	G270	D	2022/06/24	pH (field)	SU SU	7.5
	G270	D	2022/11/08	pH (field)	SU	7.4
	6270	D	2023/02/10	pH (field)	50	7.5
	6270	D	2023/00/08	pH (field)	50 SU	6.0
	6270	D	2023/08/14	pH (field)	50 SU	7.1
	G270	B	2023/11/17	pri (lield) Ovidation Reduction Retantial	50 m)/	7.1
	6270	D	2015/11/20	Ovidation Reduction Potential	mV	-52.0
	6270	D	2010/02/10	Ovidation Reduction Potential	m\/	21.0
	6270	D	2010/05/12	Ovidation Reduction Potential	mV	01.U
	6270	D	2010/08/01	Ovidation Reduction Potential	m\/	72.0
	6270	D	2010/11/10	Ovidation Reduction Potential	mV	50.0
	6270	D D	2017/02/10	Ovidation Reduction Potential	m\/	20.U
	6270	D	2017/03/10	Ovidation Reduction Potential	m\/	/1.0
UA	G270	В	2017/07/12	Oxidation Reduction Potential	mv mv	63.0
	6270	D	2017/10/25	Oxidation Reduction Potential		62.0
	6270	D D	2018/05/11	Oxidation Reduction Potential	IIIV	58.0
	6270	D	2018/08/03	Oxidation Reduction Potential		58.U
UA	6270	в	2019/01/21	Ovidation Reduction Potential	mv	/5.0
UA	6270	в	2019/08/15	Oxidation Reduction Potential	mv	/3.0
UA	6270	в	2020/01/24	Uxidation Reduction Potential	mv	151
UA	6270	в	2020/08/12	Oxidation Reduction Potential	mv	161
UA	6270	в	2020/10/14	Uxidation Reduction Potential	mv	168
UA	6270	в	2021/01/21	Uxidation Reduction Potential	mv	196
UA	6270	в	2021/03/30	Uxidation Reduction Potential	mV	118
UA	G270	В	2021/04/21	Oxidation Reduction Potential	mV	162
UA	G270	В	2021/05/19	Oxidation Reduction Potential	mV	67.5

UA	G270	В	2021/06/15	Oxidation Reduction Potential	mV	83.7
UA	G270	В	2021/06/29	Oxidation Reduction Potential	mV	50.0
UA	G270	В	2021/07/12	Oxidation Reduction Potential	mV	120
UA	G270	В	2021/07/27	Oxidation Reduction Potential	mV	89.3
UA	G270	В	2021/08/18	Oxidation Reduction Potential	mV	150
UA	G270	В	2021/10/26	Oxidation Reduction Potential	mV	7.60
UA	G270	В	2022/02/08	Oxidation Reduction Potential	mV	101
UA	G270	В	2022/05/10	Oxidation Reduction Potential	mV	36.3
UA	G270	В	2022/08/24	Oxidation Reduction Potential	mV	109
UA	G270	В	2022/11/08	Oxidation Reduction Potential	mV	29.2
UA	G270	В	2023/02/16	Oxidation Reduction Potential	mV	171
UA	G270	В	2023/06/08	Oxidation Reduction Potential	mV	61.0
UA	G270	В	2023/08/14	Oxidation Reduction Potential	mV	78.0
UA	G270	B	2023/11/17	Oxidation Reduction Potential	mV	98.0
UA	G270	B	2015/11/20	Fh	V	0.16
UA	G270	B	2016/02/10	Eh	V	0.38
UA	G270	B	2016/05/12	Eh	V	0.28
	G270	B	2016/08/01	Fh	V	0.20
	G270	B	2016/11/16	Fh	V	0.25
	6270	B	2017/02/10	Eb	V	0.25
	6270	B	2017/02/10	Eh	V	0.25
	6270	B	2017/03/10	Eh	V	0.27
	G270	B	2017/07/12	Eh	V	0.20
	G270	B	2017/10/23	Eh	V	0.20
	G270	B	2018/03/11	Eh	V	0.25
	6270	D	2010/00/03	Eh	V	0.20
	G270	D	2019/01/21	Eh	V	0.27
	G270	D	2019/08/15	Eh	V	0.27
	G270	D	2020/01/24	Eh	V	0.35
	6270	D	2020/08/12	Eh	V	0.35
	G270	D	2020/10/14	Eh	V	0.30
	6270	D	2021/01/21	Eh	V	0.39
	G270	D	2021/03/30	Eh	V	0.32
	6270	D	2021/04/21	Eh	V	0.30
	G270	D	2021/05/15	Eh	V	0.20
	6270	D	2021/00/15	Eh	V	0.28
	6270	D	2021/00/29		V	0.24
	G270	D	2021/07/12	Eh	V	0.31
	G270	D	2021/07/27	Eh	V	0.28
	G270	D	2021/08/18	Eh	V	0.34
	6270	D	2022/02/08	Eh	V	0.30
	6270	D	2022/05/10	Eh	V	0.25
	6270	D	2022/06/24		V	0.30
	6270	B	2022/11/08		V	0.22
UA	G270	В	2023/02/16		V	0.37
	6270	D	2023/06/08		v	0.20
	6270	D D	2023/08/14		v	0.27
	6270	D	2023/11/1/	Ell	v	0.29
	6270	D	2015/01/20			300
	6270	D D	2015/04/13			310
	6270	D	2010/11/10	Alkalinity, bicarbonate	mg/L CaCO3	300
UA	6270	в	2017/05/16	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	6270	в	2017/07/12	Alkalinity, bicarbonate	mg/L CaCO3	350
UA	6270	в	2020/01/24	Alkalinity, bicarbonate	mg/L CaCO3	360
UA	6270	в	2020/08/12	Alkalinity, bicarbonate	mg/L CaCO3	360
UA	G270	В	2021/01/21	Alkalinity, bicarbonate	mg/L CaCO3	320
UA	G270	В	2021/03/30	Alkalinity, bicarbonate	mg/L CaCO3	320
UA	G270	В	2021/04/21	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G270	В	2021/05/06	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G270	В	2021/05/19	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G270	В	2021/06/15	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G270	В	2021/06/29	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G270	В	2021/07/12	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G270	В	2021/07/27	Alkalinity, bicarbonate	mg/L CaCO3	320

UA	G270	В	2021/08/18	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G270	В	2022/02/08	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G270	В	2022/08/24	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G270	В	2023/02/16	Alkalinity, bicarbonate	mg/L CaCO3	320
UA	G270	В	2023/06/08	Alkalinity, bicarbonate	mg/L CaCO3	350
UA	G270	В	2023/08/14	Alkalinity, bicarbonate	mg/L CaCO3	347
UA	G270	В	2023/11/17	Alkalinity, bicarbonate	mg/L CaCO3	325
UA	G270	В	2022/08/24	Alkalinity, carbonate	mg/L CaCO3	10.0
UA	G270	В	2015/04/13	Barium, total	mg/L	0.0500
UA	G270	В	2015/07/22	Barium, total	mg/L	0.0490
UA	G270	B	2015/10/05	Barium, total	mg/l	0.0370
UA	G270	B	2015/11/20	Barium, total	mg/l	0.0450
	G270	B	2016/02/10	Barium total	mg/l	0.0320
	6270	B	2016/05/12	Barium total	mg/L	0.0340
	G270	B	2016/08/01	Barium total	mg/L	0.0370
	6270	B	2016/00/01	Barium total	mg/L	0.0310
	6270	B	2010/11/10	Barium total	mg/L	0.0360
	6270	B	2017/02/10	Barium total	mg/L	0.0330
	G270	B	2017/03/10	Barium total	mg/L	0.0350
	6270	D	2017/07/12	Barium total	mg/L	0.0350
	G270	D	2018/03/11	Barium total	mg/L	0.0380
	G270	D	2018/08/03	Barium total	mg/L	0.0300
	G270	D	2019/01/21	Barium total	mg/L	0.0470
	6270	D	2019/08/13	Barium total	mg/L	0.0400
	G270	D	2020/01/24	Barium total	mg/L	0.0380
	6270	D	2020/08/12	Barium total	mg/L	0.0420
	6270	B	2020/10/14	Barium total	mg/L	0.0430
	6270	D	2021/01/21	Barium total	mg/L	0.0390
	G270	B	2021/03/30	Barium, total	mg/L	0.0450
	6270	D	2021/04/21	Barium total	mg/L	0.0300
	G270	B	2021/05/06	Barium, total	mg/L	0.0410
	G270	B	2021/05/19	Barium total	mg/L	0.0340
	G270	B	2021/06/15	Barium, total	mg/L	0.0340
	6270	D	2021/00/29	Barium total	mg/L	0.0350
	G270	B	2021/07/12	Barium total	mg/L	0.0350
	G270	B	2021/07/27	Barium total	mg/L	0.0330
	G270	B	2021/08/18	Barium, total	mg/L	0.0340
	G270	B	2021/10/28	Barium total	mg/L	0.0330
	G270	B	2022/02/08	Barium, total	mg/L	0.0330
	6270	D	2022/05/10	Ballulli, total	mg/L	0.0370
UA	G270	В	2022/08/24	Barium, total	mg/L	0.0360
UA	G270	В	2022/11/08	Barium, total	mg/L	0.0380
UA	G270	В	2023/02/16	Barlum, total	mg/L	0.0410
UA	G270	В	2023/06/08	Barium, total	mg/L	0.0640
	6270	D	2023/08/14	Barium, total	mg/L	0.0467
	6270	D D	2023/11/1/	Barium, total	mg/L	0.0649
	6270	D	2015/01/20		mg/L	<0.01
	6270	D D	2015/04/13	Boron, total	mg/L	0.0470
	6270	D	2015/07/22		mg/L	<0.01
UA	6270	в	2015/10/05	Boron, total	mg/L	<0.01
UA	6270	в	2015/11/20	Boron, total	mg/L	<0.0023
UA	6270	в	2016/02/10	Boron, total	mg/L	<0.0023
UA	6270	в	2016/05/12	Boron, total	mg/L	<0.0023
UA	6270	в	2016/08/01	Boron, total	mg/L	<0.0023
UA	6270	в	2016/11/16	Boron, total	mg/L	0.0180
UA	G270	В	2017/02/10	Boron, total	mg/L	<0.0023
UA	G270	В	2017/05/16	Boron, total	mg/L	<0.0023
UA	G270	В	2017/07/12	Boron, total	mg/L	<0.0023
UA	G270	В	2017/10/25	Boron, total	mg/L	0.0110
UA	G270	В	2018/05/11	Boron, total	mg/L	<0.0079
UA	G270	В	2018/08/03	Boron, total	mg/L	< 0.0034
UA	G270	В	2019/01/21	Boron, total	mg/L	< 0.0034
UA	G270	В	2019/08/15	Boron, total	mg/L	<0.0034
UA	G270	В	2020/01/24	Boron, total	mg/L	0.0150

UA	G270	В	2020/08/12	Boron, total	mg/L	0.100
UA	G270	В	2020/10/14	Boron, total	mg/L	0.0180
UA	G270	В	2021/01/21	Boron, total	mg/L	<0.008
UA	G270	В	2021/03/30	Boron, total	mg/L	0.0200
UA	G270	В	2021/04/21	Boron, total	mg/L	< 0.01
UA	G270	В	2021/05/06	Boron, total	mg/L	0.0130
UA	G270	В	2021/05/19	Boron, total	mg/L	<0.008
UA	G270	В	2021/06/15	Boron, total	mg/L	0.0110
UA	G270	B	2021/06/29	Boron, total	mg/l	<0.008
UA	G270	B	2021/07/12	Boron, total	mg/l	0.120
	G270	B	2021/07/27	Boron total	mg/l	<0.008
	G270	B	2021/08/18	Boron total	mg/L	0.0120
	6270	B	2021/00/10	Boron total	mg/L	<0.01
	6270	D	2021/10/20	Boron, total	mg/L	0.0120
	6270	D	2022/02/08	Boron, total	mg/L	<0.0120
	6270	D	2022/03/10	Boron, total	mg/L	<0.0071
	6270	D	2022/06/24	Boron total	mg/L	0.0071
UA	6270	D	2022/11/08		ilig/L	0.00900
	G270	B	2023/02/16		mg/L	<0.0071
UA	G270	В	2023/06/08		mg/L	0.0140
UA	G270	В	2023/08/14	Boron, total	mg/L	<0.0092
UA	G270	В	2023/11/17		mg/L	<0.0125
UA	G270	В	2015/01/20	Calcium, total	mg/L	70.0
UA	G270	В	2015/04/13	Calcium, total	mg/L	70.0
UA	G270	В	2015/11/20	Calcium, total	mg/L	59.0
UA	G270	В	2016/02/10	Calcium, total	mg/L	49.0
UA	G270	В	2016/05/12	Calcium, total	mg/L	57.0
UA	G270	В	2016/08/01	Calcium, total	mg/L	50.0
UA	G270	В	2016/11/16	Calcium, total	mg/L	48.0
UA	G270	В	2017/02/10	Calcium, total	mg/L	53.0
UA	G270	В	2017/05/16	Calcium, total	mg/L	54.0
UA	G270	В	2017/07/12	Calcium, total	mg/L	52.0
UA	G270	В	2017/10/25	Calcium, total	mg/L	56.0
UA	G270	В	2018/05/11	Calcium, total	mg/L	53.0
UA	G270	В	2018/08/03	Calcium, total	mg/L	57.0
UA	G270	В	2019/01/21	Calcium, total	mg/L	56.0
UA	G270	В	2019/08/15	Calcium, total	mg/L	54.0
UA	G270	В	2020/01/24	Calcium, total	mg/L	59.0
UA	G270	В	2020/08/12	Calcium, total	mg/L	58.0
UA	G270	В	2020/10/14	Calcium, total	mg/L	61.0
UA	G270	В	2021/01/21	Calcium, total	mg/L	59.0
UA	G270	В	2021/03/30	Calcium, total	mg/L	58.0
UA	G270	В	2021/04/21	Calcium, total	mg/L	55.0
UA	G270	В	2021/05/06	Calcium, total	mg/L	57.0
UA	G270	В	2021/05/19	Calcium, total	mg/L	53.0
UA	G270	В	2021/06/15	Calcium, total	mg/L	60.0
UA	G270	В	2021/06/29	Calcium, total	mg/L	56.0
UA	G270	В	2021/07/12	Calcium, total	mg/L	55.0
UA	G270	В	2021/07/27	Calcium, total	mg/L	52.0
UA	G270	В	2021/08/18	Calcium, total	mg/L	55.0
UA	G270	В	2021/10/26	Calcium, total	mg/L	49.0
UA	G270	В	2022/02/08	Calcium, total	mg/L	53.0
UA	G270	В	2022/05/10	Calcium, total	mg/L	59.0
UA	G270	В	2022/08/24	Calcium, total	mg/L	56.0
UA	G270	В	2022/11/08	Calcium, total	mg/L	57.0
UA	G270	В	2023/02/16	Calcium, total	mg/L	56.0
UA	G270	В	2023/06/08	Calcium, total	mg/L	57.0
UA	G270	в	2023/08/14	Calcium, total	mg/L	57.9
UA	G270	B	2023/11/17	Calcium, total	mg/L	58.1
UA	G270	в	2015/01/20	Chloride, total	mg/L	18.0
UA	G270	B	2015/04/13	Chloride, total	mg/l	20.0
	6270	B	2015/07/22	Chloride total	mg/l	15.0
	6270	B	2015/10/05	Chloride total	mg/l	11.0
	6270	B	2015/11/20		mg/L	12.0
57	3270	5	2013/11/20		·''8/ ⊾	12.0

UA	G270	В	2016/02/10	Chloride, total	mg/L	16.0
UA	G270	В	2016/05/12	Chloride, total	mg/L	12.0
UA	G270	В	2016/08/01	Chloride, total	mg/L	15.0
UA	G270	В	2016/11/16	Chloride, total	mg/L	12.0
UA	G270	В	2017/02/10	Chloride, total	mg/L	11.0
UA	G270	В	2017/05/16	Chloride, total	mg/L	9.70
UA	G270	В	2017/07/12	Chloride, total	mg/L	12.0
UA	G270	В	2017/10/25	Chloride, total	mg/L	13.0
UA	G270	В	2018/05/11	Chloride. total	mg/L	7.90
UA	G270	В	2018/08/03	Chloride, total	mg/L	8.60
UA	G270	В	2019/01/21	Chloride, total	mg/L	9.60
UA	G270	В	2019/08/15	Chloride, total	mg/L	9.80
UA	G270	B	2020/01/24	Chloride, total	mg/l	10.0
UA	G270	B	2020/08/12	Chloride total	mg/l	12.0
UA	G270	B	2020/10/14	Chloride, total	mg/L	12.0
	6270	B	2020/10/11	Chloride total	mg/L	10.0
	G270	B	2021/03/30	Chloride, total	mg/L	14.0
	6270	B	2021/03/30	Chloride total	mg/L	16.0
	6270	B	2021/04/21	Chloride total	mg/L	11.0
	6270	B	2021/05/00	Chloride, total	mg/L	10.0
	6270	B	2021/05/15	Chloride, total	mg/L	12.0
	6270	B	2021/06/19	Chloride, total	mg/L	12.0
	6270	B	2021/00/23	Chloride, total	mg/L	11.0
	6270	D	2021/07/12	Chlorido, total	mg/L	12.0
	G270	D	2021/07/27		mg/L	12.0
	6270	D	2021/08/18		mg/L	0.00
	6270	D	2021/10/20		mg/L	9.90
	6270	D	2022/02/08		mg/L	0.70
	6270	D	2022/05/10		mg/L	9.50
	6270	D	2022/06/24		mg/L	9.70
	G270	B	2022/11/08		mg/L	9.00
	6270	D	2023/02/10		mg/L	7.80
	G270	B	2023/06/08		mg/L	8.30
	6270	D	2023/08/14		mg/L	15.0
	6270	D	2025/11/17		mg/L	15.0
	6270	D	2015/04/15		mg/L	<0.002
	G270	B	2015/07/22		mg/L	<0.002
	6270	D	2015/10/05		mg/L	<0.002
	G270	B	2015/11/20		mg/L	<0.000017
	6270	D	2016/02/10		mg/L	<0.000017
UA	G270	В	2016/05/12		mg/L	<0.000017
	G270	B	2016/08/01	Cobalt, total	mg/L	<0.000017
UA	G270	В	2016/11/16		mg/L	<0.000017
UA	G270	В	2017/02/10		mg/L	<0.000017
	6270	D	2017/05/16		mg/L	<0.000017
	6270	D D	2017/07/12	Cobalt, total	mg/L	<0.000017
	6270	D	2018/05/11		mg/L	<0.00086
UA	6270	в	2018/08/03	Cobalt, total	mg/L	<0.00067
UA	6270	в	2019/01/21		mg/L	<0.00067
UA	6270	в	2019/08/15	Cobalt, total	mg/L	<0.00067
UA	6270	в	2020/01/24	Cobalt, total	mg/L	<0.00067
UA	6270	В	2020/08/12	Cobalt, total	mg/L	<0.00022
UA	6270	в	2020/10/14	Lobalt, total	mg/L	< 0.002
UA	G270	В	2021/01/21	Cobalt, total	mg/L	< 0.00022
UA	G270	В	2021/03/30	Cobalt, total	mg/L	< 0.00022
UA	G270	В	2021/04/21	Cobalt, total	mg/L	< 0.00022
UA	G270	В	2021/05/06	Cobalt, total	mg/L	< 0.00022
UA	G270	В	2021/05/19	Cobalt, total	mg/L	<0.00022
UA	G270	В	2021/06/15	Cobalt, total	mg/L	<0.00022
UA	G270	В	2021/06/29	Cobalt, total	mg/L	<0.00022
UA	G270	В	2021/07/12	Cobalt, total	mg/L	<0.00022
UA	G270	В	2021/07/27	Cobalt, total	mg/L	<0.00022
UA	G270	В	2021/08/18	Cobalt, total	mg/L	<0.00022
UA	G270	В	2021/10/26	Cobalt, total	mg/L	< 0.002

UA	G270	В	2022/02/08	Cobalt, total	mg/L	<0.00048
UA	G270	В	2022/05/10	Cobalt, total	mg/L	<0.00048
UA	G270	В	2022/08/24	Cobalt, total	mg/L	<0.00048
UA	G270	В	2022/11/08	Cobalt, total	mg/L	<0.00048
UA	G270	В	2023/02/16	Cobalt, total	mg/L	<0.00048
UA	G270	В	2023/06/08	Cobalt, total	mg/L	0.000640
UA	G270	В	2023/08/14	Cobalt, total	mg/L	0.000300
UA	G270	В	2023/11/17	Cobalt. total	mg/L	0.000200
UA	G270	В	2023/06/08	Ferrous Iron, dissolved	mg/L	0.260
UA	G270	B	2015/01/20	Iron, dissolved	mg/l	<0.01
UA	G270	B	2015/04/13	Iron, dissolved	mg/l	0.0210
UA	G270	B	2015/07/22	Iron, dissolved	mg/l	0.180
	G270	B	2015/10/05	Iron dissolved	mg/l	0.0840
	6270	B	2016/02/10	Iron dissolved	mg/L	0.0180
	G270	B	2016/05/12	Iron dissolved	mg/L	<0.01
	6270	B	2016/07/27	Iron dissolved	mg/L	0.0180
	6270	B	2016/07/27	Iron dissolved	mg/L	<0.0100
	6270	D	2010/11/21	Iron, dissolved	mg/L	<0.01
	G270	D	2017/02/08	Iron, dissolved	mg/L	0.01
	6270	D	2017/03/18	Iron, dissolved	mg/L	0.0110
	6270	D	2017/07/12	Iron, dissolved	mg/L	<0.01
	6270	D	2017/10/25		mg/L	0.01
	G270	B	2018/01/29	Iron, dissolved	mg/L	0.280
UA	G270	В	2018/05/11		mg/L	0.0120
UA	G270	В	2018/08/10	Iron, dissolved	mg/L	0.0570
UA	G270	В	2018/11/06	Iron, dissolved	mg/L	<0.01
UA	G270	В	2019/01/21	Iron, dissolved	mg/L	0.0460
UA	G270	В	2019/05/01	Iron, dissolved	mg/L	< 0.01
UA	G270	В	2019/08/15	Iron, dissolved	mg/L	< 0.01
UA	G270	В	2019/10/21	Iron, dissolved	mg/L	0.0430
UA	G270	В	2020/01/24	Iron, dissolved	mg/L	<0.01
UA	G270	В	2020/05/07	Iron, dissolved	mg/L	<0.01
UA	G270	В	2020/08/11	Iron, dissolved	mg/L	<0.01
UA	G270	В	2020/10/14	Iron, dissolved	mg/L	<0.01
UA	G270	В	2021/01/21	Iron, dissolved	mg/L	<0.01
UA	G270	В	2021/04/21	Iron, dissolved	mg/L	<0.01
UA	G270	В	2021/08/18	Iron, dissolved	mg/L	<0.01
UA	G270	В	2021/10/26	Iron, dissolved	mg/L	<0.01
UA	G270	В	2022/02/08	Iron, dissolved	mg/L	<0.01
UA	G270	В	2022/05/10	Iron, dissolved	mg/L	0.160
UA	G270	В	2022/08/24	Iron, dissolved	mg/L	<0.00072
UA	G270	В	2022/11/08	Iron, dissolved	mg/L	0.00360
UA	G270	В	2023/02/16	Iron, dissolved	mg/L	<0.00072
UA	G270	В	2023/06/08	Iron, dissolved	mg/L	0.0440
UA	G270	В	2023/08/14	Iron, dissolved	mg/L	0.0190
UA	G270	В	2023/11/17	Iron, dissolved	mg/L	< 0.0115
UA	G270	В	2015/04/13	Magnesium, total	mg/L	32.0
UA	G270	В	2016/11/16	Magnesium, total	mg/L	22.0
UA	G270	В	2017/05/16	Magnesium, total	mg/L	27.0
UA	G270	В	2017/07/12	Magnesium, total	mg/L	24.0
UA	G270	В	2020/01/24	Magnesium, total	mg/L	26.0
UA	G270	В	2020/08/12	Magnesium, total	mg/L	25.0
UA	G270	В	2021/01/21	Magnesium, total	mg/L	24.0
UA	G270	В	2021/03/30	Magnesium, total	mg/L	26.0
UA	G270	В	2021/04/21	Magnesium, total	mg/L	26.0
UA	G270	В	2021/05/06	Magnesium, total	mg/L	25.0
UA	G270	В	2021/05/19	Magnesium, total	mg/L	24.0
UA	G270	В	2021/06/15	Magnesium, total	mg/L	25.0
UA	G270	В	2021/06/29	Magnesium, total	mg/L	25.0
UA	G270	В	2021/07/12	Magnesium, total	mg/L	25.0
UA	G270	В	2021/07/27	Magnesium, total	mg/L	24.0
UA	G270	в	2021/08/18	Magnesium, total	mg/L	24.0
UA	G270	В	2022/02/08	Magnesium, total	mg/L	22.0
UA	G270	в	2022/08/24	Magnesium, total	mg/L	25.0
	· · · ·		, -,=			

UA	G270	В	2023/02/16	Magnesium, total	mg/L	21.0
UA	G270	В	2023/06/08	Magnesium, total	mg/L	24.0
UA	G270	В	2023/08/14	Magnesium, total	mg/L	23.4
UA	G270	В	2023/11/17	Magnesium, total	mg/L	24.1
UA	G270	В	2015/01/20	Manganese, dissolved	mg/L	0.0110
UA	G270	В	2015/04/13	Manganese, dissolved	mg/L	0.00550
UA	G270	В	2015/07/22	Manganese, dissolved	mg/L	0.470
UA	G270	В	2015/10/05	Manganese, dissolved	mg/L	0.0560
UA	G270	В	2016/02/10	Manganese, dissolved	mg/L	0.0120
UA	G270	В	2016/05/12	Manganese, dissolved	mg/L	0.0290
UA	G270	В	2016/07/27	Manganese, dissolved	mg/L	0.00320
UA	G270	В	2016/11/21	Manganese, dissolved	mg/L	0.0260
UA	G270	В	2017/02/08	Manganese, dissolved	mg/L	0.00110
UA	G270	В	2017/05/18	Manganese, dissolved	mg/L	0.0250
UA	G270	В	2017/07/12	Manganese, dissolved	mg/L	0.400
UA	G270	B	2017/10/25	Manganese, dissolved	mg/I	0.00870
UA	G270	В	2018/01/29	Manganese, dissolved	mg/L	0.0770
UA	G270	B	2018/03/05	Manganese, dissolved	mg/I	0.00240
UA	G270	B	2019/05/01	Manganese, dissolved	mg/L	<0.001
UA	G270	B	2019/08/15	Manganese, dissolved	mg/l	0.00220
UA	G270	B	2020/01/24	Manganese, dissolved	mg/L	<0.001
	G270	B	2020/10/14	Manganese dissolved	mg/l	0.0540
	G270	B	2020/10/11	Manganese dissolved	mg/L	0.00340
	6270	B	2021/01/21	Manganese dissolved	mg/L	<0.00310
	6270	B	2021/04/21	Manganese dissolved	mg/L	0.0100
	6270	B	2021/00/10	Manganese dissolved	mg/L	0.0100
	6270	B	2021/10/20	Manganese, dissolved	mg/L mg/l	<0.0240
	G270	B	2022/02/08	Manganese, dissolved	mg/L	0.001
	G270	B	2022/03/10	Manganese, dissolved	mg/L	0.00210
	G270	B	2022/08/24	Manganese, dissolved	mg/L	0.00150
	G270	D	2022/11/08	Manganese, dissolved	mg/L	0.0130
	6270	D	2023/02/10	Manganese, dissolved	mg/L	0.00430
	G270	D	2023/00/08	Manganese, dissolved	mg/L	0.0790
	G270	D	2023/08/14	Manganese, dissolved	mg/L	0.157
	G270	B	2023/11/17	Phosphate dissolved	mg/L	0.0075
	G270	D	2023/08/14	Potassium total	mg/L	0.0210
	G270	D	2013/04/13	Potassium, total	mg/L	0.730
	6270	D	2010/11/10	Potassium total	mg/L	0.720
	G270	D	2017/03/10	Potassium, total	mg/L	0.720
	6270	D	2017/07/12	Potassium total	mg/L	0.800
	6270	D	2020/01/24	Potassium, total	mg/L	0.880
	6270	D	2020/08/12	Potassium, total	mg/L	1.20
	6270	D	2021/01/21		mg/L	1.20
	6270	D	2021/03/30	Polassium, total	mg/L	1.00
	6270	D	2021/04/21	Potassium total	mg/L	0.000
	6270		2021/05/06	Potassium total	mg/L	0.840
	6270	D	2021/05/15	Potassium total	mg/L	0.500
	G270	B	2021/06/15	Potassium total	mg/L	0.030
	6270	D	2021/00/29	Potassium total	mg/L	0.500
	6270	D D	2021/07/12	Potassium total	mg/L	0.030
	6270	D	2021/07/27	Potassium total	mg/L	0.590
	6270	D	2021/08/18	Potassium total	mg/L	0.090
	6270	D	2022/02/08	Polassium total	mg/L	0.580
	6270	D D	2022/08/24	Polassium, total	mg/L	0.620
	6270	D	2023/02/16	Polassium total	nig/L	0.620
	6270	D D	2023/06/08	Polassium, total	mg/L	0.670
UA	6270	в	2023/08/14	Potassium, total	mg/L	0.757
UA	6270	в	2023/11/17	Potassium, total	mg/L	0.749
UA	6270	в	2023/06/08		mg/L	7.40
UA	6270	в	2023/08/14	Silicon, dissolved	mg/L	6.48
UA	6270	в	2015/04/13	Sodium, total	mg/L	91.0
UA	6270	в	2016/11/16	Sodium, total	mg/L	77.0
UA	G270	В	2017/05/16	Sodium, total	mg/L	88.0
UA	G270	В	2017/07/12	Sodium, total	mg/L	78.0

UA	G270	В	2020/01/24	Sodium, total	mg/L	82.0
UA	G270	В	2020/08/12	Sodium, total	mg/L	78.0
UA	G270	В	2021/01/21	Sodium, total	mg/L	87.0
UA	G270	В	2021/03/30	Sodium, total	mg/L	81.0
UA	G270	В	2021/04/21	Sodium, total	mg/L	84.0
UA	G270	В	2021/05/06	Sodium, total	mg/L	88.0
UA	G270	В	2021/05/19	Sodium. total	mg/L	87.0
UA	G270	В	2021/06/15	Sodium, total	mg/L	92.0
UA	G270	В	2021/06/29	Sodium, total	mg/I	85.0
UA	G270	B	2021/07/12	Sodium, total	mg/l	79.0
	G270	B	2021/07/27	Sodium total	mg/l	89.0
	G270	B	2021/08/18	Sodium total	mg/L	100
	6270	B	2022/02/08	Sodium total	mg/L	89.0
	6270	B	2022/02/00	Sodium, total	mg/L	98.0
	6270	B	2022/03/24	Sodium, total	mg/L	81.0
	6270	D	2023/02/10	Sodium, total	mg/L	81.0
	6270	D	2023/00/08	Sodium, total	mg/L	80.2
	6270	D	2023/08/14	Sodium, total	mg/L	60.5
	G270	B	2023/11/17		mg/L	67.1
UA	G270	В	2015/01/20	Sulfate, total	mg/L	140
UA	G270	В	2015/04/13	Sulfate, total	mg/L	120
UA	G270	В	2015/07/22	Sulfate, total	mg/L	110
UA	G270	В	2015/10/05	Sulfate, total	mg/L	82.0
UA	G270	В	2015/11/20	Sulfate, total	mg/L	89.0
UA	G270	В	2016/02/10	Sulfate, total	mg/L	77.0
UA	G270	В	2016/05/12	Sulfate, total	mg/L	76.0
UA	G270	В	2016/08/01	Sulfate, total	mg/L	76.0
UA	G270	В	2016/11/16	Sulfate, total	mg/L	63.0
UA	G270	В	2017/02/10	Sulfate, total	mg/L	55.0
UA	G270	В	2017/05/16	Sulfate, total	mg/L	50.0
UA	G270	В	2017/07/12	Sulfate, total	mg/L	54.0
UA	G270	В	2017/10/25	Sulfate, total	mg/L	55.0
UA	G270	В	2018/05/11	Sulfate, total	mg/L	53.0
UA	G270	В	2018/08/03	Sulfate, total	mg/L	54.0
UA	G270	В	2019/01/21	Sulfate, total	mg/L	49.0
UA	G270	В	2019/08/15	Sulfate, total	mg/L	50.0
UA	G270	В	2020/01/24	Sulfate, total	mg/L	51.0
UA	G270	В	2020/08/12	Sulfate, total	mg/L	53.0
UA	G270	В	2020/10/14	Sulfate, total	mg/L	58.0
UA	G270	В	2021/01/21	Sulfate, total	mg/L	54.0
UA	G270	В	2021/03/30	Sulfate, total	mg/L	55.0
UA	G270	В	2021/04/21	Sulfate, total	mg/L	53.0
UA	G270	В	2021/05/06	Sulfate, total	mg/L	57.0
UA	G270	В	2021/05/19	Sulfate, total	mg/I	58.0
UA	G270	В	2021/06/15	Sulfate, total	mg/L	55.0
UA	G270	в	2021/06/29	Sulfate, total	mg/L	58.0
UA	G270	в	2021/07/12	Sulfate. total	mg/L	56.0
UA	G270	в	2021/07/27	Sulfate, total	mg/L	55.0
UA	G270	В	2021/08/18	Sulfate, total	mg/L	54.0
UA	G270	В	2021/10/26	Sulfate, total	mg/l	52.0
UA	G270	B	2022/02/08	Sulfate, total	mg/l	53.0
	6270	B	2022/05/10	Sulfate total	mg/L	53.0
UA	G270	B	2022/08/24	Sulfate, total	mg/l	53.0
	6270	B	2022/00/24	Sulfate total		51.0
	6270	B	2022/11/00	Sulfate total	mg/l	50.0
	6270	B	2023/02/10		mg/L	50.0
	6270	D	2023/00/08	Sulfato total	mg/L	34.U 10 0
	6270	D	2023/08/14		mg/L	48.U
	6270	D	2023/11/1/		liig/L	50.0
	6270	D	2015/11/20		degrees C	10.0
	6270	D D	2016/02/10	Temperature (Celsius)	degrees C	8.00
	6270	D	2010/05/12		degrees C	10.8
UA	6270	D D	2010/08/01	Temperature (Celsius)	uegrees C	17.6
UA	6270	в	2016/11/16	remperature (Celsius)	aegrees C	14.5
UA	6270	в	2017/02/10	remperature (Celsius)	aegrees C	15.0

UA	G270	В	2017/05/16	Temperature (Celsius)	degrees C	15.4
UA	G270	В	2017/07/12	Temperature (Celsius)	degrees C	17.3
UA	G270	В	2017/10/25	Temperature (Celsius)	degrees C	12.7
UA	G270	В	2018/05/11	Temperature (Celsius)	degrees C	13.5
UA	G270	В	2018/08/03	Temperature (Celsius)	degrees C	15.9
UA	G270	В	2019/01/21	Temperature (Celsius)	degrees C	12.0
UA	G270	В	2019/08/15	Temperature (Celsius)	degrees C	17.0
UA	G270	B	2020/01/24	Temperature (Celsius)	degrees C	9.70
UA	G270	B	2020/08/12	Temperature (Celsius)	degrees C	18.5
	G270	B	2020/10/14	Temperature (Celsius)	degrees C	16.5
	6270	B	2020/10/11	Temperature (Celsius)	degrees C	11.6
	6270	B	2021/01/21	Temperature (Celsius)	degrees C	12.2
	6270	B	2021/03/30	Temperature (Celsius)	degrees C	11.0
	6270	D	2021/04/21	Temperature (Celsius)	dogroos C	12.2
	G270	D	2021/05/00	Temperature (Celsius)	degrees C	12.2
	6270	D	2021/05/15	Temperature (Celsius)	degrees C	10.2
	6270	D	2021/00/15	Temperature (Celsius)	degrees C	19.8
UA	G270	В	2021/06/29	Temperature (Celsius)	degrees C	20.5
UA	G270	В	2021/07/12	Temperature (Celsius)	degrees C	18.5
UA	G270	В	2021/07/27	Temperature (Celsius)	degrees C	20.4
UA	G270	В	2021/08/18	Temperature (Celsius)	degrees C	20.2
UA	G270	В	2022/02/08	Temperature (Celsius)	degrees C	10.4
UA	G270	В	2022/05/10	Temperature (Celsius)	degrees C	14.6
UA	G270	В	2022/08/24	Temperature (Celsius)	degrees C	19.7
UA	G270	В	2022/11/08	Temperature (Celsius)	degrees C	16.4
UA	G270	В	2023/02/16	Temperature (Celsius)	degrees C	8.90
UA	G270	В	2023/06/08	Temperature (Celsius)	degrees C	14.6
UA	G270	В	2023/08/14	Temperature (Celsius)	degrees C	15.2
UA	G270	В	2023/11/17	Temperature (Celsius)	degrees C	15.2
UA	G270	В	2015/01/20	Total Dissolved Solids	mg/L	500
UA	G270	В	2015/04/13	Total Dissolved Solids	mg/L	540
UA	G270	В	2015/07/22	Total Dissolved Solids	mg/L	550
UA	G270	В	2015/10/05	Total Dissolved Solids	mg/L	480
UA	G270	В	2015/11/20	Total Dissolved Solids	mg/L	400
UA	G270	В	2016/02/10	Total Dissolved Solids	mg/L	340
UA	G270	В	2016/05/12	Total Dissolved Solids	mg/L	340
UA	G270	В	2016/08/01	Total Dissolved Solids	mg/L	360
UA	G270	В	2016/11/16	Total Dissolved Solids	mg/L	450
UA	G270	В	2017/02/10	Total Dissolved Solids	mg/L	390
UA	G270	В	2017/05/16	Total Dissolved Solids	mg/L	380
UA	G270	В	2017/07/12	Total Dissolved Solids	mg/L	400
UA	G270	В	2017/10/25	Total Dissolved Solids	mg/L	400
UA	G270	В	2018/05/11	Total Dissolved Solids	mg/L	400
UA	G270	В	2018/08/03	Total Dissolved Solids	mg/L	420
UA	G270	В	2019/01/21	Total Dissolved Solids	mg/L	480
UA	G270	В	2019/08/15	Total Dissolved Solids	mg/L	470
UA	G270	В	2020/01/24	Total Dissolved Solids	mg/L	480
UA	G270	В	2020/08/12	Total Dissolved Solids	mg/L	380
UA	G270	В	2020/10/14	Total Dissolved Solids	mg/L	400
UA	G270	В	2021/01/21	Total Dissolved Solids	mg/L	360
UA	G270	В	2021/03/30	Total Dissolved Solids	mg/L	510
UA	G270	В	2021/04/21	Total Dissolved Solids	mg/L	570
UA	G270	В	2021/05/06	Total Dissolved Solids	mg/L	410
UA	G270	В	2021/05/19	Total Dissolved Solids	mg/L	480
UA	G270	В	2021/06/15	Total Dissolved Solids	mg/L	390
UA	G270	В	2021/06/29	Total Dissolved Solids	mg/L	400
UA	G270	В	2021/07/12	Total Dissolved Solids	mg/L	480
UA	G270	В	2021/07/27	Total Dissolved Solids	mg/L	420
UA	G270	В	2021/08/18	Total Dissolved Solids	mg/L	470
UA	G270	в	2021/10/26	Total Dissolved Solids	mg/L	410
UA	G270	в	2022/02/08	Total Dissolved Solids	mg/L	410
UA	G270	в	2022/05/10	Total Dissolved Solids	mg/L	420
UA	G270	в	2022/08/24	Total Dissolved Solids	mg/L	500
UA	G270	В	2022/11/08	Total Dissolved Solids	mg/l	420
<i></i>		-	,, 00		····o/ -	120

UA	G270	В	2023/02/16	Total Dissolved Solids	mg/L	410
UA	G270	В	2023/06/08	Total Dissolved Solids	mg/L	500
UA	G270	В	2023/08/14	Total Dissolved Solids	mg/L	426
UA	G270	В	2023/11/17	Total Dissolved Solids	mg/L	460
UA	G280	В	2015/01/21	pH (field)	SU	7.6
UA	G280	В	2015/04/13	pH (field)	SU	7.2
UA	G280	В	2015/07/23	pH (field)	SU	7.6
UA	G280	В	2015/10/08	pH (field)	SU	7.7
UA	G280	В	2015/11/24	pH (field)	SU	7.4
UA	G280	В	2016/02/10	pH (field)	SU	6.5
UA	G280	В	2016/05/10	pH (field)	SU	7.2
UA	G280	В	2016/08/03	pH (field)	SU	7.2
UA	G280	В	2016/11/20	pH (field)	SU	7.1
UA	G280	В	2017/02/15	pH (field)	SU	7.0
UA	G280	В	2017/05/20	pH (field)	SU	7.2
UA	G280	B	2017/07/18	pH (field)	SU	7.3
UA	G280	В	2017/11/04	pH (field)	SU	7.2
UA	G280	B	2018/05/16	pH (field)	SU	7.2
	G280	B	2018/08/10	nH (field)	SU	7.1
	G280	B	2019/01/22	nH (field)	SU	7.1
UA	G280	B	2019/08/26	pH (field)	SU	7,1
	6280	B	2020/01/23	nH (field)	SU	7.1
	G280	B	2020/01/23	nH (field)	SU	73
	6280	B	2020/00/11	nH (field)	SU	7.1
	6280	B	2020/10/14	pH (field)	SU	7.1
	6280	B	2021/01/21	pH (field)	SU	7.3
	G280	B	2021/01/20	pH (field)	SU SU	7.5
	G280	B	2021/03/30	pH (field)	SU SU	7.4
	G280	B	2021/04/22	pH (field)	SU SU	7.4
	G280	B	2021/05/00	pH (field)	SU SU	7.2
	6280	D	2021/05/19	pH (field)	SU	7.4
	6280	D	2021/00/28	pH (field)	SU SU	7.4
	6280	D	2021/07/13	pH (field)	SU	7.4
	6280	D	2021/07/27	pH (field)	SU	7.5
	G280	B	2021/08/18	pH (field)	SU SU	7.1
	6280	D	2021/10/20	pH (field)	SU	7.3
	6280	D	2022/02/08	pH (field)	SU	7.2
	6280	D	2022/03/10	pH (field)	SU SU	7.4
	6280	D	2022/08/24	pH (field)	SU	7.2
	6280	D	2022/11/05	pH (field)	SU SU	6.0
	6280	D	2023/02/10	pH (field)	50	0.0
	6280		2023/00/08	pH (field)	50 SU	7.5
	6280		2023/08/14	pH (field)	30 SU	7.4
	6280	D	2023/11/20	pri (lield) Ovidation Reduction Retential	50 m\/	19.0
	6280		2015/11/24	Ovidation Reduction Potential	m\/	10.0
	6280	B	2016/02/10	Ovidation Reduction Potential	mV	140
	6280	B	2010/03/10	Ovidation Reduction Potential	mV	101
	6280	B	2010/08/03	Ovidation Reduction Potential	mV	101
	6280	B	2010/11/20	Ovidation Reduction Potential	mV	102
	6280	B	2017/02/13	Ovidation Reduction Potential	mV	0.00
	6280		2017/03/20	Oxidation Reduction Potential		03.0
	6280	B	2017/07/18	Ovidation Reduction Potential	mV	95.U 106
	6280		2017/11/04	Ovidation Reduction Potential	m\/	100
	6280	D	2010/05/10	Ovidation Reduction Potential	mV	102
	6280	D	2010/08/10	Ovidation Reduction Potential	mV	102
	6280	D	2019/01/22	Oxidation Reduction Potential	mV	107
	6280	D	2019/08/26	Oxidation Reduction Potential	111V	99.0
	6280	D D	2020/01/23	Oxidation Reduction Potential		101
	6280	D	2020/08/11	Oxidation Reduction Potential	111V	101
	6280	D D	2020/10/14	Oxidation Reduction Potential		131
	6280	D D	2021/01/21	Oxidation Reduction Potential		98.1
UA	6280	в	2021/01/28	Ovidation Reduction Potential	mv	98.1
UA	6280	в	2021/03/30	Oxidation Reduction Potential	mv	119
UA	G280	в	2021/04/22	Oxidation Reduction Potential	mv	107

UA	G280	В	2021/05/06	Oxidation Reduction Potential	mV	149
UA	G280	В	2021/05/19	Oxidation Reduction Potential	mV	82.9
UA	G280	В	2021/06/28	Oxidation Reduction Potential	mV	36.0
UA	G280	В	2021/07/13	Oxidation Reduction Potential	mV	77.4
UA	G280	В	2021/07/27	Oxidation Reduction Potential	mV	178
UA	G280	В	2021/08/18	Oxidation Reduction Potential	mV	63.9
UA	G280	В	2021/10/26	Oxidation Reduction Potential	mV	56.0
UA	G280	В	2022/02/08	Oxidation Reduction Potential	mV	-15.2
UA	G280	В	2022/05/10	Oxidation Reduction Potential	mV	23.2
UA	G280	В	2022/08/24	Oxidation Reduction Potential	mV	64.4
UA	G280	B	2022/11/09	Oxidation Reduction Potential	mV	209
UA	G280	B	2023/02/16	Oxidation Reduction Potential	mV	236
	G280	B	2023/06/08	Oxidation Reduction Potential	mV	190
	6280	B	2023/08/08	Ovidation Reduction Potential	mV	31.0
	6280	B	2023/00/11	Oxidation Reduction Potential	mV	107
	6280	B	2015/11/24	Eh	V	0.21
	6280	B	2015/11/24	Eh	V	0.21
	6280	D	2010/02/10	Eh	V	0.35
	6280	D	2010/03/10	Eh	V	0.33
	6280	D	2010/08/03	Eh	V	0.29
	6280	D	2010/11/20	Eh	V	0.30
	6280	D	2017/02/15		V	0.20
	6280	B	2017/05/20		V	0.28
UA	G280	В	2017/07/18		V	0.28
UA	G280	В	2017/11/04	En	V	0.30
UA	G280	В	2018/05/16	En	V	0.28
UA	G280	В	2018/08/10	En	V	0.30
UA	G280	В	2019/01/22	Eh	V	0.30
UA	G280	В	2019/08/26	Eh	V	0.29
UA	G280	В	2020/01/23	Eh	V	0.39
UA	G280	В	2020/08/11	Eh	V	0.29
UA	G280	В	2020/10/14	Eh	V	0.39
UA	G280	В	2021/01/21	Eh	V	0.30
UA	G280	В	2021/01/28	Eh	V	0.30
UA	G280	В	2021/03/30	Eh	V	0.32
UA	G280	В	2021/04/22	Eh	V	0.30
UA	G280	В	2021/05/06	Eh	V	0.35
UA	G280	В	2021/05/19	Eh	V	0.28
UA	G280	В	2021/06/28	Eh	V	0.23
UA	G280	В	2021/07/13	Eh	V	0.27
UA	G280	В	2021/07/27	Eh	V	0.37
UA	G280	В	2021/08/18	Eh	V	0.26
UA	G280	В	2022/02/08	Eh	V	0.18
UA	G280	В	2022/05/10	Eh	V	0.22
UA	G280	В	2022/08/24	Eh	V	0.26
UA	G280	В	2022/11/09	Eh	V	0.40
UA	G280	В	2023/02/16	Eh	V	0.44
UA	G280	В	2023/06/08	Eh	V	0.39
UA	G280	В	2023/08/14	Eh	V	0.23
UA	G280	В	2023/11/20	Eh	V	0.30
UA	G280	В	2015/01/21	Alkalinity, bicarbonate	mg/L CaCO3	260
UA	G280	В	2015/04/13	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	В	2017/07/18	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	В	2020/01/23	Alkalinity, bicarbonate	mg/L CaCO3	260
UA	G280	В	2021/01/28	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	В	2021/03/30	Alkalinity, bicarbonate	mg/L CaCO3	220
UA	G280	В	2021/04/22	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	В	2021/05/06	Alkalinity, bicarbonate	mg/L CaCO3	240
UA	G280	В	2021/05/19	Alkalinity, bicarbonate	mg/L CaCO3	240
UA	G280	В	2021/06/16	Alkalinity, bicarbonate	mg/L CaCO3	260
UA	G280	В	2021/06/28	Alkalinity, bicarbonate	mg/L CaCO3	220
UA	G280	в	2021/07/13	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	в	2021/07/27	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	в	2022/02/08	Alkalinity, bicarbonate	mg/L CaCO3	220
L			, =,		J,	

UA	G280	В	2022/08/24	Alkalinity, bicarbonate	mg/L CaCO3	260
UA	G280	В	2023/02/16	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G280	В	2023/06/08	Alkalinity, bicarbonate	mg/L CaCO3	260
UA	G280	В	2023/08/14	Alkalinity, bicarbonate	mg/L CaCO3	262
UA	G280	В	2023/11/20	Alkalinity, bicarbonate	mg/L CaCO3	254
UA	G280	В	2022/08/24	Alkalinity, carbonate	mg/L CaCO3	10.0
UA	G280	В	2015/04/13	Barium, total	mg/L	0.0450
UA	G280	В	2015/07/23	Barium, total	mg/L	0.0490
UA	G280	В	2015/10/08	Barium. total	mg/L	0.0560
UA	G280	В	2015/11/24	Barium, total	mg/L	0.110
UA	G280	В	2016/02/10	Barium. total	mg/L	0.0450
UA	G280	В	2016/05/10	Barium, total	mg/L	0.0450
UA	G280	В	2016/08/03	Barium, total	mg/L	0.0450
UA	G280	B	2016/11/20	Barium, total	mg/l	0.0440
UA	G280	B	2017/02/15	Barium, total	mg/L	0.0520
UA	G280	B	2017/05/20	Barium, total	mg/l	0.0420
UA	G280	B	2017/07/18	Barium, total	mg/L	0.0410
	G280	B	2018/05/16	Barium total	mg/l	0.0380
	G280	B	2018/08/10	Barium total	mg/L	0.0380
	6280	B	2019/01/22	Barium total	mg/L	0.0700
	G280	B	2019/08/26	Barium total	mg/L	0.0750
	6280	B	2010/00/20	Barium total	mg/L	0.0430
	6280	B	2020/01/23	Barium total	mg/L	0.0410
	6280	B	2020/00/11	Barium total	mg/L	0.0440
	G280	B	2020/10/14	Barium total	mg/L mg/l	0.0440
	6280	B	2021/01/21	Barium total	mg/L	0.0430
	G280	B	2021/01/20	Barium total	mg/L	0.0430
	6280	D	2021/03/30	Barium total	mg/L	0.0420
	G280	B	2021/04/22	Barium total	mg/L	0.0400
	6280	D	2021/05/00	Barium total	mg/L	0.0400
	6280		2021/05/19	Barium total	mg/L	0.0380
	6280	D	2021/00/10	Barium total	mg/L	0.0420
	6280	D	2021/00/28	Barium total	mg/L	0.0430
	6280	D	2021/07/13	Barium total	mg/L	0.0410
	6280	D	2021/07/27	Barium total	mg/L	0.0420
	6280	D	2021/08/18	Barium total	mg/L	0.0400
	6280		2021/10/20	Barium total	mg/L	0.0380
	6280	D	2022/02/08	Barium total	mg/L	0.0420
	6280		2022/05/10	Barium total	mg/L	0.0400
	6280	D	2022/08/24	Barium total	mg/L	0.0430
	6280	D	2022/11/09	Barium total	mg/L	0.0440
	6280		2023/02/10	Barium total	mg/L	0.0420
	6280		2023/00/08	Barium total	mg/L	0.0490
	6280	D D	2023/08/14	Barium total	mg/L	0.0531
	6280	D	2025/11/20	Paran total	mg/L	v.uo11
	6280	D	2015/01/21	Poron total	mg/L	<0.01
	6280	D	2015/04/13	Poron total	mg/L	<0.01
	6280	D D	2015/07/23	Boron, total	mg/L	<0.01
	6280	D	2015/10/08	Boron, total	mg/L	0.0240
	6280	D D	2015/11/24	Boron, total	mg/L	0.0290
	6280	D D	2016/02/10		mg/L	<0.0023
UA	6280	в	2016/05/10		mg/L	<0.0023
UA	6280	в	2016/08/03		mg/L	<0.0023
UA	6280	в	2016/11/20	Boron, total	mg/L	<0.0023
UA	6280	в	2017/02/15	Boron, total	mg/L	<0.0023
UA	G280	В	2017/05/20	Boron, total	mg/L	<0.0023
UA	G280	В	2017/07/18	Boron, total	mg/L	<0.0023
UA	G280	В	2017/11/04	Boron, total	mg/L	0.0130
UA	G280	в	2018/05/16	Boron, total	mg/L	<0.0034
UA	G280	В	2018/08/10	Boron, total	mg/L	<0.0034
UA	G280	в	2019/01/22	Boron, total	mg/L	0.0260
UA	G280	В	2019/08/26	Boron, total	mg/L	0.0110
UA	G280	В	2020/01/23	Boron, total	mg/L	0.0150
UA	G280	В	2020/08/11	Boron, total	mg/L	0.520

UA	G280	В	2020/10/14	Boron, total	mg/L	0.0250
UA	G280	В	2021/01/21	Boron, total	mg/L	0.0120
UA	G280	В	2021/01/28	Boron, total	mg/L	<0.008
UA	G280	В	2021/03/30	Boron, total	mg/L	0.0150
UA	G280	В	2021/04/22	Boron, total	mg/L	0.0150
UA	G280	В	2021/05/06	Boron, total	mg/L	0.0570
UA	G280	В	2021/05/19	Boron, total	mg/L	<0.008
UA	G280	В	2021/06/16	Boron, total	mg/L	< 0.0046
UA	G280	В	2021/06/28	Boron, total	mg/L	1.00
UA	G280	B	2021/07/13	Boron, total	mg/l	0.0500
UA	G280	B	2021/07/27	Boron, total	mg/l	<0.008
UA	G280	B	2021/08/18	Boron, total	mg/l	0.0280
	G280	B	2021/10/26	Boron total	mg/l	0.0250
	6280	B	2022/02/08	Boron total	mg/L	<0.0250
	G280	B	2022/05/10	Boron total	mg/L	<0.0071
	6280	B	2022/08/24	Boron total	mg/L	0.0230
	6280	B	2022/00/24	Boron total	mg/L	0.0230
	6280	B	2022/11/05	Boron total	mg/L	0.0210
	G280	B	2023/02/10	Boron total	mg/L	0.0200
	6280	D	2023/00/08	Boron, total	mg/L	<0.0200
	G280	B	2023/08/14	Boron total	mg/L	0.0100
	6280	D	2023/11/20		mg/L	74.0
	6280	D	2013/01/21		mg/L	74.0
	6280	D	2015/04/15		mg/L	120
	G280	D	2015/11/24		mg/L	60.0
	6280	D	2016/02/10		mg/L	60.0
	6280	B	2016/05/10		mg/L	63.0
	G280	B	2016/08/03		mg/L	63.0
	G280	B	2010/11/20		mg/L	64.0
	6280	D	2017/02/15		mg/L	54.0
	G280	B	2017/05/20		mg/L	54.0
	G280	B	2017/07/18		mg/L	67.0
	G280	B	2017/11/04		mg/L	63.0
	6280	D	2018/05/10		mg/L	57.0
	G280	B	2018/08/10		mg/L	62.0
	G280	B	2019/01/22		mg/L	82.0
	G280	B	2019/08/20		mg/L	72.0
	6280	D	2020/01/25		mg/L	73.0
	6280	D	2020/08/11		mg/L	78.0
	6280	D	2020/10/14		mg/L	78.0
UA	G280	В	2021/01/21		mg/L	77.0
UA	G280	В	2021/01/28		mg/L	/3.0
UA	G280	В	2021/03/30		mg/L	62.0
UA	G280	В	2021/04/22		mg/L	63.0
	6280	D	2021/05/06		mg/L	64.U
	6280	D D	2021/05/19		mg/L	64.U
	6280	D	2021/06/16		mg/L	/3.0
UA	6280	в	2021/06/28		mg/L	/2.0
UA	6280	в	2021/07/13		mg/L	/0.0
UA	6280	В	2021/07/27	Calcium, total	mg/L	/4.0
UA	G280	В	2021/08/18	Calcium, total	mg/L	69.0
UA	G280	В	2021/10/26	Calcium, total	mg/L	65.0
UA	G280	В	2022/02/08	Calcium, total	mg/L	68.0
UA	G280	В	2022/05/10	Calcium, total	mg/L	69.0
UA	G280	В	2022/08/24	Calcium, total	mg/L	80.0
UA	G280	В	2022/11/09	Calcium, total	mg/L	70.0
UA	G280	В	2023/02/16	Calcium, total	mg/L	72.0
UA	G280	В	2023/06/08	Calcium, total	mg/L	79.0
UA	G280	В	2023/08/14	Calcium, total	mg/L	79.5
UA	G280	В	2023/11/20	Calcium, total	mg/L	91.5
UA	G280	В	2015/01/21	Chloride, total	mg/L	62.0
UA	G280	В	2015/04/13	Chloride, total	mg/L	67.0
UA	G280	В	2015/07/23	Chloride, total	mg/L	53.0
UA	G280	В	2015/10/08	Chloride, total	mg/L	54.0

UA	G280	В	2015/11/24	Chloride, total	mg/L	54.0
UA	G280	В	2016/02/10	Chloride, total	mg/L	52.0
UA	G280	В	2016/05/10	Chloride, total	mg/L	50.0
UA	G280	В	2016/08/03	Chloride, total	mg/L	46.0
UA	G280	В	2016/11/20	Chloride, total	mg/L	49.0
UA	G280	В	2017/02/15	Chloride, total	mg/L	46.0
UA	G280	В	2017/05/20	Chloride, total	mg/L	44.0
UA	G280	В	2017/07/18	Chloride, total	mg/L	46.0
UA	G280	В	2017/11/04	Chloride. total	mg/L	48.0
UA	G280	В	2018/05/16	Chloride, total	mg/L	43.0
UA	G280	В	2018/08/10	Chloride, total	mg/L	55.0
UA	G280	В	2019/01/22	Chloride, total	mg/L	52.0
UA	G280	B	2019/08/26	Chloride, total	mg/l	60.0
UA	G280	B	2020/01/23	Chloride total	mg/l	64.0
UA	G280	B	2020/08/11	Chloride, total	mg/L	68.0
	G280	B	2020/10/14	Chloride total	mg/l	67.0
	G280	B	2020/10/11	Chloride, total	mg/L	33.0
	6280	B	2021/01/21	Chloride, total	mg/L	64.0
	6280	B	2021/01/20	Chloride total	mg/L	49.0
	6280	B	2021/03/30	Chloride, total	mg/L	45.0
	G280	B	2021/04/22	Chloride, total	mg/L	43.0
	6280	B	2021/05/00	Chloride, total	mg/L	45.0
	G280	B	2021/05/15	Chloride, total	mg/L	40.0 67.0
	6280	D	2021/00/10	Chlorido, total	mg/L	65.0
	6280	D	2021/00/28	Chlorido, total	mg/L	65.0
	6280	D	2021/07/13		mg/L	63.0
	6280		2021/07/27		mg/L	50.0 50.0
	6280	D	2021/08/18		mg/L	59.0
	6280	D	2021/10/20		mg/L	56.0
	6280	D	2022/02/08		mg/L	51.0
	G280	D D	2022/05/10		mg/L	58.0
	6280		2022/08/24		mg/L	95.0
	G280	D D	2022/11/09		mg/L	62.0
	6280		2023/02/10		mg/L	71.0
	6280	D	2023/00/08		mg/L	71.0
	6280		2023/08/14		mg/L	70.0
	G280	B	2023/11/20		mg/L	70.0
UA	G280	B	2015/04/13		mg/L	<0.002
UA	G280	В	2015/07/23		mg/L	<0.002
UA	G280	B	2015/10/08		mg/L	<0.002
UA	G280	В	2015/11/24		mg/L	0.00590
UA	G280	В	2016/02/10		mg/L	<0.000017
UA	G280	В	2016/05/10	Cobalt, total	mg/L	<0.000017
UA	G280	В	2016/08/03	Cobalt, total	mg/L	<0.000017
	G280	D	2010/11/20		mg/L	<0.000017
	6280	D D	2017/02/15	Cobalt, total	mg/L	<0.000017
	6280	D D	2017/05/20		mg/L	<0.000017
	6280	D D	2017/07/18	Cobalt, total	mg/L	<0.000017
	6280	D D	2018/05/16		mg/L	<0.00067
UA	6280	в	2019/01/22	Cobalt, total	mg/L	0.00330
UA	6280	в	2019/08/26		mg/L	<0.00067
	6280	в	2020/01/23	Cobalt, total	mg/L	<0.00067
	6280	D D	2020/08/11	Cobalt, total	mg/L	0.00600
UA	6280	в	2020/10/14		mg/L	<0.002
UA	6280	в	2021/01/21	Lobalt, total	mg/L	< 0.002
UA	G280	В	2021/01/28	Cobalt, total	mg/L	<0.00022
UA	G280	В	2021/03/30	Cobalt, total	mg/L	< 0.00022
UA	G280	В	2021/04/22	Cobalt, total	mg/L	<0.00022
UA	G280	в	2021/05/06	Cobalt, total	mg/L	<0.00022
UA	G280	В	2021/05/19	Cobalt, total	mg/L	< 0.00022
UA	G280	В	2021/06/16	Cobalt, total	mg/L	< 0.00022
UA	G280	В	2021/06/28	Cobalt, total	mg/L	< 0.00019
UA	G280	В	2021/07/13	Cobalt, total	mg/L	<0.00022
UA	G280	В	2021/07/27	Cobalt, total	mg/L	< 0.00022

UA	G280	В	2021/08/18	Cobalt, total	mg/L	<0.00022
UA	G280	В	2021/10/26	Cobalt, total	mg/L	<0.002
UA	G280	В	2022/02/08	Cobalt, total	mg/L	< 0.00019
UA	G280	В	2022/05/10	Cobalt, total	mg/L	<0.00048
UA	G280	В	2022/08/24	Cobalt, total	mg/L	<0.00048
UA	G280	В	2022/11/09	Cobalt, total	mg/L	<0.00048
UA	G280	В	2023/02/16	Cobalt. total	mg/L	<0.00048
UA	G280	В	2023/06/08	Cobalt. total	mg/L	<0.00048
UA	G280	B	2023/08/14	Cobalt, total	mg/l	0.000300
UA	G280	B	2023/11/20	Cobalt, total	mg/L	0.000200
	G280	B	2023/06/08	Ferrous Iron dissolved	mg/l	<0.02
	6280	B	2015/01/21	Iron dissolved	mg/L	0.0180
	6280	B	2015/01/21	Iron dissolved	mg/L	0.270
	6200	D	2015/04/15	Iron, dissolved	mg/L	<0.01
	6280	D	2015/07/25	Iron, dissolved	mg/L	0.0120
	6280	D	2015/10/08	Iron, dissolved	mg/L	0.0120
	6280		2016/02/10	Iron, dissolved	mg/L	0.0200
UA	6280	D	2010/03/13		ilig/L	0.01
	G280	B	2016/08/03		mg/L	0.0160
UA	G280	B	2010/11/22		mg/L	0.0520
UA	G280	В	2017/02/14	Iron, dissolved	mg/L	0.0110
UA	G280	В	2017/05/19	Iron, dissolved	mg/L	<0.01
UA	G280	В	2017/07/25	Iron, dissolved	mg/L	0.0120
UA	G280	В	2017/11/04	Iron, dissolved	mg/L	0.400
UA	G280	В	2018/01/30	Iron, dissolved	mg/L	0.130
UA	G280	В	2018/05/16	Iron, dissolved	mg/L	<0.01
UA	G280	В	2018/08/10	Iron, dissolved	mg/L	0.0120
UA	G280	В	2018/11/06	Iron, dissolved	mg/L	<0.01
UA	G280	В	2019/01/22	Iron, dissolved	mg/L	0.0530
UA	G280	В	2019/05/01	Iron, dissolved	mg/L	<0.01
UA	G280	В	2019/08/26	Iron, dissolved	mg/L	<0.01
UA	G280	В	2019/10/22	Iron, dissolved	mg/L	<0.01
UA	G280	В	2020/01/23	Iron, dissolved	mg/L	0.0110
UA	G280	В	2020/05/07	Iron, dissolved	mg/L	<0.01
UA	G280	В	2020/10/14	Iron, dissolved	mg/L	<0.01
UA	G280	В	2021/01/21	Iron, dissolved	mg/L	<0.01
UA	G280	В	2021/01/28	Iron, dissolved	mg/L	<0.01
UA	G280	В	2021/04/22	Iron, dissolved	mg/L	<0.01
UA	G280	В	2021/08/18	Iron, dissolved	mg/L	<0.01
UA	G280	В	2021/10/26	Iron, dissolved	mg/L	0.0180
UA	G280	В	2022/02/08	Iron, dissolved	mg/L	< 0.01
UA	G280	В	2022/05/10	Iron, dissolved	mg/L	<0.00072
UA	G280	В	2022/08/24	Iron, dissolved	mg/L	0.0180
UA	G280	В	2022/11/09	Iron, dissolved	mg/L	0.00780
UA	G280	В	2023/02/16	Iron, dissolved	mg/L	0.00470
UA	G280	В	2023/06/08	Iron, dissolved	mg/L	0.00610
UA	G280	В	2023/08/14	Iron, dissolved	mg/L	<0.0175
UA	G280	В	2023/11/20	Iron, dissolved	mg/L	<0.0115
UA	G280	В	2015/04/13	Magnesium, total	- mg/L	36.0
UA	G280	В	2017/07/18	Magnesium, total	mg/L	31.0
UA	G280	В	2020/01/23	Magnesium, total	mg/L	36.0
UA	G280	В	2021/01/28	Magnesium, total	mg/L	37.0
UA	G280	В	2021/03/30	Magnesium, total	mg/L	32.0
UA	G280	В	2021/04/22	Magnesium, total	mg/L	33.0
UA	G280	В	2021/05/06	Magnesium, total	mg/L	31.0
UA	G280	В	2021/05/19	Magnesium, total	mg/L	33.0
UA	G280	В	2021/06/16	Magnesium, total	mg/L	36.0
UA	G280	В	2021/06/28	Magnesium, total		38.0
UA	G280	B	2021/07/13	Magnesium, total	mg/l	37.0
UA	G280	- B	2021/07/27	Magnesium, total	mg/l	36.0
UA	G280	B	2022/02/08	Magnesium, total	mg/l	30.0
	6280	B	2022/08/24	Magnesium total	mg/l	41 0
	6280	B	2023/06/08	Magnesium total	mg/l	38.0
	6280	B	2023/00/08	Magnesium total	mg/L	36.6
57	0200	5	2023/00/14	magnesium, total	···ˈ8/ ⊾	30.0

UA	G280	В	2023/11/20	Magnesium, total	mg/L	42.7
UA	G280	В	2015/01/21	Manganese, dissolved	mg/L	<0.001
UA	G280	В	2015/04/13	Manganese, dissolved	mg/L	0.0260
UA	G280	В	2015/07/23	Manganese, dissolved	mg/L	0.0740
UA	G280	В	2015/10/08	Manganese, dissolved	mg/L	0.00350
UA	G280	В	2016/02/10	Manganese, dissolved	mg/L	< 0.001
UA	G280	В	2016/05/13	Manganese, dissolved	mg/L	< 0.001
UA	G280	В	2016/08/03	Manganese, dissolved	mg/L	0.00760
UA	G280	В	2016/11/22	Manganese, dissolved	mg/L	0.0690
UA	G280	В	2017/02/14	Manganese, dissolved	mg/L	< 0.001
UA	G280	В	2017/05/19	Manganese, dissolved	mg/L	0.00460
UA	G280	В	2017/07/25	Manganese, dissolved	mg/L	0.00230
UA	G280	B	2017/11/04	Manganese, dissolved	mg/l	0.0590
UA	G280	B	2018/01/30	Manganese, dissolved	mg/l	0.00670
	G280	B	2018/03/01	Manganese dissolved	mg/L	<0.001
	6280	B	2018/05/16	Manganese dissolved	mg/L	<0.001
	6280	B	2010/05/10	Manganese dissolved	mg/L	<0.001
	6280	B	2019/08/26	Manganese dissolved	mg/L	0.00190
	6280	B	2010/00/20	Manganese dissolved	mg/L	<0.00150
	6280	B	2020/01/23	Manganese dissolved	mg/L	<0.001
	G280	B	2020/03/07	Manganese, dissolved	mg/L	0.001
	6280	B	2020/10/14	Manganese dissolved	mg/L	<0.001
	G280	B	2021/01/21	Manganese, dissolved	mg/L	<0.001
	6280	D	2021/01/20	Manganese, dissolved	mg/L	<0.001
	6280	D	2021/04/22	Manganese, dissolved	mg/L	<0.001
	6280	D	2021/08/18	Manganese, dissolved	mg/L	<0.001
	G280	D	2021/10/20	Manganese, dissolved	mg/L	0.00180
	6280	D	2022/02/08	Manganasa, dissolved	mg/L	<0.00120
	6280	D	2022/05/10	Manganasa, dissolved	mg/L	<0.00025
	6280	D	2022/08/24	Manganese, dissolved	mg/L	0.00100
	G280	D D	2022/11/09	Manganese, dissolved	mg/L	0.00550
	6280		2023/02/10	Manganasa dissolved	mg/L	0.00200
	G280	D D	2023/06/08	Manganese, dissolved	mg/L	0.00140
	6280		2023/08/14	Manganasa dissolved	mg/L	0.00320
	6280	D	2023/11/20	Phosphata dissolved	mg/L	0.0125
	6280		2025/06/14		mg/L	0.0370
	G280	B	2015/04/13	Polassium, total	mg/L	0.580
UA	G280	B	2017/07/18	Polassium, total	mg/L	0.580
	G280	B	2020/01/23	Polassium, total	mg/L	0.440
UA	G280	B	2021/01/28	Polassium, total	mg/L	0.540
UA	G280	В	2021/03/30	Potassium, total	mg/L	0.570
	G280	В	2021/04/22	Potassium, total	mg/L	0.470
UA	G280	В	2021/05/06	Potassium, total	mg/L	0.470
UA	G280	В	2021/05/19	Potassium, total	mg/L	0.350
	6280	D	2021/06/16	Polassium total	mg/L	0.340
	6280	D D	2021/06/28	Polassium, total	mg/L	0.460
	6280	B	2021/07/13	Polassium, total	mg/L	0.330
	6280	D D	2021/07/27	Polassium, total	mg/L	0.360
	6280	B	2022/02/08	Polassium, total	mg/L	b./U
UA	6280	в	2022/08/24	Potassium, total	mg/L	0.420
UA	6280	в	2023/02/16	Potassium, total	mg/L	0.520
	6280	в	2023/06/08	Potassium, total	mg/L	0.580
	6280	D D	2023/08/14	Polassium, total	mg/L	0.539
UA	6280	в	2023/11/20	Potassium, total	mg/L	0.644
UA	6280	в	2023/06/08	Silicon, dissolved	mg/L	8.20
UA	G280	В	2023/08/14	Silicon, dissolved	mg/L	7.33
UA	G280	В	2015/04/13	Sodium, total	mg/L	65.0
UA	G280	В	2017/07/18	Sodium, total	mg/L	49.0
UA	G280	В	2020/01/23	Sodium, total	mg/L	60.0
UA	G280	В	2021/01/28	Sodium, total	mg/L	60.0
UA	G280	В	2021/03/30	Sodium, total	mg/L	61.0
UA	G280	В	2021/04/22	Sodium, total	mg/L	60.0
UA	G280	В	2021/05/06	Sodium, total	mg/L	60.0
UA	G280	В	2021/05/19	Sodium, total	mg/L	61.0

UA	G280	В	2021/06/16	Sodium, total	mg/L	50.0
UA	G280	В	2021/06/28	Sodium, total	mg/L	53.0
UA	G280	В	2021/07/13	Sodium, total	mg/L	54.0
UA	G280	В	2021/07/27	Sodium, total	mg/L	52.0
UA	G280	В	2022/02/08	Sodium, total	mg/L	53.0
UA	G280	В	2022/08/24	Sodium, total	mg/L	62.0
UA	G280	В	2023/02/16	Sodium. total	mg/L	61.0
UA	G280	В	2023/06/08	Sodium, total	mg/L	56.0
UA	G280	B	2023/08/14	Sodium, total	mg/l	58.5
	G280	B	2023/00/11	Sodium total	mg/L	60.7
	6280	B	2015/01/21	Sulfate total	mg/L	87.0
	6280	B	2015/01/21		mg/L	86.0
	6280	B	2015/04/15		mg/L	74.0
	6280	D	2015/07/25		mg/L	92.0
	6280	D	2015/10/08		mg/L	92.0
	6280	D	2015/11/24		mg/L	94.0
	6280	B	2016/02/10		mg/L	84.0
UA	G280	В	2016/05/10		mg/L	80.0
UA	G280	В	2016/08/03	Sulfate, total	mg/L	55.0
UA	G280	В	2016/11/20	Sulfate, total	mg/L	67.0
UA	G280	В	2017/02/15	Sulfate, total	mg/L	94.0
UA	G280	В	2017/05/20	Sulfate, total	mg/L	84.0
UA	G280	В	2017/07/18	Sulfate, total	mg/L	58.0
UA	G280	В	2017/11/04	Sulfate, total	mg/L	57.0
UA	G280	В	2018/05/16	Sulfate, total	mg/L	52.0
UA	G280	В	2018/08/10	Sulfate, total	mg/L	63.0
UA	G280	В	2019/01/22	Sulfate, total	mg/L	69.0
UA	G280	В	2019/08/26	Sulfate, total	mg/L	81.0
UA	G280	В	2020/01/23	Sulfate, total	mg/L	84.0
UA	G280	В	2020/08/11	Sulfate, total	mg/L	86.0
UA	G280	В	2020/10/14	Sulfate, total	mg/L	84.0
UA	G280	В	2021/01/21	Sulfate, total	mg/L	43.0
UA	G280	В	2021/01/28	Sulfate, total	mg/L	86.0
UA	G280	В	2021/03/30	Sulfate, total	mg/L	84.0
UA	G280	В	2021/04/22	Sulfate, total	mg/L	89.0
UA	G280	В	2021/05/06	Sulfate, total	mg/L	92.0
UA	G280	В	2021/05/19	Sulfate, total	mg/L	81.0
UA	G280	В	2021/06/16	Sulfate, total	mg/L	82.0
UA	G280	В	2021/06/28	Sulfate, total	mg/L	79.0
UA	G280	В	2021/07/13	Sulfate, total	mg/L	81.0
UA	G280	В	2021/07/27	Sulfate, total	mg/L	77.0
UA	G280	В	2021/08/18	Sulfate, total	mg/L	74.0
UA	G280	В	2021/10/26	Sulfate, total	mg/L	74.0
UA	G280	В	2022/02/08	Sulfate, total	mg/L	82.0
UA	G280	В	2022/05/10	Sulfate, total	mg/L	79.0
UA	G280	в	2022/08/24	Sulfate. total	mg/L	82.0
UA	G280	в	2022/11/09	Sulfate. total	mg/L	910
UA	G280	В	2023/02/16	Sulfate, total	mg/l	81.0
UA	G280	B	2023/06/08	Sulfate, total	mg/l	91.0
UA	G280	B	2023/08/14	Sulfate, total	mg/l	91.0
UA	G280	B	2023/11/20	Sulfate, total	mg/l	113
	6280	B	2015/11/24	Temperature (Celsius)	degrees (	16.0
	6280	B	2015/11/24	Temperature (Celsius)	degrees C	8 20
	6280	B	2016/05/10	Temperature (Celsius)	degrees C	16.0
	6280	B	2016/08/03	Temperature (Celsius)	degrees C	17.7
	6280	B	2010/08/03	Temperature (Colsius)	degrees C	1/./
	6280	B	2010/11/20	Temperature (Celsius)	degrees C	14./ 15 5
	6280	D	2017/02/13		dogroos	11.5
	6280		2017/05/20	Temperature (Celsius)	degrees C	14.9
	6280	D	2017/07/18	Temperature (Celsius)	dograas C	22.4 13 F
	6280	D D	2017/11/04	Temperature (Celsius)	degrees C	13.5
UA	6280	D D	2018/05/16	Temperature (Celsius)	uegrees C	14.9
UA	6280	в	2018/08/10	Temperature (Celsius)	aegrees C	15.9
UA	6280	в	2019/01/22	remperature (Celsius)	aegrees C	11.6
UA	G280	В	2019/08/26	Temperature (Celsius)	degrees C	17.0

UA	G280	В	2020/01/23	Temperature (Celsius)	degrees C	10.4
UA	G280	В	2020/08/11	Temperature (Celsius)	degrees C	19.0
UA	G280	В	2020/10/14	Temperature (Celsius)	degrees C	16.5
UA	G280	В	2021/01/21	Temperature (Celsius)	degrees C	12.1
UA	G280	В	2021/01/28	Temperature (Celsius)	degrees C	12.1
UA	G280	В	2021/03/30	Temperature (Celsius)	degrees C	13.4
UA	G280	В	2021/04/22	Temperature (Celsius)	degrees C	13.1
UA	G280	В	2021/05/06	Temperature (Celsius)	degrees C	12.9
UA	G280	B	2021/05/19	Temperature (Celsius)	degrees C	15.0
UA	G280	B	2021/06/28	Temperature (Celsius)	degrees C	20.9
UA	G280	B	2021/07/13	Temperature (Celsius)	degrees (	18.1
UA	G280	B	2021/07/27	Temperature (Celsius)	degrees C	20.2
	G280	B	2021/08/18	Temperature (Celsius)	degrees C	19.8
	6280	B	2022/02/08	Temperature (Celsius)	degrees C	9.90
	G280	B	2022/05/10	Temperature (Celsius)	degrees C	17.8
	6280	B	2022/03/10	Temperature (Celsius)	degrees C	19.1
	6280	B	2022/00/24	Temperature (Celsius)	degrees C	16.4
	6280	D	2022/11/05	Temperature (Celsius)	dogroos C	0.00
	6280	D	2023/02/10	Temperature (Celsius)	degrees C	9.90 15 A
	6280	D	2023/00/08	Temperature (Celsius)	degrees C	15.4
	6280	R	2023/06/14	Temperature (Celsius)	degrees C	17.5
	6280		2025/11/20	Tetal Dissolved Solids	mg/l	14.7 F 40
	6280	D D	2015/01/21	Total Dissolved Solids	mg/L	540
UA	G280	B	2015/04/13	Total Dissolved Solids	mg/L	480
UA	G280	В	2015/07/23	Total Dissolved Solids	mg/L	480
UA	G280	В	2015/10/08	Total Dissolved Solids	mg/L	450
UA	G280	В	2015/11/24	Total Dissolved Solids	mg/L	460
UA	G280	В	2016/02/10	Total Dissolved Solids	mg/L	400
UA	G280	В	2016/05/10	Total Dissolved Solids	mg/L	350
UA	G280	В	2016/08/03	Total Dissolved Solids	mg/L	350
UA	G280	В	2016/11/20	Total Dissolved Solids	mg/L	430
UA	G280	В	2017/02/15	Total Dissolved Solids	mg/L	440
UA	G280	В	2017/05/20	Total Dissolved Solids	mg/L	420
UA	G280	В	2017/07/18	Total Dissolved Solids	mg/L	400
UA	G280	В	2017/11/04	Total Dissolved Solids	mg/L	350
UA	G280	В	2018/05/16	Total Dissolved Solids	mg/L	360
UA	G280	В	2018/08/10	Total Dissolved Solids	mg/L	400
UA	G280	В	2019/01/22	Total Dissolved Solids	mg/L	500
UA	G280	В	2019/08/26	Total Dissolved Solids	mg/L	480
UA	G280	В	2020/01/23	Total Dissolved Solids	mg/L	1,100
UA	G280	В	2020/08/11	Total Dissolved Solids	mg/L	440
UA	G280	В	2020/10/14	Total Dissolved Solids	mg/L	490
UA	G280	В	2021/01/21	Total Dissolved Solids	mg/L	490
UA	G280	В	2021/01/28	Total Dissolved Solids	mg/L	430
UA	G280	В	2021/03/30	Total Dissolved Solids	mg/L	460
UA	G280	В	2021/04/22	Total Dissolved Solids	mg/L	470
UA	G280	В	2021/05/06	Total Dissolved Solids	mg/L	440
UA	G280	В	2021/05/19	Total Dissolved Solids	mg/L	400
UA	G280	В	2021/06/16	Total Dissolved Solids	mg/L	530
UA	G280	В	2021/06/28	Total Dissolved Solids	mg/L	420
UA	G280	В	2021/07/13	Total Dissolved Solids	mg/L	510
UA	G280	В	2021/07/27	Total Dissolved Solids	mg/L	470
UA	G280	В	2021/08/18	Total Dissolved Solids	mg/L	460
UA	G280	В	2021/10/26	Total Dissolved Solids	mg/L	400
UA	G280	В	2022/02/08	Total Dissolved Solids	mg/L	440
UA	G280	В	2022/05/10	Total Dissolved Solids	mg/L	450
UA	G280	В	2022/08/24	Total Dissolved Solids	mg/L	580
UA	G280	В	2022/11/09	Total Dissolved Solids	mg/L	500
UA	G280	В	2023/02/16	Total Dissolved Solids	mg/L	470
UA	G280	В	2023/06/08	Total Dissolved Solids	mg/L	590
UA	G280	В	2023/08/14	Total Dissolved Solids	mg/L	594
UA	G280	В	2023/11/20	Total Dissolved Solids	mg/L	608
UA	G281	В	2015/11/20	pH (field)	SU	7.0
UA	G281	В	2016/02/11	pH (field)	SU	7.1

UA	G281	В	2016/05/10	pH (field)	SU	7.0
UA	G281	В	2016/08/01	pH (field)	SU	7.0
UA	G281	В	2016/11/16	pH (field)	SU	6.9
UA	G281	В	2017/02/10	pH (field)	SU	6.7
UA	G281	В	2017/05/16	pH (field)	SU	6.9
UA	G281	В	2017/07/12	pH (field)	SU	7.0
UA	G281	В	2017/10/25	pH (field)	SU	7.0
UA	G281	B	2018/05/11	pH (field)	SU	7.1
	G281	B	2018/08/03	nH (field)	SU	7.0
	G281	B	2019/01/23	pH (field)	SU	7.0
	6281	B	2019/01/23	pH (field)	SU	6.9
	6281	B	2010/00/10	pH (field)	SU	73
	6201	D	2020/01/24	pH (field)	SU SU	6.9
	6281	D	2020/08/12	pir (field)	50 SU	0.9
	G281	B	2020/10/14	pri (field)	SU	7.0
UA	G281	В	2021/01/29	pH (field)	SU	7.1
UA	G281	В	2021/03/31	pH (field)	SU	7.0
UA	G281	В	2021/04/21	pH (field)	SU	6.9
UA	G281	В	2021/05/05	pH (field)	SU	7.1
UA	G281	В	2021/05/17	pH (field)	SU	7.1
UA	G281	В	2021/06/14	pH (field)	SU	7.1
UA	G281	В	2021/06/28	pH (field)	SU	7.2
UA	G281	В	2021/07/12	pH (field)	SU	7.2
UA	G281	В	2021/07/27	pH (field)	SU	7.1
UA	G281	В	2021/08/17	pH (field)	SU	7.1
UA	G281	В	2021/10/26	pH (field)	SU	7.0
UA	G281	В	2022/02/08	pH (field)	SU	7.0
UA	G281	В	2022/05/10	pH (field)	SU	6.9
UA	G281	В	2022/08/25	pH (field)	SU	6.8
UA	G281	В	2022/11/08	pH (field)	SU	6.8
UA	G281	В	2023/02/16	pH (field)	SU	7.2
UA	G281	В	2023/06/08	pH (field)	SU	6.8
UA	G281	B	2023/08/14	nH (field)	SU	6.8
UA	G281	B	2023/11/20	pH (field)	SU	6.9
	G281	B	2015/11/20	Oxidation Reduction Potential	mV	-18.0
	G281	B	2016/02/11	Oxidation Reduction Potential	mV	171
	G281	B	2016/05/10	Oxidation Reduction Potential	m\/	40.0
	G281	B	2010/03/10	Ovidation Reduction Potential	mV	40.0 56.0
	G201	D	2010/08/01	Ovidation Reduction Potential	mV	58.0
	G281	D	2010/11/10	Oxidation Reduction Potential	mV	65.0
	6281	D	2017/02/10	Ovidation Reduction Potential	111 V ma\/	63.0
UA	G281	B	2017/05/16	Oxidation Reduction Potential		63.0
UA	G281	В	2017/07/12	Oxidation Reduction Potential	mv mv	62.0
UA	G281	В	2017/10/25	Oxidation Reduction Potential	mv	/5.0
UA	G281	В	2018/05/11	Oxidation Reduction Potential	mV	45.0
UA	G281	В	2018/08/03	Oxidation Reduction Potential	mV	62.0
UA	6281	в	2019/01/23	Uxidation Reduction Potential	mv	65.0
UA	6281	в	2019/08/13	Uxidation Reduction Potential	mv	65.0
UA	G281	В	2020/01/24	Oxidation Reduction Potential	mV	151
UA	G281	В	2020/08/12	Oxidation Reduction Potential	mV	129
UA	G281	В	2020/10/14	Oxidation Reduction Potential	mV	87.1
UA	G281	В	2021/01/29	Oxidation Reduction Potential	mV	110
UA	G281	В	2021/03/31	Oxidation Reduction Potential	mV	257
UA	G281	В	2021/04/21	Oxidation Reduction Potential	mV	41.7
UA	G281	В	2021/05/05	Oxidation Reduction Potential	mV	189
UA	G281	В	2021/05/17	Oxidation Reduction Potential	mV	181
UA	G281	В	2021/06/14	Oxidation Reduction Potential	mV	54.1
UA	G281	В	2021/06/28	Oxidation Reduction Potential	mV	26.1
UA	G281	В	2021/07/12	Oxidation Reduction Potential	mV	210
UA	G281	В	2021/07/27	Oxidation Reduction Potential	mV	72.7
UA	G281	В	2021/08/17	Oxidation Reduction Potential	mV	105
UA	G281	В	2021/10/26	Oxidation Reduction Potential	mV	24.5
UA	G281	В	2022/02/08	Oxidation Reduction Potential	mV	102
UA	G281	В	2022/05/10	Oxidation Reduction Potential	mV	41.0
UA	G281	В	2022/08/25	Oxidation Reduction Potential	mV	4.00

UA	G281	В	2022/11/08	Oxidation Reduction Potential	mV	57.6
UA	G281	В	2023/02/16	Oxidation Reduction Potential	mV	64.4
UA	G281	В	2023/06/08	Oxidation Reduction Potential	mV	11.0
UA	G281	В	2023/08/14	Oxidation Reduction Potential	mV	102
UA	G281	В	2023/11/20	Oxidation Reduction Potential	mV	112
UA	G281	В	2015/11/20	Eh	V	0.18
UA	G281	В	2016/02/11	Eh	V	0.37
UA	G281	В	2016/05/10	Eh	V	0.24
UA	G281	В	2016/08/01	Eh	V	0.25
UA	G281	В	2016/11/16	Eh	V	0.25
UA	G281	В	2017/02/10	Eh	V	0.26
UA	G281	В	2017/05/16	Eh	V	0.26
UA	G281	В	2017/07/12	Eh	V	0.26
UA	G281	В	2017/10/25	Eh	V	0.27
UA	G281	В	2018/05/11	Eh	V	0.24
UA	G281	B	2018/08/03	Eh	V	0.26
UA	G281	В	2019/01/23	Eh	V	0.26
UA	G281	B	2019/08/13	Eh	V	0.26
UA	G281	B	2020/01/24	Eh	V	0.35
UA	G281	в	2020/08/12	Eh	V	0.32
UA	G281	в	2020/10/14	Eh	V	0.28
	G281	B	2021/01/29	Eb	V	0.31
	G281	B	2021/03/31	Eh	V	0.46
	6281	B	2021/03/31	Eb	V	0.10
	G281	B	2021/05/05	Eb	V	0.24
	G201	B	2021/05/05	Eh	V	0.35
	G281	B	2021/05/17	Eh	V	0.38
	G281	B	2021/00/14	Eh	V	0.25
	G281	B	2021/00/28	Eh	V	0.22
	G281	B	2021/07/12	Eh	V	0.40
	G281	D	2021/07/27	Eh	V	0.20
	6201	D	2021/00/17	Eh	V	0.30
	G281	D	2021/10/20	Eh	V	0.22
	G281	D	2022/02/08	Eh	V	0.30
	G281	B	2022/03/10	Eh	V	0.23
	G281	D	2022/08/23	Eh	V	0.20
	G281	D	2022/11/08	Eh	V	0.25
	6281	D	2023/02/10	Eh	V	0.20
	G281	D	2023/00/08	Eh	V	0.20
	6281	D	2023/08/14	Eh	V	0.29
	6281	D	2023/11/20	Alkalinity bicarbonato	v	270
	G201	D	2010/11/10	Alkalinity, bicarbonate	mg/L CaCO3	370
	G201	D	2017/03/10	Alkalinity, bicarbonate	mg/L CaCO3	360
	6281	D	2017/07/12	Alkalinity, bicarbonate	mg/L CaCO3	300
	6281		2020/01/24	Alkalinity, bicarbonate		200
	G281	B	2020/08/12	Alkalinity, bicarbonato	mg/L CaCO3	260
	G281	R	2021/01/29	Alkalinity, bicarbonato		300
	G281	B	2021/03/31	Alkalinity, bicarbonato	mg/L CaCO3	220
	6281	D	2021/04/21	Alkalinity, bicarbonato	mg/L CaCO3	240
	6281	D D	2021/05/05	Alkalinity, bicarbonate	mg/L CaCO3	340
	6201	D	2021/05/17	Alkalinity, bicarbonata		200
	6281	D	2021/06/14		mg/L CaCO3	380
	6281	D	2021/00/28		mg/L CaCO3	350
	6281	D D	2021/07/12			350
	G281	D	2021/07/27			360
UA	6281	в	2021/08/17	Alkalinity, bicarbonate	mg/L CaCO3	360
UA	6281	в	2022/02/08	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	6281	в	2022/08/25	Alkalinity, bicarbonate	mg/L CaCO3	390
UA	6281	в	2023/02/16	Alkalinity, bicarbonate	mg/L CaCO3	380
UA	6281	в	2023/06/08	Alkalinity, bicarbonate	mg/L CaCO3	360
UA	6281	в	2023/08/14	Alkalinity, bicarbonate	mg/L CaCO3	357
UA	6281	в	2023/11/20	Alkalinity, bicarbonate	mg/L CaCO3	358
UA	G281	В	2022/08/25	Alkalinity, carbonate	mg/L CaCO3	10.0
UA	G281	В	2015/11/20	Barium, total	mg/L	0.140

UA	G281	В	2016/02/11	Barium, total	mg/L	0.0670
UA	G281	В	2016/05/10	Barium, total	mg/L	0.0720
UA	G281	В	2016/08/01	Barium, total	mg/L	0.0780
UA	G281	В	2016/11/16	Barium, total	mg/L	0.0810
UA	G281	В	2017/02/10	Barium, total	mg/L	0.0800
UA	G281	В	2017/05/16	Barium, total	mg/L	0.0810
UA	G281	В	2017/07/12	Barium. total	mg/L	0.0870
UA	G281	В	2018/05/11	Barium, total	mg/L	0.0810
UA	G281	B	2018/08/03	Barium, total	mg/l	0.100
	G281	B	2019/01/23	Barium total	mg/L	0.0720
	6281	B	2019/01/23	Barium total	mg/L	0.0910
	G281	B	2020/01/24	Barium total	mg/L	0.0700
	G281	B	2020/01/21	Barium total	mg/L	0.0570
	6201	D	2020/08/12	Barium total	mg/L	0.0570
	G281	D	2020/10/14	Barium total	mg/L	0.0030
	6281		2021/01/29	Barium total	mg/L	0.0640
	6281	D D	2021/03/31	Barium total	mg/L	0.0660
UA	G281	B	2021/04/21	Barlum, total	mg/L	0.0610
UA	G281	В	2021/05/05	Barlum, total	mg/L	0.0650
UA	G281	В	2021/05/17	Barium, total	mg/L	0.0860
UA	G281	В	2021/06/14	Barium, total	mg/L	0.0600
UA	G281	В	2021/06/28	Barium, total	mg/L	0.0620
UA	G281	В	2021/07/12	Barium, total	mg/L	0.0610
UA	G281	В	2021/07/27	Barium, total	mg/L	0.0610
UA	G281	В	2021/08/17	Barium, total	mg/L	0.0650
UA	G281	В	2021/10/26	Barium, total	mg/L	0.0600
UA	G281	В	2022/02/08	Barium, total	mg/L	0.0650
UA	G281	В	2022/05/10	Barium, total	mg/L	0.0630
UA	G281	В	2022/08/25	Barium, total	mg/L	0.0680
UA	G281	В	2022/11/08	Barium, total	mg/L	0.0520
UA	G281	В	2023/02/16	Barium, total	mg/L	0.0650
UA	G281	В	2023/06/08	Barium, total	mg/L	0.0710
UA	G281	В	2023/08/14	Barium, total	mg/L	0.0707
UA	G281	В	2023/11/20	Barium, total	mg/L	0.0651
UA	G281	В	2015/11/20	Boron, total	mg/L	<0.0023
UA	G281	В	2016/02/11	Boron, total	mg/L	0.0100
UA	G281	В	2016/05/10	Boron, total	mg/L	<0.0023
UA	G281	В	2016/08/01	Boron, total	mg/L	0.0120
UA	G281	В	2016/11/16	Boron, total	mg/L	0.0220
UA	G281	В	2017/02/10	Boron, total	mg/L	< 0.0023
UA	G281	В	2017/05/16	Boron, total	mg/L	< 0.0023
UA	G281	В	2017/07/12	Boron, total	mg/L	< 0.0023
UA	G281	В	2017/10/25	Boron, total	mg/L	0.0120
UA	G281	В	2018/05/11	Boron, total	mg/L	< 0.0079
UA	G281	В	2018/08/03	Boron, total	mg/L	0.0130
UA	G281	В	2019/01/23	Boron, total	mg/L	0.0130
UA	G281	В	2019/08/13	Boron, total	mg/L	< 0.0034
UA	G281	В	2020/01/24	Boron, total	mg/L	0.0110
UA	G281	В	2020/08/12	Boron, total	mg/L	0.0370
UA	G281	В	2020/10/14	Boron, total	mg/L	0.0160
UA	G281	В	2021/01/29	Boron, total	mg/L	<0.008
UA	G281	в	2021/03/31	Boron, total	mg/L	0.110
UA	G281	в	2021/04/21	Boron, total	mg/L	<0.008
UA	G281	в	2021/05/05	Boron, total	mg/L	0.0150
UA	G281	В	2021/05/17	Boron, total	mg/L	0.0430
UA	G281	В	2021/06/14	Boron, total	mg/L	<0.008
UA	G281	B	2021/06/28	Boron, total	mg/l	0.0360
	G281	B	2021/07/12	Boron total	mg/l	<0.000
	G281	B	2021/07/27	Boron total	mg/l	<0.000
	6281	B	2021/08/17	Boron total	mg/l	0.000
	6281	B	2021/00/17	Boron total	mg/l	<pre></pre>
	6281	B	2022/02/02	Boron total	mg/L	
	G281	B	2022/02/00	Boron total	mg/L	
	6201	D	2022/03/10	Poron, total	mg/L	~0.00/1
UA	0201	ט	2022/08/23	burun, tutai	iiig/L	0.0140

UA	G281	В	2022/11/08	Boron, total	mg/L	<0.0071
UA	G281	В	2023/02/16	Boron, total	mg/L	0.0210
UA	G281	В	2023/06/08	Boron, total	mg/L	< 0.0071
UA	G281	В	2023/08/14	Boron, total	mg/L	< 0.0092
UA	G281	В	2023/11/20	Boron, total	mg/L	< 0.0092
UA	G281	В	2015/11/20	Calcium, total	mg/L	150
UA	G281	В	2016/02/11	Calcium, total	mg/L	120
UA	G281	В	2016/05/10	Calcium, total	mg/L	130
UA	G281	B	2016/08/01	Calcium, total	mg/l	140
	G281	B	2016/11/16	Calcium total	mg/L	110
	6281	B	2017/02/10	Calcium total	mg/L	120
	G281	B	2017/05/16	Calcium total	mg/L	130
	6281	B	2017/03/10	Calcium total	mg/L	130
	6201	D	2017/07/12		mg/L	110
	6201	D	2017/10/23	Calcium total	mg/L	120
	6281	D	2010/03/11		mg/L	120
	G201		2010/00/03		mg/L	130
UA	6281	D	2019/01/23		ilig/L	130
	G281	B	2019/08/13		mg/L	140
UA	G281	B	2020/01/24		mg/L	140
UA	G281	В	2020/08/12		mg/L	130
UA	G281	В	2020/10/14		mg/L	130
UA	G281	В	2021/01/29	Calcium, total	mg/L	130
UA	G281	В	2021/03/31	Calcium, total	mg/L	130
UA	G281	В	2021/04/21	Calcium, total	mg/L	130
UA	G281	В	2021/05/05	Calcium, total	mg/L	130
UA	G281	В	2021/05/17	Calcium, total	mg/L	130
UA	G281	В	2021/06/14	Calcium, total	mg/L	140
UA	G281	В	2021/06/28	Calcium, total	mg/L	130
UA	G281	В	2021/07/12	Calcium, total	mg/L	130
UA	G281	В	2021/07/27	Calcium, total	mg/L	120
UA	G281	В	2021/08/17	Calcium, total	mg/L	140
UA	G281	В	2021/10/26	Calcium, total	mg/L	130
UA	G281	В	2022/02/08	Calcium, total	mg/L	130
UA	G281	В	2022/05/10	Calcium, total	mg/L	140
UA	G281	В	2022/08/25	Calcium, total	mg/L	150
UA	G281	В	2022/11/08	Calcium, total	mg/L	110
UA	G281	В	2023/02/16	Calcium, total	mg/L	130
UA	G281	В	2023/06/08	Calcium, total	mg/L	130
UA	G281	В	2023/08/14	Calcium, total	mg/L	137
UA	G281	В	2023/11/20	Calcium, total	mg/L	152
UA	G281	В	2015/11/20	Chloride, total	mg/L	74.0
UA	G281	В	2016/02/11	Chloride, total	mg/L	55.0
UA	G281	В	2016/05/10	Chloride, total	mg/L	72.0
UA	G281	В	2016/08/01	Chloride, total	mg/L	70.0
UA	G281	В	2016/11/16	Chloride, total	mg/L	68.0
UA	G281	В	2017/02/10	Chloride, total	mg/L	67.0
UA	G281	В	2017/05/16	Chloride, total	mg/L	68.0
UA	G281	В	2017/07/12	Chloride, total	mg/L	75.0
UA	G281	В	2017/10/25	Chloride, total	mg/L	64.0
UA	G281	В	2018/05/11	Chloride, total	mg/L	69.0
UA	G281	В	2018/08/03	Chloride, total	mg/L	66.0
UA	G281	В	2019/01/23	Chloride, total	mg/L	85.0
UA	G281	В	2019/08/13	Chloride, total	mg/L	72.0
UA	G281	В	2020/01/24	Chloride, total	mg/L	75.0
UA	G281	В	2020/08/12	Chloride, total	mg/L	81.0
UA	G281	В	2020/10/14	Chloride, total	mg/L	79.0
UA	G281	В	2021/01/29	Chloride, total	mg/L	100
UA	G281	В	2021/03/31	Chloride, total	mg/L	90.0
UA	G281	В	2021/04/21	Chloride, total	mg/L	120
UA	G281	B	2021/05/05	Chloride, total	mg/l	86.0
	G281	B	2021/05/17	Chloride total	mg/l	85.0
	G281	B	2021/06/14	Chloride total	mg/l	76.0
	6281	B	2021/06/29		mg/L	86.0
57	0201	5	2021/00/20		·''8/ ⊾	80.0

UA	G281	В	2021/07/12	Chloride, total	mg/L	73.0
UA	G281	В	2021/07/27	Chloride, total	mg/L	73.0
UA	G281	В	2021/08/17	Chloride, total	mg/L	89.0
UA	G281	В	2021/10/26	Chloride, total	mg/L	160
UA	G281	В	2022/02/08	Chloride, total	mg/L	78.0
UA	G281	В	2022/05/10	Chloride, total	mg/L	85.0
UA	G281	В	2022/08/25	Chloride. total	mg/L	69.0
UA	G281	В	2022/11/08	Chloride, total	mg/L	63.0
UA	G281	B	2023/02/16	Chloride, total	mg/l	76.0
	G281	B	2023/06/08	Chloride total	mg/L	75.0
	6281	B	2023/08/14	Chloride total	mg/L	88.0
	G281	B	2023/00/14	Chloride, total	mg/L	74.0
	6281	B	2023/11/20		mg/L	0.00560
	6201	D	2015/11/20		mg/L	<0.000017
	6201	D	2010/02/11		mg/L	<0.000017
	6281	D	2010/03/10		mg/L	<0.000017
	G201	D	2016/08/01		mg/L	<0.000017
UA	G281	В	2016/11/16		mg/L	<0.000017
UA	G281	В	2017/02/10		mg/L	<0.000017
UA	G281	В	2017/05/16	Cobalt, total	mg/L	<0.000017
UA	G281	В	2017/07/12	Cobalt, total	mg/L	<0.000017
UA	G281	В	2018/05/11	Cobalt, total	mg/L	0.00230
UA	G281	В	2018/08/03	Cobalt, total	mg/L	0.00360
UA	G281	В	2019/01/23	Cobalt, total	mg/L	<0.00067
UA	G281	В	2019/08/13	Cobalt, total	mg/L	<0.00067
UA	G281	В	2020/01/24	Cobalt, total	mg/L	<0.00067
UA	G281	В	2020/08/12	Cobalt, total	mg/L	<0.00022
UA	G281	В	2020/10/14	Cobalt, total	mg/L	<0.002
UA	G281	В	2021/01/29	Cobalt, total	mg/L	<0.00022
UA	G281	В	2021/03/31	Cobalt, total	mg/L	<0.00022
UA	G281	В	2021/04/21	Cobalt, total	mg/L	< 0.00022
UA	G281	В	2021/05/05	Cobalt, total	mg/L	<0.00022
UA	G281	В	2021/05/17	Cobalt, total	mg/L	0.00260
UA	G281	В	2021/06/14	Cobalt, total	mg/L	<0.00022
UA	G281	В	2021/06/28	Cobalt, total	mg/L	<0.00019
UA	G281	В	2021/07/12	Cobalt, total	mg/L	<0.00022
UA	G281	В	2021/07/27	Cobalt, total	mg/L	< 0.00022
UA	G281	В	2021/08/17	Cobalt, total	mg/L	<0.00022
UA	G281	В	2021/10/26	Cobalt, total	mg/L	< 0.002
UA	G281	В	2022/02/08	Cobalt, total	mg/L	< 0.00019
UA	G281	В	2022/05/10	Cobalt, total	mg/L	<0.00048
UA	G281	В	2022/08/25	Cobalt, total	mg/L	0.000740
UA	G281	В	2022/11/08	Cobalt, total	mg/L	< 0.00048
UA	G281	B	2023/02/16	Cobalt, total	mg/l	<0.00048
UA	G281	B	2023/06/08	Cobalt, total	mg/L	0.000990
UA	G281	в	2023/08/14	Cobalt, total	mg/L	0.000400
UA	G281	В	2023/11/20	Cobalt, total	mg/L	0.000600
UA	G281	В	2023/06/08	Ferrous Iron, dissolved		0.260
UA	G281	B	2020/08/11	Iron, dissolved	mg/l	<0.01
UA	G281	B	2020/10/14	Iron, dissolved	mg/l	<0.01
UA	G281	B	2021/01/29	Iron, dissolved	mg/l	<0.01
	G281	B	2021/04/21	Iron dissolved	mg/l	0.0620
	G281	B	2021/08/17	Iron dissolved	mg/l	<0.01
	6281	B	2021/10/26	Iron dissolved	ы. – mg/l	<0.01
	G281	B	2022/02/02	Iron dissolved	mg/L	<0.01
	6281		2022/02/00	Iron, dissolved	mg/L	0.0020
	6281	D	2022/03/10	Iron, dissolved	mg/L	0.00300
	G201	D	2022/08/25		mg/L	0.00820
	6281	D D	2022/11/08	Iron, dissolved	mg/L	0.0250
	6281	D	2023/02/16	Iron, dissolved	mg/L	1.20
UA	6281	в	2023/06/08	Iron, dissolved	mg/L	0.0160
UA	6281	D D	2023/08/14	Iron, alssolvea	mg/L	<0.01/5
UA	6281	в	2023/11/20		mg/L	<0.0115
UA	6281	в	2016/11/16	iviagnesium, total	mg/L	66.0
UA	G281	В	2017/05/16	Magnesium, total	mg/L	59.0

UA	G281	В	2017/07/12	Magnesium, total	mg/L	63.0
UA	G281	В	2020/01/24	Magnesium, total	mg/L	67.0
UA	G281	В	2020/08/12	Magnesium, total	mg/L	60.0
UA	G281	В	2021/01/29	Magnesium, total	mg/L	61.0
UA	G281	В	2021/03/31	Magnesium, total	mg/L	53.0
UA	G281	В	2021/04/21	Magnesium, total	mg/L	58.0
UA	G281	В	2021/05/05	Magnesium, total	mg/L	62.0
UA	G281	В	2021/05/17	Magnesium, total	mg/L	63.0
UA	G281	B	2021/06/14	Magnesium, total	mg/l	61.0
	G281	B	2021/06/28	Magnesium total	mg/L	61.0
	6281	B	2021/07/12	Magnesium total	mg/L	58.0
	G281	B	2021/07/12	Magnesium total	mg/L	59.0
	G201	B	2021/07/27	Magnesium total	mg/L	64.0
	6201	D	2021/03/17	Magnesium, total	mg/L	60.0
	G201		2022/02/08	Magnesium, total	mg/L	67.0
	G201		2022/08/25	Magnesium, total	mg/L	67.0
	6281	D D	2023/02/16	Magnesium, total	mg/L	62.0
UA	G281	B	2023/06/08		mg/L	61.0
UA	G281	В	2023/08/14	Magnesium, total	mg/L	61.0
UA	G281	В	2023/11/20	Magnesium, total	mg/L	68.5
UA	G281	В	2018/03/01	Manganese, dissolved	mg/L	0.160
UA	G281	В	2018/05/11	Manganese, dissolved	mg/L	0.0200
UA	G281	В	2018/08/11	Manganese, dissolved	mg/L	0.340
UA	G281	В	2018/11/06	Manganese, dissolved	mg/L	0.360
UA	G281	В	2019/01/23	Manganese, dissolved	mg/L	0.450
UA	G281	В	2019/05/02	Manganese, dissolved	mg/L	0.0590
UA	G281	В	2019/08/13	Manganese, dissolved	mg/L	0.300
UA	G281	В	2019/10/21	Manganese, dissolved	mg/L	0.350
UA	G281	В	2020/01/24	Manganese, dissolved	mg/L	0.0690
UA	G281	В	2020/05/05	Manganese, dissolved	mg/L	0.100
UA	G281	В	2020/08/11	Manganese, dissolved	mg/L	0.170
UA	G281	В	2020/10/14	Manganese, dissolved	mg/L	0.160
UA	G281	В	2021/01/29	Manganese, dissolved	mg/L	0.0390
UA	G281	В	2021/04/21	Manganese, dissolved	mg/L	0.0610
UA	G281	В	2021/08/17	Manganese, dissolved	mg/L	0.110
UA	G281	В	2021/10/26	Manganese, dissolved	mg/L	0.150
UA	G281	В	2022/02/08	Manganese, dissolved	mg/L	0.0300
UA	G281	В	2022/05/10	Manganese, dissolved	mg/L	0.0710
UA	G281	В	2022/08/25	Manganese, dissolved	mg/L	0.180
UA	G281	В	2022/11/08	Manganese, dissolved	mg/L	0.140
UA	G281	В	2023/02/16	Manganese, dissolved	mg/L	0.250
UA	G281	В	2023/06/08	Manganese, dissolved	mg/L	0.310
UA	G281	В	2023/08/14	Manganese, dissolved	mg/L	0.291
	G281	B	2023/11/20	Manganese dissolved	mg/l	0.306
	G281	B	2023/08/14	Phosphate dissolved	mg/L	0.0340
UA	G281	- B	2016/11/16	Potassium, total	mg/l	0.880
UA	G281	- B	2017/05/16	Potassium, total	mg/l	0.800
	G281	B	2017/07/12	Potassium total	mg/l	1 10
UA	G281	B	2020/01/24	Potassium, total	mg/l	0.620
	G281	B	2020/08/12	Potassium total	mg/l	0.360
	G281	B	2020/00/12	Potassium total	mg/l	0.500
	G281	B	2021/02/21	Potassium total	mg/L	1 /0
	G281	B	2021/03/31	Potassium total	mg/l	0.400
	G281	B	2021/04/21	Potassium total	mg/L	1 50
	G281	B	2021/05/05	Potassium total	mg/L	1.30
	6281		2021/05/17		mg/L	0.040
	6281	D D	2021/00/14	Potassium total	mg/L	0.450
	6201	D	2021/00/28		IIIg/L	0.450
	6281	D D	2021/07/12	Poldssium, total	mg/L	0.440
UA	6281	в	2021/0//2/	Potassium, total	mg/L	0.420
UA	6281	в	2021/08/17	Potassium, total	mg/L	0.590
UA	6281	в	2022/02/08	Potassium, total	mg/L	0.510
UA	6281	в	2022/08/25	Potassium, total	mg/L	0.730
UA	G281	В	2023/02/16	Potassium, total	mg/L	0.550
UA	G281	В	2023/06/08	Potassium, total	mg/L	0.530

UA	G281	В	2023/08/14	Potassium, total	mg/L	0.609
UA	G281	В	2023/11/20	Potassium, total	mg/L	0.663
UA	G281	В	2023/06/08	Silicon, dissolved	mg/L	10.0
UA	G281	В	2023/08/14	Silicon, dissolved	mg/L	8.59
UA	G281	В	2016/11/16	Sodium, total	mg/L	86.0
UA	G281	В	2017/05/16	Sodium, total	mg/L	80.0
UA	G281	В	2017/07/12	Sodium. total	mg/L	86.0
UA	G281	В	2020/01/24	Sodium, total	mg/L	90.0
UA	G281	B	2020/08/12	Sodium, total	mg/l	88.0
	G281	B	2020/00/12	Sodium total	mg/L	90.0
	6281	B	2021/01/23	Sodium total	mg/L	79.0
	G281	B	2021/03/31	Sodium total	mg/L	83.0
	6281	B	2021/04/21	Sodium, total	mg/L	93.0
	6201	D	2021/05/05	Sodium, total	mg/L	99.0
	G281	D	2021/05/17	Sodium, total	mg/L	83.0
	6281	D	2021/06/14	Sodium, total	mg/L	86.0
	6281	B	2021/00/28	Sodium, total	mg/L	80.0
UA	G281	В	2021/07/12		mg/L	78.0
UA	G281	В	2021/07/27	Sodium, total	mg/L	85.0
UA	G281	В	2021/08/17	Sodium, total	mg/L	100
UA	G281	В	2022/02/08	Sodium, total	mg/L	89.0
UA	G281	В	2022/08/25	Sodium, total	mg/L	100
UA	G281	В	2023/02/16	Sodium, total	mg/L	100
UA	G281	В	2023/06/08	Sodium, total	mg/L	89.0
UA	G281	В	2023/08/14	Sodium, total	mg/L	90.7
UA	G281	В	2023/11/20	Sodium, total	mg/L	93.3
UA	G281	В	2015/11/20	Sulfate, total	mg/L	300
UA	G281	В	2016/02/11	Sulfate, total	mg/L	340
UA	G281	В	2016/05/10	Sulfate, total	mg/L	370
UA	G281	В	2016/08/01	Sulfate, total	mg/L	310
UA	G281	В	2016/11/16	Sulfate, total	mg/L	310
UA	G281	В	2017/02/10	Sulfate, total	mg/L	310
UA	G281	В	2017/05/16	Sulfate, total	mg/L	330
UA	G281	В	2017/07/12	Sulfate, total	mg/L	300
UA	G281	В	2017/10/25	Sulfate, total	mg/L	300
UA	G281	В	2018/05/11	Sulfate, total	mg/L	310
UA	G281	В	2018/08/03	Sulfate, total	mg/L	280
UA	G281	В	2019/01/23	Sulfate, total	mg/L	380
UA	G281	В	2019/08/13	Sulfate, total	mg/L	310
UA	G281	В	2020/01/24	Sulfate, total	mg/L	300
UA	G281	В	2020/08/12	Sulfate, total	mg/L	260
UA	G281	В	2020/10/14	Sulfate, total	mg/L	250
UA	G281	В	2021/01/29	Sulfate, total	mg/L	260
UA	G281	В	2021/03/31	Sulfate, total	mg/L	280
UA	G281	В	2021/04/21	Sulfate, total	mg/L	250
UA	G281	в	2021/05/05	Sulfate. total	mg/L	260
UA	G281	в	2021/05/17	Sulfate. total	mg/L	280
UA	G281	В	2021/06/14	Sulfate, total	mg/l	260
UA	G281	B	2021/06/28	Sulfate, total	mg/l	280
UA	G281	B	2021/07/12	Sulfate, total	mg/l	260
UA	G281	B	2021/07/27	Sulfate, total	mg/l	230
	G281	B	2021/08/17	Sulfate total	mg/l	2.0
	G281	B	2021/10/26	Sulfate total	mg/l	230
	6281	B	2022/02/02	Sulfate total	mg/l	270
	6281	B	2022/02/08		mg/L	270
	6281	B	2022/03/10		mg/l	230
	6281	D	2022/00/23	Sulfato total	mg/L	200
	G201	D	2022/11/08		nig/L	300
	6281	D D	2023/02/16	Suilate, total	mg/L	270
	6281	D	2023/06/08		mg/L	140
UA	6281	в	2023/08/14	Suifate, total	mg/L	268
UA	6281	D	2023/11/20		IIIg/L	293
UA	6281	в	2015/11/20	Temperature (Celsius)	aegrees C	16.8
UA	6281	в	2016/02/11	remperature (Celsius)	aegrees C	8.00
UA	G281	В	2016/05/10	Temperature (Celsius)	degrees C	15.5

UA	G281	В	2016/08/01	Temperature (Celsius)	degrees C	16.7
UA	G281	В	2016/11/16	Temperature (Celsius)	degrees C	13.6
UA	G281	В	2017/02/10	Temperature (Celsius)	degrees C	14.5
UA	G281	В	2017/05/16	Temperature (Celsius)	degrees C	15.4
UA	G281	В	2017/07/12	Temperature (Celsius)	degrees C	16.5
UA	G281	В	2017/10/25	Temperature (Celsius)	degrees C	13.0
UA	G281	В	2018/05/11	Temperature (Celsius)	degrees C	14.3
UA	G281	B	2018/08/03	Temperature (Celsius)	degrees C	16.1
	G281	B	2019/01/23	Temperature (Celsius)	degrees C	11.9
	G281	B	2019/08/13	Temperature (Celsius)	degrees C	17.4
	G281	B	2010/00/10	Temperature (Celsius)	degrees C	9.70
	G201	D	2020/01/24	Temperature (Celsius)	degrees C	21 5
	G201	D	2020/00/12	Temperature (Celsius)	dogroos C	17.0
	6281	D	2020/10/14	Temperature (Celsius)	degrees C	17.9
	G281	B	2021/01/29	Temperature (Celsius)	degrees C	9.40
UA	G281	В	2021/03/31	Temperature (Celsius)	degrees C	11.1
UA	G281	В	2021/04/21	Temperature (Celsius)	degrees C	12.0
UA	G281	В	2021/05/05	Temperature (Celsius)	degrees C	14.0
UA	G281	В	2021/05/17	Temperature (Celsius)	degrees C	15.0
UA	G281	В	2021/06/14	Temperature (Celsius)	degrees C	20.8
UA	G281	В	2021/06/28	Temperature (Celsius)	degrees C	20.7
UA	G281	В	2021/07/12	Temperature (Celsius)	degrees C	19.9
UA	G281	В	2021/07/27	Temperature (Celsius)	degrees C	20.4
UA	G281	В	2021/08/17	Temperature (Celsius)	degrees C	20.7
UA	G281	В	2021/10/26	Temperature (Celsius)	degrees C	17.3
UA	G281	В	2022/02/08	Temperature (Celsius)	degrees C	10.6
UA	G281	В	2022/05/10	Temperature (Celsius)	degrees C	17.8
UA	G281	В	2022/08/25	Temperature (Celsius)	degrees C	21.0
UA	G281	В	2022/11/08	Temperature (Celsius)	degrees C	17.9
UA	G281	В	2023/02/16	Temperature (Celsius)	degrees C	9.20
UA	G281	В	2023/06/08	Temperature (Celsius)	degrees C	18.4
UA	G281	В	2023/08/14	Temperature (Celsius)	degrees C	18.6
UA	G281	В	2023/11/20	Temperature (Celsius)	degrees C	16.1
UA	G281	В	2015/11/20	Total Dissolved Solids	mg/L	820
UA	G281	B	2016/02/11	Total Dissolved Solids	mg/l	740
	G281	B	2016/05/10	Total Dissolved Solids	mg/L	740
	6281	B	2016/08/01	Total Dissolved Solids	mg/L	780
	G281	B	2010/08/01	Total Dissolved Solids	mg/L	840
	6201	D	2010/11/10	Total Dissolved Solids	mg/L	840
	G281	B	2017/02/10	Total Dissolved Solids	mg/L	840
	G281	D	2017/03/10	Total Dissolved Solids	mg/L	760
UA	6281	D	2017/07/12	Total Dissolved Solids	ilig/L	760
	G281	B	2017/10/25	Total Dissolved Solids	mg/L	800
UA	G281	В	2018/05/11	Total Dissolved Solids	mg/L	840
UA	G281	В	2018/08/03	Total Dissolved Solids	mg/L	840
UA	G281	В	2019/01/23	Total Dissolved Solids	mg/L	880
UA	6281	в	2019/08/13	Total Dissolved Solids	mg/L	900
UA	6281	в	2020/01/24		mg/L	880
UA	G281	В	2020/08/12	Total Dissolved Solids	mg/L	700
UA	G281	В	2020/10/14	Total Dissolved Solids	mg/L	870
UA	G281	В	2021/01/29	Total Dissolved Solids	mg/L	870
UA	G281	В	2021/03/31	Total Dissolved Solids	mg/L	830
UA	G281	В	2021/04/21	Total Dissolved Solids	mg/L	1,000
UA	G281	В	2021/05/05	Total Dissolved Solids	mg/L	820
UA	G281	В	2021/05/17	Total Dissolved Solids	mg/L	870
UA	G281	В	2021/06/14	Total Dissolved Solids	mg/L	930
UA	G281	В	2021/06/28	Total Dissolved Solids	mg/L	830
UA	G281	В	2021/07/12	Total Dissolved Solids	mg/L	910
UA	G281	В	2021/07/27	Total Dissolved Solids	mg/L	880
UA	G281	В	2021/08/17	Total Dissolved Solids	mg/L	910
UA	G281	В	2021/10/26	Total Dissolved Solids	mg/L	820
UA	G281	В	2022/02/08	Total Dissolved Solids	mg/L	910
UA	G281	В	2022/05/10	Total Dissolved Solids	mg/L	910
UA	G281	В	2022/08/25	Total Dissolved Solids	mg/L	980
UA	G281	В	2022/11/08	Total Dissolved Solids	mg/L	900
L			, =,		5,	

UA	G281	В	2023/02/16	Total Dissolved Solids	mg/L	980
UA	G281	В	2023/06/08	Total Dissolved Solids	mg/L	1,000
UA	G281	В	2023/08/14	Total Dissolved Solids	mg/L	930
UA	G281	В	2023/11/20	Total Dissolved Solids	mg/L	958
UA	G401	С	2015/11/21	pH (field)	SU	6.0
UA	G401	С	2016/02/22	pH (field)	SU	5.8
UA	G401	С	2016/05/19	pH (field)	SU	6.0
UA	G401	c	2016/08/01	pH (field)	SU	6.2
UA	G401	C C	2016/11/17	pH (field)	SU	6.2
	G401	c	2017/02/16	nH (field)	SU	6.2
	G401	c	2017/02/10	pH (field)	SU	6.3
	G401	c C	2017/03/17	pH (field)	SU	6.2
	G401	C	2017/07/13	pH (field)	SU SU	6.2
	G401	C C	2017/10/27	pir (field)	50 SU	0.3
	G401	C C	2018/05/12	pri (field)	50 SU	6.2
UA	G401	C C	2018/08/04	ph (lield)	50 GU	6.2
UA	G401	C	2019/01/24	pH (field)	SU	6.3
UA	G401	C	2019/08/16	pH (field)	SU	6.4
UA	G401	C	2020/01/22	pH (field)	SU	6.0
UA	G401	С	2020/05/06	pH (field)	SU	5.8
UA	G401	С	2020/08/12	pH (field)	SU	5.8
UA	G401	С	2020/10/14	pH (field)	SU	5.7
UA	G401	С	2021/01/29	pH (field)	SU	5.9
UA	G401	С	2021/05/20	pH (field)	SU	5.9
UA	G401	С	2021/08/17	pH (field)	SU	5.9
UA	G401	С	2021/10/26	pH (field)	SU	5.6
UA	G401	С	2021/11/29	pH (field)	SU	5.8
UA	G401	С	2022/02/09	pH (field)	SU	5.8
UA	G401	С	2022/05/10	pH (field)	SU	5.9
UA	G401	С	2022/09/20	pH (field)	SU	6.1
UA	G401	С	2022/11/08	pH (field)	SU	6.2
UA	G401	С	2023/02/15	pH (field)	SU	5.9
UA	G401	C	2023/06/07	pH (field)	SU	6.2
UA	G401	C	2023/08/11	pH (field)	SU	6.0
UΔ	G401	c	2023/11/21	nH (field)	SU	5.9
	G401	c	2015/11/21	Oxidation Reduction Potential	mV	-16.0
	G401	c	2016/02/22	Oxidation Reduction Potential	mV	27.0
	G401	c C	2016/02/22	Oxidation Reduction Potential	mV	-23.0
	G401	c C	2016/03/13	Oxidation Reduction Potential	m\/	23.0
	G401	c c	2010/08/01	Ovidation Reduction Potential	mV	-37.0
	G401	C C	2010/11/17	Oxidation Reduction Potential	m\/	-44.0
UA	G401	C C	2017/02/16	Oxidation Reduction Potential		-59.0
	G401	C C	2017/05/17	Oxidation Reduction Potential		-68.0
UA	G401	C C	2017/07/13	Oxidation Reduction Potential	mv	-48.0
UA	G401	C	2017/10/27	Oxidation Reduction Potential	mV	-41.0
UA	G401	C	2018/05/12	Oxidation Reduction Potential	mV	-50.0
UA	6401		2018/08/04	Oxidation Reduction Potential	mv	-55.0
UA	6401	L A	2019/01/24	Uxidation Reduction Potential	mv	-52.0
UA	G401	L	2019/08/16	Uxidation Reduction Potential	mv	-51.0
UA	G401	C	2020/01/22	Oxidation Reduction Potential	mV	111
UA	G401	С	2020/05/06	Oxidation Reduction Potential	mV	94.1
UA	G401	С	2020/08/12	Oxidation Reduction Potential	mV	38.8
UA	G401	С	2020/10/14	Oxidation Reduction Potential	mV	40.2
UA	G401	С	2021/01/29	Oxidation Reduction Potential	mV	44.0
UA	G401	С	2021/05/20	Oxidation Reduction Potential	mV	25.0
UA	G401	С	2021/08/17	Oxidation Reduction Potential	mV	29.6
UA	G401	С	2021/10/26	Oxidation Reduction Potential	mV	28.3
UA	G401	С	2021/11/29	Oxidation Reduction Potential	mV	41.2
UA	G401	С	2022/02/09	Oxidation Reduction Potential	mV	78.1
UA	G401	С	2022/05/10	Oxidation Reduction Potential	mV	38.4
UA	G401	С	2022/09/20	Oxidation Reduction Potential	mV	4.70
UA	G401	С	2022/11/08	Oxidation Reduction Potential	mV	-18.0
UA	G401	с	2023/02/15	Oxidation Reduction Potential	mV	22.0
UA	G401	с	2023/06/07	Oxidation Reduction Potential	mV	-32.0
UA	G401	с	2023/08/11	Oxidation Reduction Potential	mV	-30.0

UA	G401	С	2023/11/21	Oxidation Reduction Potential	mV	15.0
UA	G401	С	2015/11/21	Eh	V	0.18
UA	G401	С	2016/02/22	Eh	V	0.22
UA	G401	С	2016/05/19	Eh	V	0.17
UA	G401	С	2016/08/01	Eh	V	0.16
UA	G401	С	2016/11/17	Eh	V	0.15
UA	G401	С	2017/02/16	Eh	V	0.14
UA	G401	c	2017/05/17	Eh	V	0.13
UA	G401	c	2017/07/13	Eh	V	0.15
UA	G401	C C	2017/10/27	Eh	V	0.16
	G401	c	2018/05/12	Eb	V	0.15
	G401	c	2018/08/04	Eb	V	0.13
	G401	c	2010/00/01	Eb	V	0.11
	G401	c	2010/01/24	Eh	V	0.13
	G401	C C	2019/08/10	Eh	V	0.14
	G401	C C	2020/01/22		V	0.31
	G401	C C	2020/05/06		V	0.29
UA	G401		2020/08/12		V	0.23
UA	G401		2020/10/14	En	V	0.23
UA	G401	C	2021/01/29	En	V	0.24
UA	G401	C	2021/05/20	En	V	0.22
UA	G401	C	2021/08/17	En	V	0.22
UA	G401	C	2021/10/26	Eh	V	0.22
UA	G401	С	2021/11/29	Eh	V	0.24
UA	G401	С	2022/02/09	Eh	V	0.27
UA	G401	С	2022/05/10	Eh	V	0.23
UA	G401	С	2022/09/20	Eh	V	0.19
UA	G401	С	2022/11/08	Eh	V	0.18
UA	G401	С	2023/02/15	Eh	V	0.22
UA	G401	С	2023/06/07	Eh	V	0.17
UA	G401	С	2023/08/11	Eh	V	0.16
UA	G401	С	2023/11/21	Eh	V	0.21
UA	G401	С	2020/01/22	Alkalinity, bicarbonate	mg/L CaCO3	110
UA	G401	С	2021/01/29	Alkalinity, bicarbonate	mg/L CaCO3	50.0
UA	G401	С	2021/08/17	Alkalinity, bicarbonate	mg/L CaCO3	88.0
UA	G401	С	2022/02/09	Alkalinity, bicarbonate	mg/L CaCO3	75.0
UA	G401	С	2022/09/20	Alkalinity, bicarbonate	mg/L CaCO3	60.0
UA	G401	С	2023/02/15	Alkalinity, bicarbonate	mg/L CaCO3	80.0
UA	G401	С	2023/06/07	Alkalinity, bicarbonate	mg/L CaCO3	140
UA	G401	С	2023/08/11	Alkalinity, bicarbonate	mg/L CaCO3	96.0
UA	G401	с	2023/11/21	Alkalinity, bicarbonate	mg/L CaCO3	99.0
UA	G401	С	2022/09/20	Alkalinity, carbonate	mg/L CaCO3	10.0
UA	G401	с	2015/11/21	Barium. total	mg/L	0.0370
UA	G401	С	2016/02/22	Barium. total	mg/L	0.0150
UA	G401	с	2016/05/19	Barium, total	mg/L	0.0140
UA	G401	с	2016/08/01	Barium, total	mg/L	0.0530
UA	G401	с	2016/11/17	Barium, total	mg/L	0.0210
UA	G401	с	2017/02/16	Barium, total	mg/L	0.420
UA	G401	c	2017/05/17	Barium, total	mg/L	0.300
UA	G401	с	2017/07/13	Barium, total	mg/L	0.570
UA	G401	c	2018/05/12	Barium, total	mg/L	0.140
UA	G401	c	2018/08/04	Barium, total	mg/L	1.50
UA	G401	c	2019/01/24	Barium, total	mg/L	0.300
UA	G401	- C	2019/08/16	Barium, total	mg/l	0 190
	G401	c	2020/01/22	Barium total	mg/l	0.0120
	G401	c	2020/01/22	Barium total	mg/L	0.0120
	G401	C C	2020/00/12	Barium total	mg/L	0.0100
	G401	с С	2020/10/14	Parium total		0.0120
	G401		2021/01/29	Parium total	mg/L	0.0130
	G401		2021/05/20	Parium total	mg/L	0.0120
	G401		2021/08/17	Parium total	mg/L	0.00970
	G401		2021/10/20	Darium total	mg/L	0.0100
	G401		2022/02/09	Barium, total	mg/L	0.0110
	6401		2022/05/10		mg/L	0.0140
UA	6401	L	2022/09/20	Barium, total	mg/L	0.0110

UA	G401	С	2022/11/08	Barium, total	mg/L	0.00920
UA	G401	С	2023/02/15	Barium, total	mg/L	0.0110
UA	G401	С	2023/06/07	Barium, total	mg/L	0.0100
UA	G401	С	2023/08/11	Barium, total	mg/L	0.0118
UA	G401	С	2023/11/21	Barium, total	mg/L	0.0132
UA	G401	С	2015/11/21	Boron, total	mg/L	3.30
UA	G401	с	2016/02/22	Boron, total	mg/L	3.40
UA	G401	c	2016/05/19	Boron, total	mg/L	3.50
UA	G401	c	2016/08/01	Boron, total	mg/L	4.10
UA	G401	c	2016/11/17	Boron, total	mg/l	4.00
UA	G401	c	2017/02/16	Boron, total	mg/l	3.70
UA	G401	C C	2017/05/17	Boron, total	mg/l	3.20
	G401	c	2017/07/13	Boron total	mg/l	3.60
	G401	c	2017/10/27	Boron total	mg/L	4.40
	G401	c	2018/05/12	Boron total	mg/L	3 70
	G401	c	2018/08/04	Boron total	mg/L	3.90
	G401	c	2010/00/04	Boron total	mg/L	3.80
	G401	c	2019/01/24	Boron total	mg/L	4.00
	G401	c	2013/08/10	Boron total	mg/L	4.00
	G401	c c	2020/01/22	Boron, total	mg/L	1.10
	G401	C C	2020/08/12	Boron total	mg/L	4.20
	G401	C C	2020/10/14	Boron total	mg/L	4.10
	G401	C C	2021/01/29	Boron total	mg/L	3.70
	G401	C C	2021/03/20	Boron, total	mg/L	3.30
	G401	C	2021/08/17	Boron total	mg/L	4.20
	G401	C C	2021/10/20	Boron, total	mg/L	3.40
	G401	C C	2022/02/09	Boron, total	mg/L	3.50
	G401	C C	2022/05/10	Boron, total	mg/L	3.20
	G401	C	2022/09/20	Boron, total	mg/L	4.30
	G401	C C	2022/11/08	Boron, total	mg/L	4.00
	G401	C C	2023/02/15	Boron, total	mg/L	3.90
	G401	C C	2023/06/07	Boron, total	mg/L	3.90
	G401	C C	2023/08/11	Boron, total	mg/L	4.24
	G401	C C	2025/11/21		mg/L	3.37
	G401	C C	2015/11/21		mg/L	440
	G401	C C	2016/02/22		mg/L	330
	G401		2016/05/19		mg/L	380
	G401	C C	2016/08/01		mg/L	450
	G401	C C	2016/11/17		mg/L	400
	G401	C C	2017/02/10		mg/L	440
UA	G401		2017/05/17		mg/L	470
UA	G401		2017/07/13		mg/L	470
UA	G401		2017/10/27		mg/L	490
UA	G401	C C	2018/05/12		mg/L	450
	G401		2018/08/04		mg/L	690
	G401		2019/01/24		mg/L	560
	G401		2019/08/16		mg/L	550
	G401		2020/01/22		mg/L	210
	G401		2020/08/12		mg/L	520
UA	6401		2020/10/14		mg/L	530
UA	6401		2021/01/29		mg/L	490
UA	G401		2021/05/20	Calcium, total	mg/L	480
UA	G401		2021/08/17		mg/L	550
UA	G401		2021/10/26	Calcium, total	mg/L	440
UA	6401	L	2022/02/09	Laicium, total	mg/L	450
UA	G401	0	2022/05/10	Calcium, total	mg/L	410
UA	G401	0	2022/09/20	Calcium, total	mg/L	490
UA	G401	C	2022/11/08	Calcium, total	mg/L	450
UA	G401	0	2023/02/15	Calcium, total	mg/L	480
UA	G401	С	2023/06/07	Calcium, total	mg/L	490
UA	G401	С	2023/08/11	Calcium, total	mg/L	509
UA	G401	C	2023/11/21	Calcium, total	mg/L	553
UA	G401	С	2015/11/21	Chloride, total	mg/L	3.60
UA	G401	С	2016/02/22	Chloride, total	mg/L	6.00

UA	G401	С	2016/05/19	Chloride, total	mg/L	3.00
UA	G401	С	2016/08/01	Chloride, total	mg/L	5.30
UA	G401	С	2016/11/17	Chloride, total	mg/L	<0.1
UA	G401	С	2017/02/16	Chloride, total	mg/L	2.40
UA	G401	С	2017/05/17	Chloride, total	mg/L	3.40
UA	G401	С	2017/07/13	Chloride, total	mg/L	2.60
UA	G401	с	2017/10/27	Chloride, total	mg/L	3.20
UA	G401	c	2018/05/12	Chloride, total	mg/L	2.20
UA	G401	c	2018/08/04	Chloride, total	mg/L	2.10
UA	G401	C C	2019/01/24	Chloride, total	mg/L	3.10
	G401	c	2019/08/16	Chloride, total	mg/l	2 50
	G401	c	2020/01/22	Chloride total	mg/L	8.60
	G401	c	2020/01/22	Chloride, total	mg/L	2 70
	G401	c	2020/00/12	Chloride, total	mg/L	2.70
	G401	c	2020/10/14	Chloride, total	mg/L	2 30
	G401	c c	2021/01/25	Chlorido, total	mg/L	5.00
	G401	C C	2021/03/20	Chlorido, total	mg/L	14.0
	G401	C C	2021/08/17		mg/L	14.0
	G401	C C	2021/10/28		mg/L	12.0
UA	G401		2022/02/09		mg/L	6.40
UA	G401	C	2022/05/10	Chioride, total	mg/L	6.00
UA	G401	C	2022/09/20	Chioride, total	mg/L	2.90
UA	G401	C	2022/11/08	Chloride, total	mg/L	2.60
UA	G401	C	2023/02/15	Chloride, total	mg/L	4.60
UA	G401	С	2023/06/07	Chloride, total	mg/L	3.60
UA	G401	С	2023/08/11	Chloride, total	mg/L	3.00
UA	G401	С	2023/11/21	Chloride, total	mg/L	3.00
UA	G401	С	2015/11/21	Cobalt, total	mg/L	0.250
UA	G401	С	2016/02/22	Cobalt, total	mg/L	0.240
UA	G401	С	2016/05/19	Cobalt, total	mg/L	0.270
UA	G401	С	2016/08/01	Cobalt, total	mg/L	0.280
UA	G401	С	2016/11/17	Cobalt, total	mg/L	0.270
UA	G401	С	2017/02/16	Cobalt, total	mg/L	0.280
UA	G401	С	2017/05/17	Cobalt, total	mg/L	0.290
UA	G401	С	2017/07/13	Cobalt, total	mg/L	0.360
UA	G401	С	2018/05/12	Cobalt, total	mg/L	0.300
UA	G401	С	2018/08/04	Cobalt, total	mg/L	0.420
UA	G401	С	2019/01/24	Cobalt, total	mg/L	0.310
UA	G401	С	2019/08/16	Cobalt, total	mg/L	0.300
UA	G401	С	2020/01/22	Cobalt, total	mg/L	0.0460
UA	G401	С	2020/08/12	Cobalt, total	mg/L	0.260
UA	G401	С	2020/10/14	Cobalt, total	mg/L	0.280
UA	G401	С	2021/01/29	Cobalt, total	mg/L	0.240
UA	G401	С	2021/05/20	Cobalt, total	mg/L	0.190
UA	G401	с	2021/08/17	Cobalt, total	mg/L	0.170
UA	G401	С	2021/10/26	Cobalt, total	mg/L	0.140
UA	G401	С	2022/02/09	Cobalt, total	mg/L	0.150
UA	G401	с	2022/05/10	Cobalt, total	mg/L	0.110
UA	G401	с	2022/09/20	Cobalt, total	mg/L	0.140
UA	G401	с	2022/11/08	Cobalt, total	mg/L	0.110
UA	G401	c	2023/02/15	Cobalt, total	mg/L	0.120
UA	G401	c	2023/06/07	Cobalt, total	mg/L	0.110
UA	G401	c	2023/08/11	Cobalt, total	mg/L	0.156
UA	G401	- C	2023/11/21	Cobalt, total	mg/l	0.206
	G401	c	2023/06/07	Ferrous Iron, dissolved	mg/l	6.00
	G401	c	2020/08/12	Iron dissolved	mg/l	100
	G401	C C	2020/00/12	Iron dissolved	mg/L	100
	G401	с С	2020/10/14	Iron dissolved		120
	G401		2021/01/29	Iron, dissolved	mg/L	120
	G401		2021/05/20	Iron, dissolved	mg/L	120
	G401		2021/08/17	Iron, dissolved	mg/L	08.0
	G401		2021/10/26		mg/L	98.0
UA	G401		2022/02/09	Iron, alssolvea	iiig/L	/1.0
UA	6401		2022/05/10	Iron, dissolved	mg/L	62.0
UA	G401	L	2022/09/20	Iron, dissolved	mg/L	92.0

UA	G401	С	2022/11/08	Iron, dissolved	mg/L	66.0
UA	G401	С	2023/02/15	Iron, dissolved	mg/L	56.0
UA	G401	С	2023/06/07	Iron, dissolved	mg/L	84.0
UA	G401	С	2023/08/11	Iron, dissolved	mg/L	93.8
UA	G401	С	2023/11/21	Iron, dissolved	mg/L	95.2
UA	G401	С	2017/07/13	Magnesium, total	mg/L	160
UA	G401	с	2020/01/22	Magnesium, total	mg/L	64.0
UA	G401	c	2021/01/29	Magnesium, total	mg/L	140
UA	G401	c	2021/08/17	Magnesium, total	mg/L	160
UA	G401	c	2022/02/09	Magnesium, total	mg/L	140
UA	G401	c	2022/09/20	Magnesium, total	mg/l	160
UA	G401	C C	2023/02/15	Magnesium, total	mg/l	140
	G401	c	2023/06/07	Magnesium total	mg/l	150
	G401	c	2023/08/01	Magnesium total	mg/L	141
	G401	c	2023/00/11	Magnesium total	mg/L	142
	G401	c	2018/03/03	Manganese dissolved	mg/L	38.0
	G401	c	2018/05/03	Manganese dissolved	mg/L	32.0
	G401	c	2018/03/12	Manganese dissolved	mg/L	30.0
	G401	c	2018/08/13	Manganese, dissolved	mg/L	38.0
	G401	c c	2010/11/0/	Manganese, dissolved	mg/L	45.0
	G401	C C	2019/01/24	Manganese, dissolved	mg/L	43.0
	G401	c c	2019/03/02	Manganese, dissolved	mg/L	10.0
	G401	C C	2019/08/13	Manganese, dissolved	mg/L	40.0
	G401	c c	2019/10/22	Manganese, dissolved	mg/L	17.0
	G401	C C	2020/01/22	Manganese, dissolved	mg/L	28.0
	G401	c c	2020/03/00	Manganese, dissolved	mg/L	38.0
	G401	C C	2020/08/12	Manganasa dissolved	mg/L	44.0
	G401	C C	2020/10/14	Manganasa dissolved	mg/L	47.0
	G401	C	2021/01/29	Manganese, dissolved	mg/L	45.0
	G401	C C	2021/05/20	Manganasa dissolved	mg/L	43.0
	G401	C C	2021/08/17	Manganasa dissolved	mg/L	38.0
	G401	C C	2021/10/28	Manganasa dissolved	mg/L	33.0
	G401	C C	2022/02/09	Manganasa dissolved	mg/L	27.0
	G401	C C	2022/05/10	Manganasa dissolved	mg/L	21.0
	G401	C C	2022/09/20	Manganasa dissolved	mg/L	31.0
	G401	C C	2022/11/08	Manganasa dissolved	mg/L	28.0
	G401		2023/02/15	Manganese, dissolved	mg/L	24.0
UA	G401		2023/06/07	Manganese, dissolved	mg/L	27.0
	G401	C C	2023/08/11	Manganasa dissolved	mg/L	36.0
	G401	C C	2023/11/21	Description dissolved	mg/L	24.5
UA	G401		2023/08/11		mg/L	0.0610
UA	G401		2017/07/13	Potassium, total	mg/L	12.0
UA	G401		2020/01/22	Potassium, total	mg/L	2.00
UA	G401	C C	2021/01/29	Potassium, total	mg/L	3.90
	G401		2021/08/17	Polassium, total	mg/L	3.60
	G401		2022/02/09	Polassium, total	mg/L	3.20
	G401		2022/09/20	Polassium, total	mg/L	3.00
UA	6401		2023/02/15	Potassium, total	mg/L	2.50
UA	6401		2023/06/07	Potassium, total	mg/L	2.20
UA	6401		2023/08/11	Potassium, total	mg/L	2.86
UA	6401	L	2023/11/21	Potassium, total	mg/L	2.80
UA	G401		2023/06/07	Silicon, dissolved	mg/L	16.0
UA	G401	0	2023/08/11	Silicon, dissolved	mg/L	15.2
UA	G401	C	2017/07/13	Sodium, total	mg/L	47.0
UA	G401	С	2020/01/22	Sodium, total	mg/L	79.0
UA	G401	С	2021/01/29	Sodium, total	mg/L	69.0
UA	G401	С	2021/08/17	Sodium, total	mg/L	83.0
UA	G401	С	2022/02/09	Sodium, total	mg/L	81.0
UA	G401	С	2022/09/20	Sodium, total	mg/L	77.0
UA	G401	С	2023/02/15	Sodium, total	mg/L	74.0
UA	G401	С	2023/06/07	Sodium, total	mg/L	71.0
UA	G401	С	2023/08/11	Sodium, total	mg/L	71.4
UA	G401	С	2023/11/21	Sodium, total	mg/L	64.0
UA	G401	С	2015/11/21	Sulfate, total	mg/L	2,300

UA	G401	С	2016/02/22	Sulfate, total	mg/L	2,500
UA	G401	С	2016/05/19	Sulfate, total	mg/L	2,200
UA	G401	С	2016/08/01	Sulfate, total	mg/L	2,100
UA	G401	С	2016/11/17	Sulfate, total	mg/L	3,400
UA	G401	С	2017/02/16	Sulfate, total	mg/L	3,900
UA	G401	С	2017/05/17	Sulfate, total	mg/L	2,000
UA	G401	С	2017/07/13	Sulfate, total	mg/L	2.100
UA	G401	C	2017/10/27	Sulfate, total	mg/L	2.000
UA	G401	C C	2018/05/12	Sulfate, total	mg/l	2,200
UA	G401	C	2018/08/04	Sulfate, total	mg/l	2,200
	G401	c	2019/01/24	Sulfate total	mg/L	4 600
	G401	c	2019/01/21	Sulfate total	mg/L	4 300
	G401	c C	2013/00/10		mg/L	870
	G401	c C	2020/01/22		mg/L	2,000
	G401	C C	2020/08/12		mg/L	2,000
	G401	c c	2020/10/14		mg/L	2,400
	G401	C	2021/01/29		mg/L	2,500
UA	G401	C C	2021/05/20		ilig/L	2,400
	G401	C C	2021/08/17		mg/L	1,900
UA	G401	C C	2021/10/26		mg/L	1,800
UA	G401	C C	2022/02/09		mg/L	2,000
UA	G401	C C	2022/05/10	Sulfate, total	mg/L	1,900
UA	G401	C	2022/09/20	Sulfate, total	mg/L	2,100
UA	G401	C	2022/11/08	Sulfate, total	mg/L	2,100
UA	G401	C	2023/02/15	Sulfate, total	mg/L	1,900
UA	G401	С	2023/06/07	Sulfate, total	mg/L	2,100
UA	G401	С	2023/08/11	Sulfate, total	mg/L	1,900
UA	G401	С	2023/11/21	Sulfate, total	mg/L	1,980
UA	G401	С	2015/11/21	Temperature (Celsius)	degrees C	17.0
UA	G401	С	2016/02/22	Temperature (Celsius)	degrees C	13.5
UA	G401	С	2016/05/19	Temperature (Celsius)	degrees C	20.0
UA	G401	С	2016/08/01	Temperature (Celsius)	degrees C	18.9
UA	G401	С	2016/11/17	Temperature (Celsius)	degrees C	13.6
UA	G401	С	2017/02/16	Temperature (Celsius)	degrees C	14.3
UA	G401	С	2017/05/17	Temperature (Celsius)	degrees C	15.2
UA	G401	С	2017/07/13	Temperature (Celsius)	degrees C	17.3
UA	G401	С	2017/10/27	Temperature (Celsius)	degrees C	13.7
UA	G401	С	2018/05/12	Temperature (Celsius)	degrees C	14.7
UA	G401	С	2018/08/04	Temperature (Celsius)	degrees C	17.0
UA	G401	С	2019/01/24	Temperature (Celsius)	degrees C	11.7
UA	G401	С	2019/08/16	Temperature (Celsius)	degrees C	17.1
UA	G401	С	2020/01/22	Temperature (Celsius)	degrees C	12.3
UA	G401	С	2020/05/06	Temperature (Celsius)	degrees C	14.8
UA	G401	С	2020/08/12	Temperature (Celsius)	degrees C	21.0
UA	G401	С	2020/10/14	Temperature (Celsius)	degrees C	18.1
UA	G401	С	2021/01/29	Temperature (Celsius)	degrees C	10.2
UA	G401	С	2021/05/20	Temperature (Celsius)	degrees C	16.6
UA	G401	С	2021/08/17	Temperature (Celsius)	degrees C	21.2
UA	G401	С	2021/10/26	Temperature (Celsius)	degrees C	15.0
UA	G401	С	2021/11/29	Temperature (Celsius)	degrees C	14.0
UA	G401	С	2022/02/09	Temperature (Celsius)	degrees C	13.1
UA	G401	С	2022/05/10	Temperature (Celsius)	degrees C	17.4
UA	G401	С	2022/09/20	Temperature (Celsius)	degrees C	23.4
UA	G401	с	2022/11/08	Temperature (Celsius)	degrees C	18.1
UA	G401	С	2023/02/15	Temperature (Celsius)	degrees C	15.4
UA	G401	с	2023/06/07	Temperature (Celsius)	degrees C	12.3
UA	G401	с	2023/08/11	Temperature (Celsius)	degrees C	17.5
UA	G401	с	2023/11/21	Temperature (Celsius)	degrees C	12.9
UA	G401	c	2015/11/21	Total Dissolved Solids	mg/L	3.000
UA	G401	c	2016/02/22	Total Dissolved Solids	mg/L	3.000
UA	G401	Č	2016/05/19	Total Dissolved Solids	mg/l	2 800
	G401	c	2016/08/01	Total Dissolved Solids	mg/l	2,000
	G401	c	2016/11/17	Total Dissolved Solids	mg/l	3 200
	G401	c	2017/02/16	Total Dissolved Solids	mg/L	3,200
57	0401	~	2011/02/10	I Otal Dissolved Sollas	····6/ ⊑	3,000

UA	G401	С	2017/05/17	Total Dissolved Solids	mg/L	3,000
UA	G401	С	2017/07/13	Total Dissolved Solids	mg/L	2,600
UA	G401	С	2017/10/27	Total Dissolved Solids	mg/L	2,900
UA	G401	С	2018/05/12	Total Dissolved Solids	mg/L	2,700
UA	G401	С	2018/08/04	Total Dissolved Solids	mg/L	2,900
UA	G401	С	2019/01/24	Total Dissolved Solids	mg/L	2,900
UA	G401	С	2019/08/16	Total Dissolved Solids	mg/L	3.400
UA	G401	c	2020/01/22	Total Dissolved Solids	mg/L	1.200
UA	G401	c	2020/08/12	Total Dissolved Solids	mg/l	2,800
	G401	c	2020/00/12	Total Dissolved Solids	mg/L	3 300
	G401	c	2020/10/11	Total Dissolved Solids	mg/L	3 300
	G401	c	2021/01/25	Total Dissolved Solids	mg/L	3,000
	G401	c	2021/03/20	Total Dissolved Solids	mg/L	3,000
	G401	C C	2021/08/17	Total Dissolved Solids	mg/L	3,100
	G401	C C	2021/10/20	Total Dissolved Solids	mg/L	2,800
UA	G401		2022/02/09	Total Dissolved Solids	mg/L	2,800
UA	G401	C	2022/05/10	Total Dissolved Solids	mg/L	2,700
UA	G401	C	2022/09/20	Total Dissolved Solids	mg/L	2,900
UA	G401	C	2022/11/08	Total Dissolved Solids	mg/L	3,200
UA	G401	C	2023/02/15	Total Dissolved Solids	mg/L	2,800
UA	G401	C	2023/06/07	Total Dissolved Solids	mg/L	6,600
UA	G401	С	2023/08/11	Total Dissolved Solids	mg/L	3,040
UA	G401	С	2023/11/21	Total Dissolved Solids	mg/L	2,940
UA	G402	С	2015/11/21	pH (field)	SU	6.8
UA	G402	С	2016/02/22	pH (field)	SU	6.7
UA	G402	С	2016/05/19	pH (field)	SU	6.8
UA	G402	С	2016/08/02	pH (field)	SU	6.6
UA	G402	С	2016/11/17	pH (field)	SU	6.6
UA	G402	С	2017/02/16	pH (field)	SU	6.5
UA	G402	С	2017/05/17	pH (field)	SU	6.4
UA	G402	С	2017/07/13	pH (field)	SU	6.6
UA	G402	С	2017/10/27	pH (field)	SU	6.7
UA	G402	с	2018/05/12	pH (field)	SU	6.6
UA	G402	c	2018/08/04	pH (field)	SU	6.7
UA	G402	c	2019/01/22	pH (field)	SU	6.8
UA	G402	c	2019/08/16	pH (field)	SU	6.8
UA	G402	c	2020/01/22	pH (field)	SU	7.0
UA	G402	C C	2020/08/12	pH (field)	SU	6.8
	G402	c	2020/00/12	nH (field)	SU	6.8
	G402	c	2020/10/11	pH (field)	SU	6.9
	6402	c	2021/01/20	pH (field)	SU	6.0
	G402	c c	2021/04/27	pH (field)	SU SU	6.9
	G402	C C	2021/06/17	pH (field)	50 SU	6.9
UA	6402	C C	2021/10/20		30 SU	0.7
	G402	C C	2022/02/09		50 SU	7.0
	G402		2022/05/10		30	6.7
UA	6402		2022/08/24	рн (пеіа)	50	6.8
UA	6402		2022/11/08	рн (пеld)	50	6.9
UA	G402	L	2023/02/15	рн (field)	SU	6.8
UA	G402	L a	2023/06/06	рн (field)	SU	6.6
UA	G402	С	2023/08/11	pH (field)	SU	7.3
UA	G402	С	2023/11/21	pH (field)	SU	6.7
UA	G402	С	2015/11/21	Oxidation Reduction Potential	mV	89.0
UA	G402	С	2016/05/19	Oxidation Reduction Potential	mV	2.00
UA	G402	С	2016/08/02	Oxidation Reduction Potential	mV	-45.0
UA	G402	С	2016/11/17	Oxidation Reduction Potential	mV	-49.0
UA	G402	С	2017/02/16	Oxidation Reduction Potential	mV	-82.0
UA	G402	С	2017/05/17	Oxidation Reduction Potential	mV	-85.0
UA	G402	С	2017/07/13	Oxidation Reduction Potential	mV	-49.0
UA	G402	С	2017/10/27	Oxidation Reduction Potential	mV	-52.0
UA	G402	С	2018/05/12	Oxidation Reduction Potential	mV	-38.0
UA	G402	С	2018/08/04	Oxidation Reduction Potential	mV	-62.0
UA	G402	С	2019/01/22	Oxidation Reduction Potential	mV	-60.0
UA	G402	С	2019/08/16	Oxidation Reduction Potential	mV	-61.0
UA	G402	С	2020/01/22	Oxidation Reduction Potential	mV	172

UA	G402	С	2020/08/12	Oxidation Reduction Potential	mV	74.4
UA	G402	С	2020/10/14	Oxidation Reduction Potential	mV	201
UA	G402	С	2021/01/28	Oxidation Reduction Potential	mV	391
UA	G402	С	2021/04/27	Oxidation Reduction Potential	mV	127
UA	G402	С	2021/08/17	Oxidation Reduction Potential	mV	178
UA	G402	С	2021/10/26	Oxidation Reduction Potential	mV	22.2
UA	G402	с	2022/02/09	Oxidation Reduction Potential	mV	95.8
UA	G402	С	2022/05/10	Oxidation Reduction Potential	mV	34.4
UA	G402	С	2022/08/24	Oxidation Reduction Potential	mV	138
UA	G402	c	2022/11/08	Oxidation Reduction Potential	mV	214
UA	G402	С	2023/02/15	Oxidation Reduction Potential	mV	265
UA	G402	c	2023/06/06	Oxidation Reduction Potential	mV	182
UA	G402	c	2023/08/11	Oxidation Reduction Potential	mV	23.0
UA	G402	c	2023/11/21	Oxidation Reduction Potential	mV	158
UA	G402	c	2015/11/21	Fh	V	0.28
UA	G402	c	2016/05/19	Eh	V	0.19
UA	G402	c	2016/08/02	Eh	V	0.15
	G402	c	2016/11/17	Fh	V	0.15
	G402	c	2017/02/16	Fh	V	0.13
	G402	c	2017/05/17	Eb	V	0.11
	G402	c	2017/03/17	Fh	V	0.11
	G402	c	2017/07/15	Eh	V	0.14
	G402	c	2017/10/27	Eh	V	0.14
	G402	c	2018/03/12	Eh	V	0.10
	G402	c	2018/08/04	Eh	V	0.13
	G402	c	2019/01/22	Eh	V	0.14
	G402	c	2013/08/10	Eh	V	0.13
	6402	c c	2020/01/22	Eh	V	0.37
	G402	c c	2020/08/12	Eh	V	0.27
	6402	c c	2020/10/14	Eh	V	0.55
	G402	C C	2021/01/28	Eh	V	0.59
	6402	c c	2021/04/27	Eh	V	0.32
	G402	C C	2021/08/17	Eh	V	0.37
	6402	c c	2021/10/20	Eh	V	0.22
	G402	c c	2022/02/09	Eh	V	0.23
	6402	c c	2022/03/10	Eh	V	0.23
	G402	C C	2022/06/24	Eh	V	0.55
	G402	c c	2022/11/08	Eh	V	0.41
	G402	C C	2023/02/13	Eh	V	0.40
	G402	c c	2023/00/00	Eh	V	0.37
	6402	c c	2023/08/11	Eh	V	0.22
	G402	C C	2023/11/21	EII Alkalinity, bicarbanata	v	0.55
	G402	C C	2017/07/13	Alkalinity, bicarbonate	mg/L CaCO3	460
	G402	C C	2020/01/22	Alkalinity, bicarbonate	mg/L CaCO3	500
	G402		2021/01/28	Alkalinity, bicarbonata	mg/L CaCO3	490
	G402		2021/08/1/	Alkalinity, bicarbonate	mg/L CaCO3	300
	G402		2022/02/09	Alkalinity, bicarbonata	mg/L CaCO3	490
	G402		2022/08/24	Alkalinity, bicarbonate	mg/L CaCO3	490
	G402		2023/02/13	Alkalinity, bicarbonate		490
	G402		2023/00/00	Alkalinity, bicarbonate	mg/L CaCO3	500
UA	G402		2023/08/11		mg/L CaCO3	508
	G402		2023/11/21			480 10.0
	G402		2022/08/24	Aikaiiiily, carbonale	mg/L CdCU3	0.01
	G402		2015/11/21	Barium, total	mg/L	0.0820
	G402		2016/02/22	Barium, total	mg/L	0.110
UA	6402		2016/05/19	Barium, total	mg/L	0.0850
UA	6402		2016/08/02	Barlum, total	mg/L	0.0470
UA	6402		2016/11/17	Barium, total	mg/L	0.0540
UA	6402		2017/02/16	Barlum, total	mg/L	0.0280
UA	6402		2017/05/17	Barium, total	mg/L	0.0290
UA	6402		2017/07/13	Barium, total	mg/L	0.0760
UA	G402		2018/05/12	Barium, total	mg/L	0.0410
UA	6402	L	2018/08/04	Barium, total	mg/L	0.0620
UA	G402	C	2019/01/22	Barium, total	mg/L	0.0420
UA	G402	С	2019/08/16	Barium, total	mg/L	0.0360
----	------	--------	------------	----------------	------	--------
UA	G402	С	2020/01/22	Barium, total	mg/L	0.0250
UA	G402	С	2020/08/12	Barium, total	mg/L	0.0240
UA	G402	С	2020/10/14	Barium, total	mg/L	0.0300
UA	G402	С	2021/01/28	Barium, total	mg/L	0.0200
UA	G402	С	2021/04/27	Barium, total	mg/L	0.0190
UA	G402	с	2021/08/17	Barium, total	mg/L	0.0240
UA	G402	c	2021/10/26	Barium. total	mg/L	0.0190
UA	G402	c	2022/02/09	Barium, total	mg/L	0.0270
UA	G402	c	2022/05/10	Barium, total	mg/l	0.0310
UA	G402	c	2022/08/24	Barium, total	mg/l	0.0310
UA	G402	C C	2022/11/08	Barium, total	mg/l	0.0200
	G402	c	2023/02/15	Barium total	mg/l	0.0240
	G402	c	2023/06/06	Barium total	mg/L	0.0210
	G402	c	2023/08/00	Barium total	mg/L	0.0290
	G402	c	2023/00/11	Barium total	mg/L	0.0290
	G402	c	2025/11/21	Boron total	mg/L	6.60
	G402	c c	2013/11/21	Boron, total	mg/L	5 70
	G402	C C	2010/02/22	Boron total	mg/L	6.20
	G402	C C	2010/03/19	Boron, total	mg/L	7.40
	G402	C C	2016/08/02	Boron total	mg/L	6.00
	G402	C C	2010/11/17	Boron, total	mg/L	0.90
	G402	C C	2017/02/16	Boron, total	mg/L	4.60
UA	G402		2017/05/17		mg/L	5.80
UA	G402		2017/07/13	Boron, total	mg/L	6.80
UA	G402		2017/10/27	Boron, total	mg/L	7.30
UA	G402	C	2018/05/12	Boron, total	mg/L	5.90
UA	G402	C	2018/08/04	Boron, total	mg/L	5.70
UA	G402	C	2019/01/22	Boron, total	mg/L	5.40
UA	G402	C	2019/08/16	Boron, total	mg/L	5.90
UA	G402	C	2020/01/22	Boron, total	mg/L	5.00
UA	G402	C	2020/08/12	Boron, total	mg/L	6.00
UA	G402	C	2020/10/14	Boron, total	mg/L	5.40
UA	G402	С	2021/01/28	Boron, total	mg/L	4.90
UA	G402	С	2021/04/27	Boron, total	mg/L	5.40
UA	G402	С	2021/08/17	Boron, total	mg/L	6.10
UA	G402	C	2021/10/26	Boron, total	mg/L	5.10
UA	G402	С	2022/02/09	Boron, total	mg/L	5.20
UA	G402	С	2022/05/10	Boron, total	mg/L	5.30
UA	G402	С	2022/08/24	Boron, total	mg/L	5.70
UA	G402	С	2022/11/08	Boron, total	mg/L	5.20
UA	G402	С	2023/02/15	Boron, total	mg/L	5.10
UA	G402	С	2023/06/06	Boron, total	mg/L	4.90
UA	G402	С	2023/08/11	Boron, total	mg/L	5.71
UA	G402	С	2023/11/21	Boron, total	mg/L	8.13
UA	G402	С	2015/11/21	Calcium, total	mg/L	270
UA	G402	С	2016/02/22	Calcium, total	mg/L	220
UA	G402	С	2016/05/19	Calcium, total	mg/L	270
UA	G402	С	2016/08/02	Calcium, total	mg/L	240
UA	G402	С	2016/11/17	Calcium, total	mg/L	240
UA	G402	С	2017/02/16	Calcium, total	mg/L	240
UA	G402	С	2017/05/17	Calcium, total	mg/L	240
UA	G402	С	2017/07/13	Calcium, total	mg/L	250
UA	G402	С	2017/10/27	Calcium, total	mg/L	260
UA	G402	С	2018/05/12	Calcium, total	mg/L	240
UA	G402	С	2018/08/04	Calcium, total	mg/L	270
UA	G402	С	2019/01/22	Calcium, total	mg/L	260
UA	G402	С	2019/08/16	Calcium, total	mg/L	270
UA	G402	С	2020/01/22	Calcium, total	mg/L	250
UA	G402	С	2020/08/12	Calcium, total	mg/L	250
UA	G402	С	2020/10/14	Calcium, total	mg/L	250
UA	G402	С	2021/01/28	Calcium, total	mg/L	230
UA	G402	С	2021/04/27	Calcium, total	mg/L	230
UA	G402	С	2021/08/17	Calcium, total	mg/L	240

UA	G402	С	2021/10/26	Calcium, total	mg/L	200
UA	G402	С	2022/02/09	Calcium, total	mg/L	230
UA	G402	С	2022/05/10	Calcium, total	mg/L	230
UA	G402	С	2022/08/24	Calcium, total	mg/L	230
UA	G402	С	2022/11/08	Calcium, total	mg/L	180
UA	G402	С	2023/02/15	Calcium, total	mg/L	210
UA	G402	с	2023/06/06	Calcium, total	mg/L	210
UA	G402	C	2023/08/11	Calcium, total	mg/L	212
UA	G402	c	2023/11/21	Calcium, total	mg/L	213
UA	G402	C	2015/11/21	Chloride, total	mg/l	2.80
	G402	c	2016/02/22	Chloride total	mg/l	2.80
	G402	c	2016/05/19	Chloride total	mg/L	1 50
	G402	c	2016/08/02	Chloride total	mg/L	2 20
	G402	c C	2016/00/02	Chloride, total	mg/L	2.20
	G402	c	2010/11/17	Chloride, total	mg/L	2.00
	G402	C	2017/02/10	Chlorido, total	mg/L	2.50
	G402	C C	2017/03/17		mg/L	2.50
	G402	C C	2017/07/15		mg/L	2.50
	G402	C C	2017/10/27		mg/L	3.50
UA	G402	C C	2018/05/12	Chloride, total	mg/L	2.20
UA	G402	C	2018/08/04	Chloride, total	mg/L	2.30
UA	G402	C	2019/01/22	Chloride, total	mg/L	1.90
UA	G402	C	2019/08/16	Chloride, total	mg/L	2.20
UA	G402	С	2020/01/22	Chloride, total	mg/L	<0.36
UA	G402	С	2020/08/12	Chloride, total	mg/L	1.10
UA	G402	С	2020/10/14	Chloride, total	mg/L	1.90
UA	G402	С	2021/01/28	Chloride, total	mg/L	<0.96
UA	G402	С	2021/04/27	Chloride, total	mg/L	<1
UA	G402	С	2021/08/17	Chloride, total	mg/L	2.40
UA	G402	С	2021/10/26	Chloride, total	mg/L	<5
UA	G402	С	2022/02/09	Chloride, total	mg/L	2.50
UA	G402	С	2022/05/10	Chloride, total	mg/L	1.90
UA	G402	С	2022/08/24	Chloride, total	mg/L	3.00
UA	G402	С	2022/11/08	Chloride, total	mg/L	1.60
UA	G402	С	2023/02/15	Chloride, total	mg/L	2.10
UA	G402	С	2023/06/06	Chloride, total	mg/L	3.40
UA	G402	С	2023/08/11	Chloride, total	mg/L	3.00
UA	G402	С	2023/11/21	Chloride, total	mg/L	2.00
UA	G402	С	2015/11/21	Cobalt, total	mg/L	0.0140
UA	G402	С	2016/02/22	Cobalt, total	mg/L	0.0150
UA	G402	С	2016/05/19	Cobalt, total	mg/L	0.0190
UA	G402	С	2016/08/02	Cobalt, total	mg/L	0.00740
UA	G402	С	2016/11/17	Cobalt, total	mg/L	0.00700
UA	G402	С	2017/02/16	Cobalt, total	mg/L	0.00470
UA	G402	С	2017/05/17	Cobalt, total	mg/L	0.00690
UA	G402	с	2017/07/13	Cobalt, total	mg/L	0.0170
UA	G402	с	2018/05/12	Cobalt, total	mg/L	0.00770
UA	G402	с	2018/08/04	Cobalt, total	mg/L	0.0100
UA	G402	с	2019/01/22	Cobalt, total	mg/L	0.00760
UA	G402	с	2019/08/16	Cobalt, total	mg/L	0.00450
UA	G402	c	2020/01/22	Cobalt, total	mg/L	0.00210
UA	G402	c	2020/08/12	Cobalt, total	mg/L	<0,00022
UA	G402	c	2020/10/14	Cobalt, total	mg/L	0.00300
UA	G402	- C	2021/01/28	Cobalt_total	mg/l	<0.00022
UA	G402	c	2021/04/27	Cobalt_total	mg/l	<0.0022
	G402	c	2021/08/17	Cobalt total	mg/l	<0.002
	G402	c	2021/10/26	Cobalt total	mg/l	<0.00022
	G402	с С	2022/02/02			0.002
	G402	C C	2022/02/09		mg/l	0.00440
	G402	C C	2022/03/10		mg/L	0.00370
	G402	с С	2022/00/24	Cobalt total	mg/L	0.00000
	G402		2022/11/00		mg/L	0.000950
	G402		2023/02/13		mg/L	0.00200
	G402		2023/00/00		mg/L	0.00350
UA	G402	L	2023/08/11	Cobalt, total	mg/L	0.00240

UA	G402	С	2023/11/21	Cobalt, total	mg/L	0.00150
UA	G402	С	2023/06/06	Ferrous Iron, dissolved	mg/L	0.260
UA	G402	С	2020/08/12	Iron, dissolved	mg/L	< 0.01
UA	G402	С	2020/10/14	Iron, dissolved	mg/L	0.0110
UA	G402	С	2021/01/28	Iron, dissolved	mg/L	< 0.01
UA	G402	С	2021/04/27	Iron, dissolved	mg/L	< 0.01
UA	G402	с	2021/08/17	Iron, dissolved	mg/L	< 0.01
UA	G402	c	2021/10/26	Iron. dissolved	mg/L	0.0120
UA	G402	c	2022/02/09	Iron, dissolved	mg/L	<0.01
UA	G402	c	2022/05/10	Iron, dissolved	mg/L	0.00790
UA	G402	c	2022/08/24	Iron, dissolved	mg/l	0.00580
UA	G402	C C	2022/11/08	Iron, dissolved	mg/l	0.00860
	G402	c	2023/02/15	Iron dissolved	mg/l	0.00110
	G402	c	2023/06/06	Iron dissolved	mg/L	0.00330
	G402	c	2023/08/00	Iron dissolved	mg/L	<0.0115
	G402	c	2023/00/11	Iron dissolved	mg/L	0.0170
	G402	c	2023/11/21	Magnesium total	mg/L	170
	G402	c c	2017/07/13	Magnesium, total	mg/L	170
	G402	C C	2020/01/22	Magnesium, total	mg/L	170
	G402	C C	2021/01/28	Magnesium, total	mg/L	150
	G402	C C	2021/08/17	Magnesium, total	mg/L	130
	G402	C C	2022/02/09	Magnesium, total	mg/L	140
	G402	C C	2022/08/24	Magnesium, total	mg/L	140
UA	G402		2023/02/15		mg/L	120
UA	G402	C	2023/06/06	Magnesium, total	mg/L	130
UA	G402	C	2023/08/11	Magnesium, total	mg/L	128
UA	G402	C	2023/11/21	Magnesium, total	mg/L	130
UA	G402	C	2018/03/03	Manganese, dissolved	mg/L	1.90
UA	G402	C	2018/05/12	Manganese, dissolved	mg/L	0.180
UA	G402	С	2018/08/13	Manganese, dissolved	mg/L	0.760
UA	G402	С	2018/11/07	Manganese, dissolved	mg/L	0.620
UA	G402	С	2019/01/24	Manganese, dissolved	mg/L	0.580
UA	G402	С	2019/05/02	Manganese, dissolved	mg/L	0.870
UA	G402	С	2019/08/16	Manganese, dissolved	mg/L	0.790
UA	G402	С	2019/10/22	Manganese, dissolved	mg/L	0.890
UA	G402	С	2020/01/22	Manganese, dissolved	mg/L	1.00
UA	G402	С	2020/05/06	Manganese, dissolved	mg/L	1.00
UA	G402	С	2020/08/12	Manganese, dissolved	mg/L	0.860
UA	G402	С	2020/10/14	Manganese, dissolved	mg/L	0.870
UA	G402	С	2021/01/28	Manganese, dissolved	mg/L	0.610
UA	G402	С	2021/04/27	Manganese, dissolved	mg/L	0.710
UA	G402	С	2021/08/17	Manganese, dissolved	mg/L	0.980
UA	G402	С	2021/10/26	Manganese, dissolved	mg/L	0.910
UA	G402	С	2022/02/09	Manganese, dissolved	mg/L	0.510
UA	G402	С	2022/05/10	Manganese, dissolved	mg/L	0.700
UA	G402	С	2022/08/24	Manganese, dissolved	mg/L	0.890
UA	G402	С	2022/11/08	Manganese, dissolved	mg/L	0.800
UA	G402	С	2023/02/15	Manganese, dissolved	mg/L	0.400
UA	G402	С	2023/06/06	Manganese, dissolved	mg/L	0.860
UA	G402	С	2023/08/11	Manganese, dissolved	mg/L	0.867
UA	G402	С	2023/11/21	Manganese, dissolved	mg/L	0.718
UA	G402	С	2023/08/11	Phosphate, dissolved	mg/L	0.141
UA	G402	С	2017/07/13	Potassium, total	mg/L	3.00
UA	G402	С	2020/01/22	Potassium, total	mg/L	1.10
UA	G402	С	2021/01/28	Potassium, total	mg/L	1.00
UA	G402	С	2021/08/17	Potassium, total	mg/L	1.10
UA	G402	С	2022/02/09	Potassium, total	mg/L	1.20
UA	G402	С	2022/08/24	Potassium, total	mg/L	1.70
UA	G402	С	2023/02/15	Potassium, total	mg/L	0.790
UA	G402	С	2023/06/06	Potassium, total	mg/L	1.00
UA	G402	с	2023/08/11	Potassium, total	mg/L	1.27
UA	G402	с	2023/11/21	Potassium, total	mg/L	0.996
UA	G402	с	2023/06/06	Silicon, dissolved	mg/L	14.0
UA	G402	с	2023/08/11	Silicon, dissolved	mg/L	13.9
1	-		-, -,	· · · · · · · ·	5	

UA	G402	С	2017/07/13	Sodium, total	mg/L	55.0
UA	G402	С	2020/01/22	Sodium, total	mg/L	66.0
UA	G402	С	2021/01/28	Sodium, total	mg/L	54.0
UA	G402	С	2021/08/17	Sodium, total	mg/L	54.0
UA	G402	С	2022/02/09	Sodium, total	mg/L	53.0
UA	G402	С	2022/08/24	Sodium, total	mg/L	50.0
UA	G402	С	2023/02/15	Sodium. total	mg/L	45.0
UA	G402	c	2023/06/06	Sodium, total	mg/L	44.0
UA	G402	c	2023/08/11	Sodium, total	mg/l	45.9
UA	G402	C	2023/11/21	Sodium, total	mg/L	43.6
	G402	c	2015/11/21	Sulfate total	mg/L	1 200
	G402	c	2016/02/22	Sulfate total	mg/L	1,200
	G402	c C	2016/02/22		mg/L	960
	6402	c C	2016/09/13		mg/L	800
	G402	C C	2010/08/02		mg/L	1 100
	6402	c c	2010/11/17		mg/L	1,100
	G402	C	2017/02/10		mg/L	1,100
UA	6402	C C	2017/03/17		ilig/L	900
UA	G402	C C	2017/07/13		mg/L	1,000
UA	G402	C C	2017/10/27	Sulfate, total	mg/L	1,000
UA	G402	C	2018/05/12	Sulfate, total	mg/L	1,000
UA	G402	C	2018/08/04	Sulfate, total	mg/L	940
UA	G402	C	2019/01/22	Sulfate, total	mg/L	940
UA	G402	С	2019/08/16	Sulfate, total	mg/L	990
UA	G402	С	2020/01/22	Sulfate, total	mg/L	890
UA	G402	С	2020/08/12	Sulfate, total	mg/L	400
UA	G402	С	2020/10/14	Sulfate, total	mg/L	790
UA	G402	С	2021/01/28	Sulfate, total	mg/L	770
UA	G402	С	2021/04/27	Sulfate, total	mg/L	78.0
UA	G402	С	2021/08/17	Sulfate, total	mg/L	700
UA	G402	С	2021/10/26	Sulfate, total	mg/L	640
UA	G402	С	2022/02/09	Sulfate, total	mg/L	690
UA	G402	С	2022/05/10	Sulfate, total	mg/L	600
UA	G402	С	2022/08/24	Sulfate, total	mg/L	600
UA	G402	С	2022/11/08	Sulfate, total	mg/L	550
UA	G402	С	2023/02/15	Sulfate, total	mg/L	550
UA	G402	С	2023/06/06	Sulfate, total	mg/L	580
UA	G402	С	2023/08/11	Sulfate, total	mg/L	601
UA	G402	С	2023/11/21	Sulfate, total	mg/L	599
UA	G402	С	2015/11/21	Temperature (Celsius)	degrees C	17.5
UA	G402	С	2016/02/22	Temperature (Celsius)	degrees C	12.3
UA	G402	С	2016/05/19	Temperature (Celsius)	degrees C	18.9
UA	G402	C	2016/08/02	Temperature (Celsius)	degrees C	19.0
UA	G402	C C	2016/11/17	Temperature (Celsius)	degrees C	14.3
UA	G402	C C	2017/02/16	Temperature (Celsius)	degrees C	14.9
UA	G402	c	2017/05/17	Temperature (Celsius)	degrees C	15.4
UA	G402	c	2017/07/13	Temperature (Celsius)	degrees C	17.3
UA	G402	c	2017/10/27	Temperature (Celsius)	degrees (	13.0
UA	G402	c	2018/05/12	Temperature (Celsius)	degrees C	13.6
UA	G402	- C	2018/08/04	Temperature (Celsius)	degrees C	15.0
UA	G402	c	2019/01/22	Temperature (Celsius)	degrees C	11.2
	G402	c	2019/08/16	Temperature (Celsius)	degrees C	17.2
	G402	c	2020/01/22	Temperature (Celsius)	degrees C	11.2
	G402	c	2020/08/12	Temperature (Celsius)	degrees C	21.6
	G402	C C	2020/00/12	Temperature (Celsius)	degrees C	17.6
	G402		2020/10/14	Temperature (Colsius)	degrees C	10.2
	G402	с С	2021/01/20	Tomporature (Celsius)	dogroos C	10.2
	G402		2021/04/27		degrees C	10.5
	G402		2021/08/17	Temperature (Celsius)	degrees C	19.5
	6402		2021/10/26		degrees C	18.2
UA	6402		2022/02/09	Temperature (Celsius)	aegrees C	12.1
UA	6402		2022/05/10	Temperature (Celsius)	uegrees C	15.5
UA	6402	L C	2022/08/24	remperature (Celsius)	aegrees C	19.8
UA	G402		2022/11/08	remperature (Celsius)	aegrees C	16.7
UA	G402	C	2023/02/15	Temperature (Celsius)	degrees C	12.5

UA	G402	С	2023/06/06	Temperature (Celsius)	degrees C	23.2
UA	G402	С	2023/08/11	Temperature (Celsius)	degrees C	18.1
UA	G402	С	2023/11/21	Temperature (Celsius)	degrees C	15.0
UA	G402	С	2015/11/21	Total Dissolved Solids	mg/L	1,700
UA	G402	с	2016/02/22	Total Dissolved Solids	mg/L	1,700
UA	G402	С	2016/05/19	Total Dissolved Solids	mg/L	1,500
UA	G402	С	2016/08/02	Total Dissolved Solids	mg/L	1.500
UA	G402	C	2016/11/17	Total Dissolved Solids	mg/l	1,700
UA	G402	c	2017/02/16	Total Dissolved Solids	mg/l	1 700
	G402	c	2017/05/17	Total Dissolved Solids	mg/L	1 700
	G402	c	2017/03/17	Total Dissolved Solids	mg/L	1,600
	G402	c C	2017/07/13	Total Dissolved Solids	mg/L	1,000
	G402	c C	2017/10/27	Total Dissolved Solids	mg/L	1,700
	G402	c c	2010/03/12	Total Dissolved Solids	mg/L	1,700
	G402	C	2010/00/04	Total Dissolved Solids	mg/L	1,700
	G402	C C	2019/01/22	Total Dissolved Solids	mg/L	1,600
	G402	C C	2019/08/16	Total Dissolved Solids	mg/L	1,600
UA	G402	C C	2020/01/22	Total Dissolved Solids	mg/L	1,600
UA	G402	C	2020/08/12	Total Dissolved Solids	mg/L	1,600
UA	G402	C	2020/10/14	Total Dissolved Solids	mg/L	1,600
UA	G402	C	2021/01/28	Total Dissolved Solids	mg/L	1,600
UA	G402	C	2021/04/27	Total Dissolved Solids	mg/L	1,600
UA	G402	C	2021/08/17	Total Dissolved Solids	mg/L	1,600
UA	G402	С	2021/10/26	Total Dissolved Solids	mg/L	1,300
UA	G402	С	2022/02/09	Total Dissolved Solids	mg/L	1,300
UA	G402	С	2022/05/10	Total Dissolved Solids	mg/L	1,500
UA	G402	С	2022/08/24	Total Dissolved Solids	mg/L	1,400
UA	G402	С	2022/11/08	Total Dissolved Solids	mg/L	1,300
UA	G402	С	2023/02/15	Total Dissolved Solids	mg/L	1,400
UA	G402	С	2023/06/06	Total Dissolved Solids	mg/L	1,400
UA	G402	С	2023/08/11	Total Dissolved Solids	mg/L	1,340
UA	G402	С	2023/11/21	Total Dissolved Solids	mg/L	1,360
UA	G403	С	2015/11/23	pH (field)	SU	7.2
UA	G403	С	2016/02/22	pH (field)	SU	7.0
UA	G403	С	2016/05/18	pH (field)	SU	6.9
UA	G403	С	2016/08/01	pH (field)	SU	6.9
UA	G403	С	2016/11/17	pH (field)	SU	6.7
UA	G403	С	2017/02/18	pH (field)	SU	7.0
UA	G403	С	2017/05/17	pH (field)	SU	6.9
UA	G403	С	2017/07/13	pH (field)	SU	6.8
UA	G403	С	2017/10/28	pH (field)	SU	7.2
UA	G403	с	2018/05/12	pH (field)	SU	6.9
UA	G403	с	2018/08/04	pH (field)	SU	7.0
UA	G403	С	2019/01/24	pH (field)	SU	6.9
UA	G403	с	2019/08/19	pH (field)	SU	7.0
UA	G403	с	2020/01/22	pH (field)	SU	7.3
UA	G403	с	2020/08/12	pH (field)	SU	7.0
UA	G403	c	2020/10/13	pH (field)	SU	6.7
UA	G403	c	2021/01/21	pH (field)	SU	6.9
UA	G403	- C	2021/04/26	pH (field)	SU	7.0
UA	G403	c	2021/08/17	pH (field)	SU	6.9
	G403	- C	2021/10/26	nH (field)	SU SU	6.7
UA	G403	c	2022/02/08	pH (field)	SU	7.0
	G403	c	2022/05/10	nH (field)	SU SU	6.6
	G403	c	2022/08/24	nH (field)	SU SU	6.7
	G403	с С	2022/00/24	pH (field)	su	65
	G403	C C	2022/11/09	pH (field)	SU SU	0.5
	G403		2023/02/13		50	7.0
	G403	с С	2023/00/07		50	7.0
	G403	с с	2023/06/11		50	7.1
	G403		2023/11/20	рп (neid) Ovidation Roduction Datastic!	3U m\/	9.0
	G403		2015/11/23	Oxidation Reduction Potential	111V	-23.0
UA	G403		2010/02/22	Oxidation Reduction Potential		62.0
UA	6403		2016/05/18	Oxidation Reduction Potential	mv	-118
UA	6403	L	2016/08/01	Oxidation Reduction Potential	mv	-99.0

UA	G403	С	2016/11/17	Oxidation Reduction Potential	mV	-80.0
UA	G403	С	2017/02/18	Oxidation Reduction Potential	mV	-119
UA	G403	С	2017/05/17	Oxidation Reduction Potential	mV	-125
UA	G403	С	2017/07/13	Oxidation Reduction Potential	mV	-105
UA	G403	С	2017/10/28	Oxidation Reduction Potential	mV	-89.0
UA	G403	С	2018/05/12	Oxidation Reduction Potential	mV	-81.0
UA	G403	с	2018/08/04	Oxidation Reduction Potential	mV	-96.0
UA	G403	c	2019/01/24	Oxidation Reduction Potential	mV	-95.0
UA	G403	c	2019/08/19	Oxidation Reduction Potential	mV	-91.0
UA	G403	c	2020/01/22	Oxidation Reduction Potential	mV	192
UA	G403	c	2020/08/12	Oxidation Reduction Potential	mV	145
UA	G403	C C	2020/10/13	Oxidation Reduction Potential	mV	85.6
	G403	c	2021/01/21	Oxidation Reduction Potential	mV	128
	G403	c	2021/01/21	Ovidation Reduction Potential	mV	81.7
	G403	c	2021/08/17	Oxidation Reduction Potential	mV	-17.1
	G403	c	2021/00/17	Ovidation Reduction Potential	mV	17.1
	G403	c	2022/02/08	Ovidation Reduction Potential	mV	19.5
	G403	c	2022/02/00	Ovidation Reduction Potential	m\/	101
	G403	c	2022/03/10	Ovidation Reduction Potential	m\/	110
	G403	с С	2022/00/24	Ovidation Reduction Potential	mV	20.0
	G403	C C	2022/11/09	Ovidation Reduction Potential	mV	102
	G403	c c	2023/02/13	Oxidation Reduction Potential	m\/	102
	G403	C C	2023/00/07	Ovidation Reduction Potential	mV	40.7
	G403	c c	2023/08/11	Oxidation Reduction Potential	m\/	-8.00
	G403	C C	2025/11/20			0.17
	G403	C C	2015/11/25		V	0.17
	G403	C C	2016/02/22		V	0.26
	G403	C C	2010/05/18		V	0.076
	G403	C	2016/08/01	Eh	V	0.094
	G403	C C	2010/11/17		V	0.12
	G403	C C	2017/02/18		V	0.077
	G403	C C	2017/05/17		V	0.070
	G403	C C	2017/07/13		V	0.089
	G403	C C	2017/10/28		V	0.11
	G403	C C	2018/05/12		V	0.11
	G403	C C	2018/08/04		V	0.099
	G403		2019/01/24		V	0.10
UA	G403		2019/08/19		V	0.10
UA	G403		2020/01/22		V	0.39
UA	G403		2020/08/12		V	0.34
UA	G403		2020/10/13		V	0.28
UA	G403		2021/01/21	En	V	0.33
UA	G403	C	2021/04/26	En	V	0.28
UA	G403	C	2021/08/17	En	V	0.17
	6403		2021/10/26		v	0.21
	G403		2022/02/08		V	0.22
UA	6403		2022/05/10		v	0.29
UA	6403		2022/08/24		v	0.20
UA	6403		2022/11/09		v	0.21
UA	G403	C	2023/02/15	En	V	0.30
UA	6403		2023/06/07	EN	v	0.24
UA	6403		2023/08/11	EN	v	0.18
UA	G403	0	2023/11/20	En	V	0.31
UA	G403	C	2017/07/13	Alkalinity, bicarbonate	mg/L CaCO3	300
UA	G403	С	2020/01/22	Alkalinity, bicarbonate	mg/L CaCO3	320
UA	G403	С	2021/01/21	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G403	С	2021/08/17	Alkalinity, bicarbonate	mg/L CaCO3	320
UA	G403	С	2022/02/08	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G403	С	2022/08/24	Alkalinity, bicarbonate	mg/L CaCO3	300
UA	G403	С	2023/02/15	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G403	С	2023/06/07	Alkalinity, bicarbonate	mg/L CaCO3	340
UA	G403	С	2023/08/11	Alkalinity, bicarbonate	mg/L CaCO3	315
UA	G403	С	2023/11/20	Alkalinity, bicarbonate	mg/L CaCO3	323
UA	G403	С	2022/08/24	Alkalinity, carbonate	mg/L CaCO3	10.0

UA	G403	С	2015/11/23	Barium, total	mg/L	0.140
UA	G403	С	2016/02/22	Barium, total	mg/L	0.130
UA	G403	С	2016/05/18	Barium, total	mg/L	0.160
UA	G403	С	2016/08/01	Barium, total	mg/L	0.240
UA	G403	С	2016/11/17	Barium, total	mg/L	0.200
UA	G403	С	2017/02/18	Barium, total	mg/L	0.150
UA	G403	с	2017/05/17	Barium, total	mg/L	0.140
UA	G403	c	2017/07/13	Barium, total	mg/L	0.170
UA	G403	c	2018/05/12	Barium, total	mg/L	0.150
UA	G403	c	2018/08/04	Barium, total	mg/L	0.150
UA	G403	c	2019/01/24	Barium total	mg/l	0 140
	G403	c	2019/08/19	Barium total	mg/L	0 140
	G403	c	2020/01/22	Barium total	mg/L	0.130
	G403	c	2020/01/22	Barium total	mg/L	0.130
	G403	c	2020/00/12	Barium total	mg/L	0.120
	G403	c	2020/10/13	Barium total	mg/L	0.110
	G403	C C	2021/01/21	Barium total	mg/L	0.110
	G403	C C	2021/04/20	Darium total	mg/L	0.110
	G403	C C	2021/06/17	Barium total	mg/L	0.120
UA	6403	C C	2021/10/20	Ballulli, total	ilig/L	0.110
	G403	C C	2022/02/08	Barium total	mg/L	0.130
UA	G403		2022/05/10	Barium, total	mg/L	0.120
UA	G403		2022/08/24	Barlum, total	mg/L	0.110
UA	G403	C	2022/11/09	Barium, total	mg/L	0.0950
UA	G403	C	2023/02/15	Barium, total	mg/L	0.120
UA	G403	C	2023/06/07	Barium, total	mg/L	0.120
UA	G403	C	2023/08/11	Barium, total	mg/L	0.118
UA	G403	С	2023/11/20	Barium, total	mg/L	0.139
UA	G403	С	2015/11/23	Boron, total	mg/L	0.0390
UA	G403	С	2016/02/22	Boron, total	mg/L	0.0640
UA	G403	С	2016/05/18	Boron, total	mg/L	0.0140
UA	G403	С	2016/08/01	Boron, total	mg/L	0.0270
UA	G403	С	2016/11/17	Boron, total	mg/L	0.0420
UA	G403	С	2017/02/18	Boron, total	mg/L	<0.0023
UA	G403	С	2017/05/17	Boron, total	mg/L	0.0170
UA	G403	С	2017/07/13	Boron, total	mg/L	0.0270
UA	G403	С	2017/10/28	Boron, total	mg/L	0.0600
UA	G403	С	2018/05/12	Boron, total	mg/L	0.0100
UA	G403	С	2018/08/04	Boron, total	mg/L	0.0370
UA	G403	С	2019/01/24	Boron, total	mg/L	0.0710
UA	G403	С	2019/08/19	Boron, total	mg/L	0.0220
UA	G403	С	2020/01/22	Boron, total	mg/L	0.0790
UA	G403	С	2020/08/12	Boron, total	mg/L	0.0330
UA	G403	С	2020/10/13	Boron, total	mg/L	<0.01
UA	G403	С	2021/01/21	Boron, total	mg/L	<0.008
UA	G403	С	2021/04/26	Boron, total	mg/L	<0.01
UA	G403	С	2021/08/17	Boron, total	mg/L	0.110
UA	G403	С	2021/10/26	Boron, total	mg/L	0.0880
UA	G403	С	2022/02/08	Boron, total	mg/L	<0.0046
UA	G403	С	2022/05/10	Boron, total	mg/L	0.0500
UA	G403	С	2022/08/24	Boron, total	mg/L	0.100
UA	G403	С	2022/11/09	Boron, total	mg/L	0.0140
UA	G403	С	2023/02/15	Boron, total	mg/L	0.0630
UA	G403	С	2023/06/07	Boron, total	mg/L	0.0350
UA	G403	С	2023/08/11	Boron, total	mg/L	0.0287
UA	G403	С	2023/11/20	Boron, total	mg/L	0.0200
UA	G403	С	2015/11/23	Calcium, total	mg/L	78.0
UA	G403	С	2016/02/22	Calcium, total	mg/L	69.0
UA	G403	С	2016/05/18	Calcium, total	mg/L	71.0
UA	G403	С	2016/08/01	Calcium, total	mg/L	140
UA	G403	с	2016/11/17	Calcium, total	mg/L	72.0
UA	G403	с	2017/02/18	Calcium. total	mg/L	63.0
UA	G403	с	2017/05/17	Calcium, total	mg/L	63.0
UA	G403	с	2017/07/13	Calcium, total	mg/L	67.0
		I		· , · · · ·		

UA	G403	С	2017/10/28	Calcium, total	mg/L	67.0
UA	G403	С	2018/05/12	Calcium, total	mg/L	70.0
UA	G403	С	2018/08/04	Calcium, total	mg/L	71.0
UA	G403	С	2019/01/24	Calcium, total	mg/L	71.0
UA	G403	С	2019/08/19	Calcium, total	mg/L	77.0
UA	G403	С	2020/01/22	Calcium, total	mg/L	74.0
UA	G403	с	2020/08/12	Calcium, total	mg/L	76.0
UA	G403	C	2020/10/13	Calcium, total	mg/L	70.0
UA	G403	C C	2021/01/21	Calcium, total	mg/l	77.0
	G403	c	2021/04/26	Calcium total	mg/L	79.0
	G403	c	2021/01/20	Calcium total	mg/L	84.0
	G403	C	2021/08/17	Calcium total	mg/L	70.0
	G403	C C	2021/10/20		mg/L	76.0
	G403	C C	2022/02/08		mg/L	70.0
	G403	C C	2022/05/10		mg/L	82.0
UA	G403	C C	2022/08/24		mg/L	80.0
UA	G403	C	2022/11/09	Calcium, total	mg/L	70.0
UA	G403	С	2023/02/15	Calcium, total	mg/L	79.0
UA	G403	C	2023/06/07	Calcium, total	mg/L	78.0
UA	G403	С	2023/08/11	Calcium, total	mg/L	77.7
UA	G403	С	2023/11/20	Calcium, total	mg/L	85.9
UA	G403	С	2015/11/23	Chloride, total	mg/L	6.80
UA	G403	С	2016/02/22	Chloride, total	mg/L	4.10
UA	G403	С	2016/05/18	Chloride, total	mg/L	2.70
UA	G403	С	2016/08/01	Chloride, total	mg/L	4.50
UA	G403	С	2016/11/17	Chloride, total	mg/L	4.00
UA	G403	С	2017/02/18	Chloride, total	mg/L	3.40
UA	G403	С	2017/05/17	Chloride, total	mg/L	3.30
UA	G403	С	2017/07/13	Chloride, total	mg/L	5.80
UA	G403	С	2017/10/28	Chloride. total	mg/L	4.10
UA	G403	С	2018/05/12	Chloride, total	mg/L	3.70
UA	G403	C	2018/08/04	Chloride, total	mg/l	3.90
UA	G403	c	2019/01/24	Chloride total	mg/l	4 60
	G403	c	2019/08/19	Chloride total	mg/L	3 90
	G403	c	2020/01/22	Chloride total	mg/l	4 60
	G403	c	2020/01/22	Chloride total	mg/L	3.60
	G403	c C	2020/00/12	Chloride, total	mg/L	3.00 4.10
	G403	c C	2020/10/13	Chloride, total	mg/L	4.10
	G403	C	2021/01/21	Chlorido, total	mg/L	4.30
	G403	C C	2021/04/20		mg/L	4.70
	G403	C C	2021/08/17		mg/L	4.30
UA	6403	C C	2021/10/20		ilig/L	4.70
UA	G403	C C	2022/02/08	Chloride, total	mg/L	5.00
UA	G403	C	2022/05/10	Chloride, total	mg/L	5.70
UA	G403	C	2022/08/24	Chloride, total	mg/L	6.00
UA	6403	L A	2022/11/09	Chioride, total	mg/L	4.00
UA	6403	L	2023/02/15	Chioride, total	mg/L	5.70
UA	G403	C	2023/06/07	Chloride, total	mg/L	6.20
UA	G403	С	2023/08/11	Chloride, total	mg/L	5.00
UA	G403	С	2023/11/20	Chloride, total	mg/L	5.00
UA	G403	С	2015/11/23	Cobalt, total	mg/L	<0.000017
UA	G403	С	2016/02/22	Cobalt, total	mg/L	<0.000017
UA	G403	С	2016/05/18	Cobalt, total	mg/L	<0.000017
UA	G403	С	2016/08/01	Cobalt, total	mg/L	0.00290
UA	G403	С	2016/11/17	Cobalt, total	mg/L	0.00240
UA	G403	С	2017/02/18	Cobalt, total	mg/L	0.00200
UA	G403	С	2017/05/17	Cobalt, total	mg/L	0.00210
UA	G403	С	2017/07/13	Cobalt, total	mg/L	0.00220
UA	G403	С	2018/05/12	Cobalt, total	mg/L	0.00310
UA	G403	С	2018/08/04	Cobalt, total	mg/L	0.00340
UA	G403	с	2019/01/24	Cobalt, total	mg/L	0.00310
UA	G403	с	2019/08/19	Cobalt, total	mg/L	0.00270
UA	G403	с	2020/01/22	Cobalt, total	mg/L	<0.00067
UA	G403	с	2020/08/12	Cobalt, total	mg/L	<0.00022
UA	G403	с	2020/10/13	Cobalt, total	mg/L	<0.002
1		1	,,	,	<i></i>	

UA	G403	С	2021/01/21	Cobalt, total	mg/L	<0.00022
UA	G403	С	2021/04/26	Cobalt, total	mg/L	<0.002
UA	G403	С	2021/08/17	Cobalt, total	mg/L	< 0.00022
UA	G403	С	2021/10/26	Cobalt, total	mg/L	< 0.002
UA	G403	С	2022/02/08	Cobalt, total	mg/L	0.00230
UA	G403	С	2022/05/10	Cobalt, total	mg/L	0.000790
UA	G403	с	2022/08/24	Cobalt, total	mg/L	<0.00048
UA	G403	С	2022/11/09	Cobalt, total	mg/L	<0.00048
UA	G403	С	2023/02/15	Cobalt. total	mg/L	<0.00048
UA	G403	C	2023/06/07	Cobalt. total	mg/L	0.000760
UA	G403	С	2023/08/11	Cobalt. total	mg/L	0.00250
UA	G403	C	2023/11/20	Cobalt. total	mg/L	0.00260
UA	G403	c	2023/06/07	Ferrous Iron, dissolved	mg/L	<0.02
UA	G403	C C	2020/08/12	Iron, dissolved	mg/l	0.0540
UA	G403	C C	2020/10/13	Iron, dissolved	mg/L	0.0310
UA	G403	C C	2021/01/21	Iron, dissolved	mg/l	<0.01
UA	G403	C C	2021/04/26	Iron, dissolved	mg/L	<0.01
	G403	c	2021/08/17	Iron dissolved	mg/l	<0.01
	G403	c	2021/00/17	Iron dissolved	mg/L	0.0500
	G403	c	2022/02/08	Iron dissolved	mg/L	<0.0300
	G403	c	2022/02/00	Iron dissolved	mg/L	<0.01
	G403	c	2022/08/24	Iron dissolved	mg/L	0.00310
	G403	C	2022/08/24	Iron, dissolved	mg/L	0.00310
	G403	C	2022/11/05	Iron, dissolved	mg/L	<0.00440
	G403	C	2023/02/13	Iron, dissolved	mg/L	0.0110
	G403	C	2023/00/07	Iron, dissolved	mg/L	0.0110
	G403	C C	2023/08/11	Iron, dissolved	mg/L	0.0703
	G403	C	2023/11/20	Magnosium total	mg/L	24.0
	G403	C C	2017/07/13	Magnesium, total	mg/L	26.0
	G403	C	2020/01/22	Magnesium, total	mg/L	22.0
	G403	C	2021/01/21	Magnesium, total	mg/L	20.0
	G403	C C	2021/08/17	Magnesium, total	mg/L	35.0
	G403	C C	2022/02/08	Magnesium, total	mg/L	27.0
	G403	C C	2022/08/24	Magnesium, total	mg/L	37.0
	G403	C C	2023/02/13	Magnesium, total	mg/L	27.0
	G403	C C	2023/00/07	Magnesium, total	mg/L	37.0
	G403	C C	2023/06/11	Magnesium, total	mg/L	30.2
	G403	C	2023/11/20	Magnesium, total	mg/L	40.2
	G403	C	2018/05/05	Manganese, dissolved	mg/L	0.420
	G403	C	2018/03/12	Manganese, dissolved	mg/L	1.40
	G403	C C	2018/08/13	Manganese, dissolved	mg/L	0.950
	G403	C C	2010/11/07	Manganese, dissolved	mg/L	0.850
	G403	C C	2019/01/24	Manganese, dissolved	mg/L	0.270
	G403	C	2019/05/02	Manganese, dissolved	mg/L	1 10
	G403	C C	2010/10/19	Manganese, dissolved	mg/L	1 10
	G403	C C	2019/10/22	Manganese dissolved	mg/L	0.00700
	G403		2020/01/22	Manganese, dissolved	mg/L	0.00790
	G403		2020/05/07	Manganese, dissolved	mg/L	0.0300
	G403		2020/08/12	Manganese, dissolved	mg/L	0.440
	G403		2020/10/13	Manganese, dissolved	mg/L	0.200
UA	G403	C C	2021/01/21	Manganese, dissolved	mg/L	0.00460
	G403		2021/04/26	Manganese, dissolved	mg/L	0.00440
	G403		2021/08/17	Manganasa dissolved	mg/L	0.340
	G403		2021/10/26	Manganasa, dissolved	mg/L	0.790
	G403		2022/02/08		mg/L	0.00390
UA	6403		2022/05/10	Ivianganese, dissolved	mg/L	0.00350
UA	6403		2022/08/24	ivianganese, dissolved	mg/L	0.160
UA	6403	L C	2022/11/09	Ivianganese, dissolved	mg/L	0.200
UA	6403		2023/02/15	ivianganese, dissolved	mg/L	0.000280
UA	G403	C	2023/06/07	Manganese, dissolved	mg/L	0.360
UA	6403		2023/08/11	ivianganese, dissolved	mg/L	0.376
UA	G403	L C	2023/11/20	Ivianganese, dissolved	mg/L	0.264
UA	G403	0	2023/08/11	Phosphate, dissolved	mg/L	0.0680
UA	G403	С	2017/07/13	Potassium, total	mg/L	0.760

UA	G403	С	2020/01/22	Potassium, total	mg/L	0.710
UA	G403	С	2021/01/21	Potassium, total	mg/L	0.450
UA	G403	С	2021/08/17	Potassium, total	mg/L	0.460
UA	G403	С	2022/02/08	Potassium, total	mg/L	0.760
UA	G403	С	2022/08/24	Potassium, total	mg/L	0.550
UA	G403	С	2023/02/15	Potassium, total	mg/L	0.410
UA	G403	С	2023/06/07	Potassium. total	mg/L	0.450
UA	G403	c	2023/08/11	Potassium, total	mg/L	0.562
UA	G403	C C	2023/11/20	Potassium, total	mg/l	0.573
	G403	c	2023/06/07	Silicon dissolved	mg/L	9.20
	G403	c	2023/08/01	Silicon dissolved	mg/L	8 36
	G403	c	2017/07/13	Sodium total	mg/L	22.0
	G403	c C	2020/01/22	Sodium, total	mg/L	22.0
	G403	c C	2020/01/22	Sodium, total	mg/L	23.0
	G403	C C	2021/01/21	Sodium, total	mg/L	24.0
	G403	C C	2021/08/17	Sodium, total	mg/L	20.0
	G403	C C	2022/02/08	Sodium, total	mg/L	25.0
UA	G403	C C	2022/08/24	Sodium, total	mg/L	28.0
UA	G403	C C	2023/02/15	Sodium, total	mg/L	29.0
UA	G403	C	2023/06/07	Sodium, total	mg/L	27.0
UA	G403	C	2023/08/11	Sodium, total	mg/L	25.4
UA	G403	С	2023/11/20	Sodium, total	mg/L	26.3
UA	G403	С	2015/11/23	Sulfate, total	mg/L	35.0
UA	G403	С	2016/02/22	Sulfate, total	mg/L	17.0
UA	G403	С	2016/05/18	Sulfate, total	mg/L	11.0
UA	G403	С	2016/08/01	Sulfate, total	mg/L	9.90
UA	G403	С	2016/11/17	Sulfate, total	mg/L	8.90
UA	G403	С	2017/02/18	Sulfate, total	mg/L	7.40
UA	G403	С	2017/05/17	Sulfate, total	mg/L	7.10
UA	G403	С	2017/07/13	Sulfate, total	mg/L	4.90
UA	G403	С	2017/10/28	Sulfate, total	mg/L	7.00
UA	G403	С	2018/05/12	Sulfate, total	mg/L	15.0
UA	G403	С	2018/08/04	Sulfate, total	mg/L	20.0
UA	G403	С	2019/01/24	Sulfate, total	mg/L	32.0
UA	G403	С	2019/08/19	Sulfate, total	mg/L	26.0
UA	G403	С	2020/01/22	Sulfate, total	mg/L	33.0
UA	G403	С	2020/08/12	Sulfate, total	mg/L	34.0
UA	G403	С	2020/10/13	Sulfate, total	mg/L	36.0
UA	G403	С	2021/01/21	Sulfate, total	mg/L	37.0
UA	G403	С	2021/04/26	Sulfate, total	mg/L	39.0
UA	G403	С	2021/08/17	Sulfate, total	mg/L	51.0
UA	G403	С	2021/10/26	Sulfate, total	mg/L	51.0
UA	G403	C	2022/02/08	Sulfate, total	mg/L	53.0
UA	G403	c	2022/05/10	Sulfate, total	mg/l	59.0
UA	G403	C C	2022/08/24	Sulfate, total	mg/L	58.0
UA	G403	c	2022/11/09	Sulfate, total	mg/L	57.0
UA	G403	c	2023/02/15	Sulfate, total	mg/L	63.0
UA	G403	c	2023/06/07	Sulfate, total		66.0
UA	G403	c	2023/08/11	Sulfate, total	mg/l	60.0
	G403	- C	2023/11/20	Sulfate total	mg/l	74.0
UA	G403	c	2015/11/22	Temperature (Celsius)	degrees (	15.8
	G403	c	2016/02/22	Temperature (Celsius)	degrees C	11.0
	G403	c	2016/05/18	Temperature (Celsius)	degrees C	17.8
	6403	c	2016/08/01	Temperature (Celsius)	degrees C	17.0
	G403	C C	2016/11/17	Temperature (Celsius)	degrees C	1/ 5
	G403		2010/11/1/	Temperature (Colsius)	degrees C	1/ 0
	G403	с С	2017/02/18	Tomporature (Celsius)	dogroos C	15.2
	G403		2017/05/17		degrees C	17.0
	G403		2017/0//13		degrees C	12.0
	6403		2017/10/28		degrees C	13.8
UA	6403		2018/05/12	Temperature (Celsius)	aegrees C	15.7
UA	G403		2018/08/04	Temperature (Celsius)	uegrees C	15.9
UA	6403	L C	2019/01/24	Temperature (Celsius)	aegrees C	11.8
UA	6403		2019/08/19	remperature (Celsius)	aegrees C	16.9
UA	G403	C	2020/01/22	Temperature (Celsius)	degrees C	9.70

UA	G403	С	2020/08/12	Temperature (Celsius)	degrees C	21.6
UA	G403	С	2020/10/13	Temperature (Celsius)	degrees C	17.0
UA	G403	С	2021/01/21	Temperature (Celsius)	degrees C	12.6
UA	G403	С	2021/04/26	Temperature (Celsius)	degrees C	16.2
UA	G403	с	2021/08/17	Temperature (Celsius)	degrees C	20.7
UA	G403	С	2021/10/26	Temperature (Celsius)	degrees C	16.8
UA	G403	С	2022/02/08	Temperature (Celsius)	degrees C	11.1
UA	G403	c	2022/05/10	Temperature (Celsius)	degrees C	17.4
UA	G403	c	2022/08/24	Temperature (Celsius)	degrees C	19.2
	G403	c	2022/00/21	Temperature (Celsius)	degrees C	19.0
	G403	c	2022/11/05	Temperature (Celsius)	degrees C	13.0
	G403	c	2023/06/07	Temperature (Celsius)	degrees C	15.8
	G403	c	2023/00/07	Temperature (Celsius)	degrees C	19.0
	G403	c c	2023/08/11	Temperature (Celsius)	dogroos C	15.7
	G403	C C	2025/11/20	Tetal Dissolved Solids	mg/l	220
	G403	C C	2015/11/25	Total Dissolved Solids	mg/L	320
	G403	C C	2016/02/22	Total Dissolved Solids	mg/L	340
UA	G403		2016/05/18	Total Dissolved Solids	mg/L	320
UA	G403	C	2016/08/01	Total Dissolved Solids	mg/L	320
UA	G403	C	2016/11/17	Total Dissolved Solids	mg/L	350
UA	G403	C	2017/02/18	Total Dissolved Solids	mg/L	320
UA	G403	C	2017/05/17	Total Dissolved Solids	mg/L	330
UA	G403	C	2017/07/13	Total Dissolved Solids	mg/L	320
UA	G403	С	2017/10/28	Total Dissolved Solids	mg/L	340
UA	G403	С	2018/05/12	Total Dissolved Solids	mg/L	310
UA	G403	С	2018/08/04	Total Dissolved Solids	mg/L	360
UA	G403	С	2019/01/24	Total Dissolved Solids	mg/L	360
UA	G403	С	2019/08/19	Total Dissolved Solids	mg/L	360
UA	G403	С	2020/01/22	Total Dissolved Solids	mg/L	270
UA	G403	С	2020/08/12	Total Dissolved Solids	mg/L	330
UA	G403	С	2020/10/13	Total Dissolved Solids	mg/L	400
UA	G403	С	2021/01/21	Total Dissolved Solids	mg/L	330
UA	G403	С	2021/04/26	Total Dissolved Solids	mg/L	320
UA	G403	С	2021/08/17	Total Dissolved Solids	mg/L	470
UA	G403	С	2021/10/26	Total Dissolved Solids	mg/L	360
UA	G403	С	2022/02/08	Total Dissolved Solids	mg/L	400
UA	G403	С	2022/05/10	Total Dissolved Solids	mg/L	470
UA	G403	С	2022/08/24	Total Dissolved Solids	mg/L	400
UA	G403	с	2022/11/09	Total Dissolved Solids	mg/L	430
UA	G403	С	2023/02/15	Total Dissolved Solids	mg/L	480
UA	G403	с	2023/06/07	Total Dissolved Solids	mg/L	400
UA	G403	c	2023/08/11	Total Dissolved Solids	mg/L	412
UA	G403	c	2023/11/20	Total Dissolved Solids	mg/L	508
	G404	c	2015/11/21	nH (field)	SU	67
	G404	c	2016/02/15	pH (field)	SU	7.2
UA	G404	- C	2016/05/19	pH (field)	su	6.8
UA	G404	c	2016/08/02	pH (field)	su	7.1
	G404	c	2016/11/22	pH (field)	SU SU	7.1
UA	G404	č	2017/02/18	pH (field)	SU	71
	G404	c	2017/05/16	pH (field)	SU	7.1
	G404	c	2017/07/14	pH (field)	SU SU	7.2
	G404	C C	2017/10/28	nH (field)	SU SU	69
	G404	C C	2018/05/12	nH (field)	su	7 1
	G404	с С	2010/03/12	pH (field)	su	7.1
	G404	c	2010/01/24	pH (field)	su	7.2
	G404	C C	2019/01/24	pH (field)	su	7.1
	G404 G404		2019/08/10		30 SU	7.1
	G404		2020/01/22		30 CU	1.2
	G404		2020/08/12	pri (neid)	5U SU	0.8
	G404		2020/10/13	pri (nela)	5U	b./
UA	6404		2021/01/21	рн (field)	SU	6.6
UA	6404		2021/04/27	рн (field)	SU	6.8
UA	6404		2021/08/17	рн (field)	SU	6.7
UA	G404	C	2021/10/26	pH (field)	SU	6.6
UA	G404	С	2022/02/08	pH (field)	SU	6.9

UA	G404	С	2022/05/10	pH (field)	SU	6.6
UA	G404	С	2022/08/24	pH (field)	SU	6.5
UA	G404	С	2022/11/09	pH (field)	SU	6.4
UA	G404	С	2023/02/14	pH (field)	SU	6.8
UA	G404	с	2023/06/07	pH (field)	SU	6.8
UA	G404	С	2023/08/14	pH (field)	SU	6.8
UA	G404	с	2023/11/21	pH (field)	SU	6.7
UA	G404	c	2015/10/07	pH (field)	SU	7.5
	G404	c	2015/11/21	Oxidation Reduction Potential	mV	28.0
	G404	c	2016/02/15	Oxidation Reduction Potential	mV	83.0
	G404	c	2016/05/19	Ovidation Reduction Potential	m\/	-10.0
	G404	c	2016/03/13	Oxidation Reduction Potential	m\/	-63.0
	6404	c	2016/00/02	Oxidation Reduction Potential	m\/	60.0
	6404	c c	2010/11/22	Ovidation Reduction Potential	mV	-00.0 68.0
	G404	C C	2017/02/16	Oxidation Reduction Potential	111V ma\/	-06.0
UA	G404		2017/05/16	Oxidation Reduction Potential		-61.0
UA	G404	C	2017/07/14	Oxidation Reduction Potential	mv	-74.0
UA	G404	C	2017/10/28	Oxidation Reduction Potential	mv	-58.0
UA	G404	C	2018/05/12	Oxidation Reduction Potential	mV	-50.0
UA	G404	C	2018/08/04	Oxidation Reduction Potential	mV	-59.0
UA	G404	C	2019/01/24	Oxidation Reduction Potential	mV	-71.0
UA	G404	С	2019/08/16	Oxidation Reduction Potential	mV	-64.0
UA	G404	С	2020/01/22	Oxidation Reduction Potential	mV	200
UA	G404	С	2020/08/12	Oxidation Reduction Potential	mV	108
UA	G404	С	2020/10/13	Oxidation Reduction Potential	mV	95.2
UA	G404	С	2021/01/21	Oxidation Reduction Potential	mV	139
UA	G404	С	2021/04/27	Oxidation Reduction Potential	mV	116
UA	G404	С	2021/08/17	Oxidation Reduction Potential	mV	59.0
UA	G404	С	2021/10/26	Oxidation Reduction Potential	mV	43.2
UA	G404	С	2022/02/08	Oxidation Reduction Potential	mV	229
UA	G404	С	2022/05/10	Oxidation Reduction Potential	mV	92.3
UA	G404	С	2022/08/24	Oxidation Reduction Potential	mV	26.0
UA	G404	с	2022/11/09	Oxidation Reduction Potential	mV	108
UA	G404	С	2023/02/14	Oxidation Reduction Potential	mV	304
UA	G404	c	2023/06/07	Oxidation Reduction Potential	mV	79.2
UA	G404	c	2023/08/14	Oxidation Reduction Potential	mV	66.0
UA	G404	c	2023/11/21	Oxidation Reduction Potential	mV	85.0
UA	G404	C C	2015/11/21	Eh	V	0.22
	G404	c	2016/02/15	Eb	V	0.22
	G404	c	2016/05/19	Eb	V	0.28
	G404	c	2016/03/13	Eh	V	0.13
	6404	c c	2010/08/02	Eh	V	0.13
	6404	C C	2010/11/22	Eh	V	0.13
UA	G404	C C	2017/02/18		V	0.13
	G404	C C	2017/05/16		V	0.13
	G404		2017/07/14		v	0.12
	G404		2017/10/28		V	0.14
	G404		2018/05/12		v	0.15
UA	G404		2018/08/04		V	0.14
UA	6404		2019/01/24		V	0.13
UA	G404	C	2019/08/16	Eh	V	0.13
UA	G4U4	L	2020/01/22	EN	V	0.40
UA	G404	С	2020/08/12	Eh	V	0.30
UA	G404	С	2020/10/13	Eh	V	0.29
UA	G404	С	2021/01/21	Eh	V	0.34
UA	G404	С	2021/04/27	Eh	V	0.31
UA	G404	С	2021/08/17	Eh	V	0.25
UA	G404	С	2021/10/26	Eh	V	0.24
UA	G404	С	2022/02/08	Eh	V	0.43
UA	G404	С	2022/05/10	Eh	V	0.29
UA	G404	С	2022/08/24	Eh	V	0.22
UA	G404	С	2022/11/09	Eh	V	0.30
UA	G404	С	2023/02/14	Eh	V	0.50
UA	G404	С	2023/06/07	Eh	V	0.27
UA	G404	С	2023/08/14	Eh	V	0.26

UA	G404	С	2023/11/21	Eh	V	0.28
UA	G404	С	2017/07/14	Alkalinity, bicarbonate	mg/L CaCO3	420
UA	G404	С	2020/01/22	Alkalinity, bicarbonate	mg/L CaCO3	330
UA	G404	С	2021/01/21	Alkalinity, bicarbonate	mg/L CaCO3	320
UA	G404	с	2021/08/17	Alkalinity, bicarbonate	mg/L CaCO3	350
UA	G404	С	2022/02/08	Alkalinity, bicarbonate	mg/L CaCO3	310
UA	G404	С	2022/08/24	Alkalinity, bicarbonate	mg/L CaCO3	390
UA	G404	c	2023/02/14	Alkalinity, bicarbonate	mg/L CaCO3	290
UA	G404	c	2023/06/07	Alkalinity, bicarbonate	mg/L CaCO3	390
UA	G404	c	2023/08/14	Alkalinity, bicarbonate	mg/L CaCO3	348
UA	G404	c	2023/11/21	Alkalinity, bicarbonate	mg/L CaCO3	326
UA	G404	c	2022/08/24	Alkalinity, carbonate	mg/L CaCO3	10.0
UA	G404	c	2015/11/21	Barium, total	mg/l	0.0500
UA	G404	c	2016/02/15	Barium, total	mg/l	0.0430
UA	G404	c	2016/05/19	Barium, total	mg/L	0.0410
	G404	c	2016/08/02	Barium total	mg/l	0.0550
	G404	c	2016/11/22	Barium total	mg/L	0.0520
	G404	c	2010/11/22	Barium total	mg/L	0.0320
	G404	c	2017/02/10	Barium total	mg/L	0.0440
	G404	c	2017/03/10	Barium total	mg/L	0.0010
	G404	c	2017/07/14	Barium total	mg/L	0.0420
	G404	c	2018/03/12	Barium total	mg/L	0.0420
	G404	c	2010/03/04	Barium total	mg/L	0.0300
	G404	c c	2010/01/24	Barium total	mg/L	0.0570
	G404	C C	2019/08/10	Barium total	mg/L	0.0300
	6404	c c	2020/01/22	Barium total	mg/L	0.0330
	G404	C C	2020/08/12	Barium total	mg/L	0.0370
	6404	c c	2020/10/13	Barium total	mg/L	0.0370
	G404	C C	2021/01/21	Barium total	mg/L	0.0420
	6404	c c	2021/04/27	Barium total	mg/L	0.0400
	G404	C C	2021/08/17	Barium total	mg/L	0.0460
	6404	c c	2021/10/20	Barium total	mg/L	0.0300
	G404	C C	2022/02/08	Barium total	mg/L	0.0280
	G404	C C	2022/05/10	Barium total	mg/L	0.0270
	G404	C C	2022/08/24	Barium total	mg/L	0.0290
	6404	c c	2022/11/09	Barium total	mg/L	0.0220
	G404	C C	2023/02/14	Barium total	mg/L	0.0170
	6404	c c	2023/00/07	Barium total	mg/L	0.0130
	G404	C C	2023/06/14	Barium total	mg/L	0.0420
	6404	c c	2023/11/21	Barium total	mg/L	0.0309
	G404	C C	2015/10/07	Barron total	mg/L	0.0430
	G404		2015/11/21	Boron, total	mg/L	2.10
	G404	C C	2016/02/15	Boron, total	mg/L	1.00
	G404	C C	2016/05/19	Boron, total	mg/L	1.40
	6404		2010/08/02	Poron total	mg/L	3.20
	6404		2010/11/22	Poron total	mg/L	3.40
	G404		2017/02/18	Doron, total	mg/L	2.80
	G404		2017/05/16	Boron, total	mg/L	1.60
	G404		2017/07/14	Boron, total	mg/L	5.50
	G404		2017/10/28	Boron, total	mg/L	5.80
UA	6404		2018/05/12	Boron, total	mg/L	4.10
UA	6404		2018/08/04		mg/L	4.80
UA	6404		2019/01/24	Boron, total	mg/L	2.80
UA	6404		2019/08/16	Boron, total	mg/L	2.90
UA	G404		2020/01/22	Boron, total	mg/L	2.90
UA	G404	0	2020/08/12	Boron, total	mg/L	2.80
UA	G404	0	2020/10/13	Boron, total	mg/L	3.90
UA	G404	C	2021/01/21	Boron, total	mg/L	2.60
UA	G404	C	2021/04/27	Boron, total	mg/L	3.00
UA	G404	С	2021/08/17	Boron, total	mg/L	5.40
UA	G404	С	2021/10/26	Boron, total	mg/L	5.00
UA	G404	C	2022/02/08	Boron, total	mg/L	5.00
UA	G404	С	2022/05/10	Boron, total	mg/L	5.60
UA	G404	С	2022/08/24	Boron, total	mg/L	13.0

UA	G404	С	2022/11/09	Boron, total	mg/L	15.0
UA	G404	С	2023/02/14	Boron, total	mg/L	9.00
UA	G404	С	2023/06/07	Boron, total	mg/L	9.30
UA	G404	С	2023/08/14	Boron, total	mg/L	14.4
UA	G404	С	2023/11/21	Boron, total	mg/L	21.2
UA	G404	С	2015/10/07	Boron, total	mg/L	4.70
UA	G404	С	2015/11/21	Calcium, total	mg/L	110
UA	G404	c	2016/02/15	Calcium, total	mg/L	110
UA	G404	c	2016/05/19	Calcium, total	mg/l	89.0
	G404	c	2016/08/02	Calcium total	mg/L	120
	G404	c	2016/00/02	Calcium total	mg/L	120
	G404	c	2010/11/22	Calcium total	mg/L	120
	G404	c	2017/02/10	Calcium total	mg/L	110
	6404	c	2017/03/10		mg/L	160
	G404	C C	2017/07/14		mg/L	160
	6404	C C	2017/10/28		mg/L	150
	G404	C C	2018/05/12		mg/L	150
UA	G404		2018/08/04		mg/L	180
UA	G404		2019/01/24		mg/L	120
UA	G404	C	2019/08/16	Calcium, total	mg/L	110
UA	G404	C	2020/01/22	Calcium, total	mg/L	150
UA	G404	C	2020/08/12	Calcium, total	mg/L	140
UA	G404	C	2020/10/13	Calcium, total	mg/L	170
UA	G404	С	2021/01/21	Calcium, total	mg/L	160
UA	G404	С	2021/04/27	Calcium, total	mg/L	180
UA	G404	С	2021/08/17	Calcium, total	mg/L	240
UA	G404	С	2021/10/26	Calcium, total	mg/L	200
UA	G404	С	2022/02/08	Calcium, total	mg/L	200
UA	G404	С	2022/05/10	Calcium, total	mg/L	230
UA	G404	С	2022/08/24	Calcium, total	mg/L	290
UA	G404	С	2022/11/09	Calcium, total	mg/L	250
UA	G404	С	2023/02/14	Calcium, total	mg/L	180
UA	G404	С	2023/06/07	Calcium, total	mg/L	230
UA	G404	С	2023/08/14	Calcium, total	mg/L	216
UA	G404	С	2023/11/21	Calcium, total	mg/L	273
UA	G404	С	2015/11/21	Chloride, total	mg/L	53.0
UA	G404	С	2016/02/15	Chloride, total	mg/L	49.0
UA	G404	С	2016/05/19	Chloride, total	mg/L	46.0
UA	G404	С	2016/08/02	Chloride, total	mg/L	62.0
UA	G404	С	2016/11/22	Chloride, total	mg/L	61.0
UA	G404	с	2017/02/18	Chloride, total	mg/L	62.0
UA	G404	С	2017/05/16	Chloride. total	mg/L	64.0
UA	G404	с	2017/07/14	Chloride. total	mg/L	68.0
UA	G404	С	2017/10/28	Chloride. total	mg/L	57.0
UA	G404	с	2018/05/12	Chloride, total	mg/L	82.0
UA	G404	с	2018/08/04	Chloride, total	mg/L	69.0
UA	G404	c	2019/01/24	Chloride, total	mg/L	100
UA	G404	c.	2019/08/16	Chloride, total	mg/l	100
UA	G404	c	2020/01/22	Chloride, total	mg/l	190
UA	G404	- C	2020/08/12	Chloride, total	mg/l	170
UA	G404	č	2020/10/13	Chloride, total	mg/l	160
	G404	c	2021/01/21	Chloride total	mg/l	190
	G404	c	2021/04/27	Chloride total	mg/l	200
	G404	c	2021/08/17	Chloride total	ы. – mg/l	100
	G404	c	2021/00/17		mg/L	100
	G404	C C	2021/10/20		mg/L	160
	G404 G404		2022/02/08		mg/L	150
	G404		2022/05/10		mg/L	130
	G404		2022/08/24		mg/L	110
	G404		2022/11/09		mg/L	110
UA	6404		2023/02/14		mg/L	/4.0
UA	6404		2023/06/07		mg/L	140
UA	6404		2023/08/14		mg/L	/3.0
UA	G404		2023/11/21	Chioride, total	mg/L	/1.0
UA	G404	C	2015/10/07	Chloride, total	mg/L	33.0

UA         G404         C         2016/07/15         Cobabi, total         mg/L         4.000017           UA         G404         C         2016/08/02         Cobabi, total         mg/L         4.000017           UA         G404         C         2016/08/02         Cobabi, total         mg/L         4.000017           UA         G404         C         2017/02/18         Cobabi, total         mg/L         4.0000017           UA         G404         C         2017/02/14         Cobabi, total         mg/L         4.0000017           UA         G404         C         2018/06/12         Cobabi, total         mg/L         4.000067           UA         G404         C         2019/02/12         Cobabi, total         mg/L         4.00007           UA         G404         C         2019/02/12         Cobabi, total         mg/L         4.00022           UA         G404         C         2020/01/12         Cobabi, total         mg/L         4.00022           UA         G404         C         2021/01/13         Cobabi, total         mg/L         4.00022           UA         G404         C         2021/01/12         Cobabi, total         mg/L         4.00024	UA	G404	С	2015/11/21	Cobalt, total	mg/L	<0.000017
UA         G404         C         2016/G2/19         Cobalt, total         mg/L             UA         G404         C         2016/31/22         Cobalt, total         mg/L          0.000017           UA         G404         C         2017/02/18         Cobalt, total         mg/L          0.000017           UA         G404         C         2017/02/18         Cobalt, total         mg/L          0.000017           UA         G404         C         2016/02/14         Cobalt, total         mg/L          0.000017           UA         G404         C         2016/02/14         Cobalt, total         mg/L          0.000067           UA         G404         C         2016/02/16         Cobalt, total         mg/L          0.00027           UA         G404         C         2020/01/12         Cobalt, total         mg/L          0.00027           UA         G404         C         2021/02/12         Cobalt, total         mg/L          0.00027           UA         G404         C         2021/02/18         Cobalt, total         mg/L          0.00021 <t< td=""><td>UA</td><td>G404</td><td>С</td><td>2016/02/15</td><td>Cobalt, total</td><td>mg/L</td><td>&lt;0.000017</td></t<>	UA	G404	С	2016/02/15	Cobalt, total	mg/L	<0.000017
UA         G404         C         2016/08/02         Cobalt, total         mg/L         4.0000017           UA         G404         C         2017/02/18         Cobalt, total         mg/L         4.0000017           UA         G404         C         2017/02/18         Cobalt, total         mg/L         4.0000017           UA         G404         C         2017/07/14         Cobalt, total         mg/L         4.0000017           UA         G404         C         2018/06/12         Cobalt, total         mg/L         4.000086           UA         G404         C         2019/07/12         Cobalt, total         mg/L         4.000087           UA         G404         C         2020/07/12         Cobalt, total         mg/L         4.00022           UA         G404         C         2020/07/12         Cobalt, total         mg/L         4.00022           UA         G404         C         2021/07/12         Cobalt, total         mg/L         4.00022           UA         G404         C         2021/07/12         Cobalt, total         mg/L         4.0002           UA         G404         C         2022/07/10         Cobalt, total         mg/L         4.0002	UA	G404	С	2016/05/19	Cobalt, total	mg/L	< 0.000017
UA         G404         C         2016/11/22         Cobalt, Ital         mg/L         40.000017           UA         G404         C         2017/05/16         Cobalt, Ital         mg/L         40.000017           UA         G404         C         2017/05/16         Cobalt, Ital         mg/L         40.000017           UA         G404         C         2018/05/12         Cobalt, Ital         mg/L         40.00067           UA         G404         C         2018/05/12         Cobalt, Ital         mg/L         40.00067           UA         G404         C         2018/05/12         Cobalt, Ital         mg/L         40.00067           UA         G404         C         2020/07/12         Cobalt, Ital         mg/L         40.00022           UA         G404         C         2021/07/13         Cobalt, Ital         mg/L         40.00022           UA         G404         C         2021/07/16         Cobalt, Ital         mg/L         40.00022           UA         G404         C         2021/07/16         Cobalt, Ital         mg/L         40.00022           UA         G404         C         2021/07/16         Cobalt, Ital         mg/L         40.000024	UA	G404	С	2016/08/02	Cobalt, total	mg/L	< 0.000017
UA         G604         C         2017/07/16         Cohalt, total         mg/L         40.000017           UA         6404         C         2017/07/14         Cohalt, total         mg/L         40.000017           UA         6404         C         2013/07/14         Cohalt, total         mg/L         40.00067           UA         6404         C         2013/08/04         Cohalt, total         mg/L         40.00067           UA         6404         C         2019/01/24         Cohalt, total         mg/L         40.00067           UA         6404         C         2002/01/23         Cohalt, total         mg/L         40.00022           UA         6404         C         2002/01/13         Cohalt, total         mg/L         40.00022           UA         6404         C         2002/10/13         Cohalt, total         mg/L         40.00022           UA         6404         C         2002/10/13         Cohalt, total         mg/L         40.00022           UA         6404         C         2002/10/16         Cohalt, total         mg/L         40.00024           UA         6404         C         2002/10/16         Cohalt, total         mg/L         40.00048<	UA	G404	С	2016/11/22	Cobalt, total	mg/L	< 0.000017
UA         6404         C         2017/95/16         Cobalt. total         mg/L         40.000017           UA         6404         C         2013/05/12         Cobalt. total         mg/L         40.000017           UA         6404         C         2013/05/12         Cobalt. total         mg/L         40.00067           UA         6404         C         2013/02/14         Cobalt. total         mg/L         40.00067           UA         6404         C         2020/03/12         Cobalt. total         mg/L         40.00067           UA         6404         C         2020/03/12         Cobalt. total         mg/L         40.0002           UA         6404         C         2021/01/21         Cobalt. total         mg/L         40.0002           UA         6404         C         2021/01/21         Cobalt. total         mg/L         40.0002           UA         6404         C         2021/02/7         Cobalt. total         mg/L         40.0002           UA         6404         C         2022/02/80         Cobalt. total         mg/L         40.0002           UA         6404         C         2022/02/910         Cobalt. total         mg/L         40.0004	UA	G404	С	2017/02/18	Cobalt, total	mg/L	< 0.000017
UA         6404         C         2017/07/14         Cobbit. total         mg/L         40.00007           UA         6404         C         2018/08/04         Cobalt. total         mg/L         40.00067           UA         6404         C         2018/08/04         Cobalt. total         mg/L         40.00067           UA         6404         C         2019/01/24         Cobalt. total         mg/L         40.00027           UA         G404         C         2020/01/22         Cobalt. total         mg/L         40.00067           UA         G404         C         2020/01/23         Cobalt. total         mg/L         40.00022           UA         G404         C         2021/01/13         Cobalt. total         mg/L         40.00022           UA         G404         C         2021/01/13         Cobalt. total         mg/L         40.00022           UA         G404         C         2022/02/08         Cobalt. total         mg/L         40.00024           UA         G404         C         2022/02/08         Cobalt. total         mg/L         40.00048           UA         G404         C         2023/06/7         Cobalt. total         mg/L         40.00048 <td>UA</td> <td>G404</td> <td>С</td> <td>2017/05/16</td> <td>Cobalt. total</td> <td>mg/L</td> <td>&lt; 0.000017</td>	UA	G404	С	2017/05/16	Cobalt. total	mg/L	< 0.000017
DA         CAD         2013/05/12         Cobalt, total         mg/L         C000067           UA         G404         C         2013/08/16         Cobalt, total         mg/L         4.00067           UA         G404         C         2013/01/14         Cobalt, total         mg/L         4.00067           UA         G404         C         2019/01/12         Cobalt, total         mg/L         4.00067           UA         G404         C         2020/08/12         Cobalt, total         mg/L         4.00027           UA         G404         C         2020/07/12         Cobalt, total         mg/L         4.00022           UA         G404         C         2021/01/21         Cobalt, total         mg/L         4.0002           UA         G404         C         2022/02/27         Cobalt, total         mg/L         4.0002           UA         G404         C         2022/02/24         Cobalt, total         mg/L         4.00048           UA         G404         C         2022/02/24         Cobalt, total         mg/L         4.00048           UA         G404         C         2022/02/24         Cobalt, total         mg/L         4.00048 <td< td=""><td>UA</td><td>G404</td><td>c</td><td>2017/07/14</td><td>Cobalt, total</td><td>mg/L</td><td>&lt; 0.000017</td></td<>	UA	G404	c	2017/07/14	Cobalt, total	mg/L	< 0.000017
UA         G404         C         2013/08/04         Cobalt, total         mg/L         <0.00067           UA         G404         C         2019/01/24         Cabalt, total         mg/L         <0.00290	UA	G404	C C	2018/05/12	Cobalt, total	mg/l	<0.00086
DA         GA04         C         2019/03/24         Cobalt, total         mg/L         4.0.000230           UA         G404         C         2019/03/16         Cobalt, total         mg/L         4.0.00057           UA         G404         C         2020/08/122         Cobalt, total         mg/L         4.0.00027           UA         G404         C         2020/08/122         Cobalt, total         mg/L         4.0.0002           UA         G404         C         2021/01/13         Cobalt, total         mg/L         4.0.002           UA         G404         C         2021/08/17         Cobalt, total         mg/L         4.0.002           UA         G404         C         2021/08/17         Cobalt, total         mg/L         4.0.002           UA         G404         C         2022/02/08         Cobalt, total         mg/L         4.0.00048           UA         G404         C         2022/02/08         Cobalt, total         mg/L         4.0.00048           UA         G404         C         2022/08/14         Cobalt, total         mg/L         4.0.00048           UA         G404         C         2023/06/07         Cobalt, total         mg/L         4.0.0		G404	c	2018/08/04	Cobalt total	mg/L	<0.00067
Cha         Catol         Costality Costality, Total         mg/L         0.00230           UA         G404         C         2020/01/22         Cobality, total         mg/L         <0.00025		G404	c	2019/01/24	Cobalt total	mg/L	<0.00067
Construct         Construct         Top         Construct         Top         Construct           UA         G404         C         2020/09/122         Cobalt, total         mg/L         <0.00027		G404	c C	2019/01/24		mg/L	0.00290
On         Cond         Cond (Cond)         Cond (Cond)         Cond)         Cond) <thcond)< th=""></thcond)<>		G404	C	2013/08/10		mg/L	<0.00250
DA         G404         C         2020/03/12         Cobait, total         Img/L         C000022           UA         G404         C         2021/01/21         Cobait, total         mg/L         <0.0022		G404	C C	2020/01/22		mg/L	<0.00007
DA         G404         C         2021/10/21         Cobait, total         mg/L         <0.0002           UA         G404         C         2021/04/27         Cobait, total         mg/L         <0.0002		G404	C C	2020/08/12		mg/L	<0.00022
UA         G404         C         201/[J21]         Lobalt, total         mg/L         40.00022           UA         G404         C         2021/08/17         Cobalt, total         mg/L         40.0022           UA         G404         C         2021/08/17         Cobalt, total         mg/L         40.0022           UA         G404         C         2022/05/10         Cobalt, total         mg/L         40.00019           UA         G404         C         2022/05/10         Cobalt, total         mg/L         40.00048           UA         G404         C         2022/05/10         Cobalt, total         mg/L         40.00048           UA         G404         C         2022/05/10         Cobalt, total         mg/L         40.00048           UA         G404         C         2023/06/07         Cobalt, total         mg/L         40.000330           UA         G404         C         2023/06/07         Ferrous tron, dissolved         mg/L         40.0330           UA         G404         C         2023/06/07         Ferrous tron, dissolved         mg/L         40.30           UA         G404         C         2023/06/07         Ferrous tron, dissolved         mg/L	UA	G404	C C	2020/10/13		mg/L	<0.002
UA         G404         C $201/19/17$ Cobalt, total         mg/L         < 0.0002           UA         G404         C $2021/10/26$ Cobalt, total         mg/L         < 0.0002	UA	G404	C C	2021/01/21	Cobalt, total	mg/L	<0.00022
UA         G404         C         2021/10/26         Cobalt, total         mg/L         C0.0002           UA         G404         C         2021/10/26         Cobalt, total         mg/L         <0.0001	UA	G404	C	2021/04/27	Cobalt, total	mg/L	<0.002
UA         G404         C         2021/10/2b         Cobalt, total         mg/L         <         <            UA         G404         C         2022/02/8C         Cobalt, total         mg/L         <	UA	G404	C	2021/08/17	Cobalt, total	mg/L	<0.00022
UA         G404         C         2022/05/10         Cobalt, total         mg/L         <             UA         G404         C         2022/05/10         Cobalt, total         mg/L         <	UA	G404	С	2021/10/26	Cobalt, total	mg/L	<0.002
UA         G404         C         2022/05/10         Cobalt, total         mg/L         <            UA         G404         C         2022/05/24         Cobalt, total         mg/L         <	UA	G404	С	2022/02/08	Cobalt, total	mg/L	<0.00019
UA         G404         C         2022/108/24         Cobalt, total         mg/L         <0.00048           UA         G404         C         2023/10/24         Cobalt, total         mg/L         <0.00048	UA	G404	C	2022/05/10	Cobalt, total	mg/L	<0.00048
UA         G404         C         2022/21/109         Cobalt, total         mg/L         <0.00048           UA         G404         C         2023/02/14         Cobalt, total         mg/L         <0.00048	UA	G404	С	2022/08/24	Cobalt, total	mg/L	<0.00048
UA         G404         C         2023/06/10         Cobalt, total         mg/L         <0.00048           UA         G404         C         2023/06/17         Cobalt, total         mg/L         <0.000330	UA	G404	С	2022/11/09	Cobalt, total	mg/L	<0.00048
UA         G404         C         2023/06/07         Cobalt, total         mg/L         <.0.00048           UA         G404         C         2023/08/14         Cobalt, total         mg/L         0.000300           UA         G404         C         2023/11/21         Cobalt, total         mg/L         0.00020           UA         G404         C         2023/06/07         Ferrous Iron, dissolved         mg/L         0.0300           UA         G404         C         2023/06/07         Ferrous Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/01/13         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/02/21         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/02/21         Iron, dissolved         mg/L         0.010           UA         G404         C         2021/02/26         Iron, dissolved         mg/L         0.210           UA         G404         C         2022/02/08         Iron, dissolved         mg/L         0.210           UA         G404         C         2022/08/24         Iron, dissolved         mg/L	UA	G404	С	2023/02/14	Cobalt, total	mg/L	<0.00048
UA         G404         C         2023/08/14         Cobalt, total         mg/L         0.000300           UA         G404         C         2015/10/07         Cobalt, total         mg/L         0.000600           UA         G404         C         2015/10/07         Cobalt, total         mg/L         0.000600           UA         G404         C         2023/06/07         Ferrous Iron, dissolved         mg/L         0.0330           UA         G404         C         2020/10/13         Iron, dissolved         mg/L         0.0330           UA         G404         C         2021/10/121         Iron, dissolved         mg/L         0.0330           UA         G404         C         2021/10/21         Iron, dissolved         mg/L         0.0330           UA         G404         C         2021/10/26         Iron, dissolved         mg/L         0.010           UA         G404         C         2022/02/08         Iron, dissolved         mg/L         0.400           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.750           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0	UA	G404	С	2023/06/07	Cobalt, total	mg/L	<0.00048
UA         6404         C         2023/11/21         Cobalt, total         mg/L         0.000600           UA         6404         C         2015/10/07         Cobalt, total         mg/L         0.002           UA         6404         C         2023/06/07         Ferrous Iron, dissolved         mg/L         0.0330           UA         6404         C         2020/08/12         Iron, dissolved         mg/L         0.0300           UA         6404         C         2021/10/121         Iron, dissolved         mg/L         0.0300           UA         6404         C         2021/10/271         Iron, dissolved         mg/L         0.0300           UA         6404         C         2021/10/26         Iron, dissolved         mg/L         0.210           UA         6404         C         2021/08/17         Iron, dissolved         mg/L         0.210           UA         6404         C         2022/08/10         Iron, dissolved         mg/L         0.040           UA         6404         C         2022/08/24         Iron, dissolved         mg/L         0.0500           UA         6404         C         2023/08/14         Iron, dissolved         mg/L         0.007	UA	G404	С	2023/08/14	Cobalt, total	mg/L	0.00330
IAA         G404         C         2015/10/07         Cobalt, total         mg/L         <0.002           UA         G404         C         2023/06/07         Ferrous Iron, dissolved         mg/L         0.100           UA         G404         C         2020/08/12         Iron, dissolved         mg/L         0.0330           UA         G404         C         2021/01/13         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/04/27         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/04/27         Iron, dissolved         mg/L         0.160           UA         G404         C         2021/02/08         Iron, dissolved         mg/L         0.210           UA         G404         C         2022/08/170         Iron, dissolved         mg/L         0.400           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.400           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.0072           UA         G404         C         2023/02/14         Iron, dissolved         mg/L         0.0078	UA	G404	С	2023/11/21	Cobalt, total	mg/L	0.000600
UA         G404         C         2023/06/07         Ferrous Iron, dissolved         mg/L         0.100           UA         G404         C         2020/08/12         Iron, dissolved         mg/L         0.030           UA         G404         C         2020/10/13         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/01/21         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/08/27         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/08/21         Iron, dissolved         mg/L         0.160           UA         G404         C         2022/08/21         Iron, dissolved         mg/L         0.210           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.750           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.0580           UA         G404         C         2023/02/14         Iron, dissolved         mg/L         0.0712           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0072	UA	G404	С	2015/10/07	Cobalt, total	mg/L	< 0.002
UA         G404         C         2020/08/12         tron, dissolved         mg/L         0.0330           UA         G404         C         2020/10/13         tron, dissolved         mg/L         0.130           UA         G404         C         2021/01/21         tron, dissolved         mg/L         0.0300           UA         G404         C         2021/04/27         tron, dissolved         mg/L         0.011           UA         G404         C         2021/02/17         tron, dissolved         mg/L         0.0210           UA         G404         C         2021/02/08         tron, dissolved         mg/L         0.210           UA         G404         C         2022/02/08         tron, dissolved         mg/L         0.210           UA         G404         C         2022/05/10         tron, dissolved         mg/L         0.0400           UA         G404         C         2022/06/24         tron, dissolved         mg/L         0.0490           UA         G404         C         2023/06/07         tron, dissolved         mg/L         0.0580           UA         G404         C         2023/06/07         tron, dissolved         mg/L         0.0718	UA	G404	С	2023/06/07	Ferrous Iron, dissolved	mg/L	0.100
UA         G404         C         2020/10/13         Iron, dissolved         mg/L         0.130           UA         G404         C         2021/01/21         Iron, dissolved         mg/L         0.0300           UA         G404         C         2021/04/27         Iron, dissolved         mg/L         <0.01	UA	G404	С	2020/08/12	Iron, dissolved	mg/L	0.0330
UA         G404         C         2021/01/21         Iron, dissolved $mg/L$ 0.0300           UA         G404         C         2021/04/27         Iron, dissolved $mg/L$ <0.01	UA	G404	С	2020/10/13	Iron, dissolved	mg/L	0.130
UA         G404         C         2021/04/27         Iron, dissolved         mg/L         <0.01           UA         G404         C         2021/08/17         Iron, dissolved         mg/L         0.160           UA         G404         C         2021/10/26         Iron, dissolved         mg/L         0.820           UA         G404         C         2022/02/08         Iron, dissolved         mg/L         0.210           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.750           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.0490           UA         G404         C         2022/05/24         Iron, dissolved         mg/L         0.0580           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0580           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0718           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0530           UA         G404         C         2023/02/17/21         Magnesium, total         mg/L         73.0	UA	G404	c	2021/01/21	Iron, dissolved	mg/L	0.0300
DA         G404         C         D221/08/17         Iron, dissolved         mg/L         0.160           UA         G404         C         2021/08/17         Iron, dissolved         mg/L         0.820           UA         G404         C         2022/02/08         Iron, dissolved         mg/L         0.210           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.400           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.400           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.0490           UA         G404         C         2022/08/24         Iron, dissolved         mg/L         0.0490           UA         G404         C         2023/02/14         Iron, dissolved         mg/L         0.0072           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.09944           UA         G404         C         2013/10/21         Iron, dissolved         mg/L         0.0580           UA         G404         C         2015/10/07         Iron, dissolved         mg/L         0.09944	UA	G404	c	2021/04/27	Iron, dissolved	mg/L	<0.01
Diff         Diff<         Diff<         Diff<         Diff<         Diff<         Diff<         Diff<         Diff<         Diff	UA	G404	C C	2021/08/17	Iron, dissolved	mg/l	0.160
Dist         Dist         Dist         Dist         Dist         Dist           UA         6404         C         2022/02/08         Iron, dissolved         mg/L         0.210           UA         6404         C         2022/08/24         Iron, dissolved         mg/L         0.400           UA         6404         C         2022/08/24         Iron, dissolved         mg/L         0.0490           UA         6404         C         2023/02/14         Iron, dissolved         mg/L         0.0490           UA         6404         C         2023/06/07         Iron, dissolved         mg/L         0.0580           UA         6404         C         2023/08/14         Iron, dissolved         mg/L         0.0580           UA         6404         C         2023/08/14         Iron, dissolved         mg/L         0.0944           UA         6404         C         2015/10/07         Iron, dissolved         mg/L         0.530           UA         6404         C         2021/01/21         Magnesium, total         mg/L         71.0           UA         6404         C         2021/01/21         Magnesium, total         mg/L         110           UA	UA	G404	C	2021/10/26	Iron, dissolved	mg/l	0.820
Or         C         2022/05/10         Iron, dissolved         mg/L         0.110           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.400           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.750           UA         G404         C         2022/05/10         Iron, dissolved         mg/L         0.0400           UA         G404         C         2022/05/07         Iron, dissolved         mg/L         0.0490           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0580           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0718           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0744           UA         G404         C         2023/01/21         Iron, dissolved         mg/L         0.0530           UA         G404         C         2017/07/14         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         110		G404	c	2022/02/08	Iron dissolved	mg/L	0.210
Dr.         Dr. <thdr.< th=""> <thdr.< th=""> <thdr.< th=""></thdr.<></thdr.<></thdr.<>		G404	c	2022/05/10	Iron dissolved	mg/L	0.400
OA         GAO4         C         2022/10/24         Intro, dissolved         Intro, dissolved		G404	c C	2022/03/10	Iron, dissolved	mg/L	0.750
OA         OAG         C         2022/11/03         Indit, dissolved         Indit, dissolved         Indit, dissolved           UA         G404         C         2023/02/14         Iron, dissolved         mg/L         <0.00072		G404	C	2022/08/24	Iron, dissolved	mg/L	0.750
DA         G404         C         202/02/14         Indit, dissolved         Ing/L         C0.0072           UA         G404         C         2023/06/07         Iron, dissolved         mg/L         0.0580           UA         G404         C         2023/08/14         Iron, dissolved         mg/L         0.0718           UA         G404         C         2023/11/21         Iron, dissolved         mg/L         0.0944           UA         G404         C         2015/10/07         Iron, dissolved         mg/L         0.530           UA         G404         C         2017/07/14         Magnesium, total         mg/L         73.0           UA         G404         C         2021/01/22         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         110           UA         G404         C         2022/02/08         Magnesium, total         mg/L         130           UA         G404         C         2022/08/24         Magnesium, total         mg/L         140           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110 </td <td></td> <td>G404</td> <td>c c</td> <td>2022/11/05</td> <td>Iron, dissolved</td> <td>mg/L</td> <td>&lt;0.0430</td>		G404	c c	2022/11/05	Iron, dissolved	mg/L	<0.0430
DA         G404         C         2023/08/07         Indit, dissolved         Ing/L         0.0380           UA         G404         C         2023/08/14         Iron, dissolved         mg/L         0.0718           UA         G404         C         2023/08/14         Iron, dissolved         mg/L         0.0944           UA         G404         C         2023/11/21         Iron, dissolved         mg/L         0.530           UA         G404         C         2015/10/07         Iron, dissolved         mg/L         0.530           UA         G404         C         2020/01/22         Magnesium, total         mg/L         73.0           UA         G404         C         2021/02/12         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         110           UA         G404         C         2022/02/08         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/08/14         Magnesium, total         mg/L         110 <td></td> <td>G404</td> <td>C C</td> <td>2023/02/14</td> <td></td> <td>mg/L</td> <td>&lt;0.00072</td>		G404	C C	2023/02/14		mg/L	<0.00072
DA         G404         C         2023/08/14         Indit, dissolved         Inig/L         0.0718           UA         G404         C         2023/11/21         Iron, dissolved         mg/L         0.0944           UA         G404         C         2015/10/07         Iron, dissolved         mg/L         0.530           UA         G404         C         2017/07/14         Magnesium, total         mg/L         89.0           UA         G404         C         2020/01/22         Magnesium, total         mg/L         73.0           UA         G404         C         2021/01/21         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         97.0           UA         G404         C         2022/02/08         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/08/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         124 <td></td> <td>G404</td> <td>C C</td> <td>2023/06/07</td> <td>Iron, dissolved</td> <td>mg/L</td> <td>0.0580</td>		G404	C C	2023/06/07	Iron, dissolved	mg/L	0.0580
UA         G404         C         2023/11/21         Iron, dissolved         mg/L         0.0944           UA         G404         C         2015/10/07         Iron, dissolved         mg/L         0.530           UA         G404         C         2017/07/14         Magnesium, total         mg/L         89.0           UA         G404         C         2020/01/22         Magnesium, total         mg/L         73.0           UA         G404         C         2021/01/21         Magnesium, total         mg/L         73.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         71.0           UA         G404         C         2022/02/08         Magnesium, total         mg/L         110           UA         G404         C         2022/02/08         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         110           UA         G404         C         2023/06/07         Magnesium, total         mg/L         124	UA	G404	C C	2023/08/14		mg/L	0.0718
UA         G404         C         2015/10/07         Iron, dissolved         mg/L         0.530           UA         G404         C         2017/07/14         Magnesium, total         mg/L         89.0           UA         G404         C         2020/01/22         Magnesium, total         mg/L         73.0           UA         G404         C         2021/01/21         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/121         Magnesium, total         mg/L         110           UA         G404         C         2022/08/24         Magnesium, total         mg/L         97.0           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         80.0           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         124           UA         G404         C         2023/01/21         Magnesium, total         mg/L         0.520	UA	G404	C	2023/11/21	Iron, dissolved	mg/L	0.0944
UA         G404         C         201//01/14         Magnesium, total         mg/L         89.0           UA         G404         C         2020/01/22         Magnesium, total         mg/L         73.0           UA         G404         C         2021/01/21         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         110           UA         G404         C         2022/08/08         Magnesium, total         mg/L         97.0           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         110           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Magnese, dissolved         mg/L         0.520	UA	G404	C	2015/10/07	Iron, dissolved	mg/L	0.530
UA         G404         C         2020/01/22         Magnesium, total         mg/L         73.0           UA         G404         C         2021/01/21         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         110           UA         G404         C         2022/02/08         Magnesium, total         mg/L         97.0           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         124           UA         G404         C         2023/08/14         Magnesium, total         mg/L         0.520           UA         G404         C         2018/03/03         Magnesium, total         mg/L         0.520	UA	6404		2017/07/14	iviagnesium, total	mg/L	89.0
UA         G404         C         2021/01/21         Magnesium, total         mg/L         71.0           UA         G404         C         2021/08/17         Magnesium, total         mg/L         110           UA         G404         C         2022/02/08         Magnesium, total         mg/L         97.0           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         80.0           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         124           UA         G404         C         2023/11/21         Magnesium, total         mg/L         0.520           UA         G404         C         2018/03/03         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220	UA	G404	0	2020/01/22	Magnesium, total	mg/L	73.0
UA         G404         C         2021/08/17         Magnesium, total         mg/L         110           UA         G404         C         2022/02/08         Magnesium, total         mg/L         97.0           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Magnese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         0.290	UA	G404	C	2021/01/21	Magnesium, total	mg/L	71.0
UA         G404         C         2022/02/08         Magnesium, total         mg/L         97.0           UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         80.0           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         110           UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Magnese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.29	UA	G404	C	2021/08/17	Magnesium, total	mg/L	110
UA         G404         C         2022/08/24         Magnesium, total         mg/L         130           UA         G404         C         2023/02/14         Magnesium, total         mg/L         80.0           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         95.7           UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Magnese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L <t< td=""><td>UA</td><td>G404</td><td>С</td><td>2022/02/08</td><td>Magnesium, total</td><td>mg/L</td><td>97.0</td></t<>	UA	G404	С	2022/02/08	Magnesium, total	mg/L	97.0
UA         G404         C         2023/02/14         Magnesium, total         mg/L         80.0           UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         95.7           UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Mangnese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Mangnese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Mangnese, dissolved         mg/L         0.0220           UA         G404         C         2018/08/11         Mangnese, dissolved         mg/L         0.0220           UA         G404         C         2018/01/04         Mangnese, dissolved         mg/L         0.290           UA         G404         C         2019/05/02         Mangnese, dissolved         mg/L	UA	G404	С	2022/08/24	Magnesium, total	mg/L	130
UA         G404         C         2023/06/07         Magnesium, total         mg/L         110           UA         G404         C         2023/08/14         Magnesium, total         mg/L         95.7           UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Manganese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/01/04         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L	UA	G404	С	2023/02/14	Magnesium, total	mg/L	80.0
UA         G404         C         2023/08/14         Magnesium, total         mg/L         95.7           UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Magnese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/01/04         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved	UA	G404	С	2023/06/07	Magnesium, total	mg/L	110
UA         G404         C         2023/11/21         Magnesium, total         mg/L         124           UA         G404         C         2018/03/03         Manganese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         1.50           UA         G404         C         2018/11/06         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2019/10/21         Manganese, dissolved	UA	G404	С	2023/08/14	Magnesium, total	mg/L	95.7
UA         G404         C         2018/03/03         Manganese, dissolved         mg/L         0.520           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         1.50           UA         G404         C         2018/11/06         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300	UA	G404	С	2023/11/21	Magnesium, total	mg/L	124
UA         G404         C         2018/05/12         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         1.50           UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         0.0220           UA         G404         C         2018/11/06         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.0320	UA	G404	С	2018/03/03	Manganese, dissolved	mg/L	0.520
UA         G404         C         2018/08/11         Manganese, dissolved         mg/L         1.50           UA         G404         C         2018/11/06         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.320	UA	G404	С	2018/05/12	Manganese, dissolved	mg/L	0.0220
UA         G404         C         2018/11/06         Manganese, dissolved         mg/L         0.290           UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.320	UA	G404	С	2018/08/11	Manganese, dissolved	mg/L	1.50
UA         G404         C         2019/01/24         Manganese, dissolved         mg/L         0.0610           UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.0320	UA	G404	С	2018/11/06	Manganese, dissolved	mg/L	0.290
UA         G404         C         2019/05/02         Manganese, dissolved         mg/L         0.00960           UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.0320	UA	G404	С	2019/01/24	Manganese, dissolved	mg/L	0.0610
UA         G404         C         2019/08/16         Manganese, dissolved         mg/L         0.170           UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.320	UA	G404	С	2019/05/02	Manganese, dissolved	mg/L	0.00960
UA         G404         C         2019/10/21         Manganese, dissolved         mg/L         0.300           UA         G404         C         2020/01/22         Manganese, dissolved         mg/L         0.320	UA	G404	с	2019/08/16	Manganese, dissolved	mg/L	0.170
UA G404 C 2020/01/22 Manganese dissolved mg/i 0.0320	UA	G404	с	2019/10/21	Manganese, dissolved	mg/L	0.300
	UA	G404	с	2020/01/22	Manganese, dissolved	mg/L	0.0320

UA	G404	С	2020/05/06	Manganese, dissolved	mg/L	0.0820
UA	G404	С	2020/08/12	Manganese, dissolved	mg/L	0.330
UA	G404	С	2020/10/13	Manganese, dissolved	mg/L	0.300
UA	G404	С	2021/01/21	Manganese, dissolved	mg/L	0.150
UA	G404	С	2021/04/27	Manganese, dissolved	mg/L	0.200
UA	G404	С	2021/08/17	Manganese, dissolved	mg/L	0.920
UA	G404	С	2021/10/26	Manganese, dissolved	mg/L	1.20
UA	G404	c	2022/02/08	Manganese, dissolved	mg/L	0.100
UA	G404	c	2022/05/10	Manganese, dissolved	mg/I	0.180
UA	G404	c	2022/08/24	Manganese, dissolved	mg/l	1.40
UA	G404	c	2022/11/09	Manganese, dissolved	mg/I	1.80
UA	G404	C C	2023/02/14	Manganese, dissolved	mg/l	0.330
	G404	c	2023/06/07	Manganese dissolved	mg/l	1 20
	G404	c	2023/08/14	Manganese dissolved	mg/L	2.85
	G404	c	2023/00/11	Manganese dissolved	mg/L	1 46
	G404	c	2015/10/07	Manganese dissolved	mg/L	0.330
	G404	c	2013/10/07	Phosphate dissolved	mg/L	<0.005
	G404	c	2023/03/14	Potassium total	mg/L	1 20
	G404	c	2017/07/14	Potassium total	mg/L	0.330
	G404	c c	2020/01/22	Potassium total	mg/L	0.330
	G404	C C	2021/01/21	Potassium, total	mg/L	0.280
	G404	c c	2021/08/17	Potassium, total	mg/L	0.480
	G404	C C	2022/02/08	Potassium, total	mg/L	0.420
	G404	c c	2022/08/24	Potassium, total	mg/L	0.720
	G404	C C	2023/02/14	Potassium, total	mg/L	0.230
	G404	C C	2023/00/07		mg/L	0.430
	G404	C C	2023/08/14	Polassium, total	mg/L	0.627
	G404	C C	2023/11/21		mg/L	0.594
	G404	C	2023/06/07	Silicon, dissolved	mg/L	11.0
	G404	C C	2023/08/14	Silicoli, dissolved	mg/L	10.2
	G404	C C	2017/07/14	Sodium, total	mg/L	64.0 F8.0
	G404	C C	2020/01/22	Sodium, total	mg/L	58.0
	G404	C C	2021/01/21	Sodium, total	mg/L	56.0
UA	G404		2021/08/17	Sodium, total	mg/L	87.0
	G404	C C	2022/02/08	Sodium, total	mg/L	72.0
	G404	C C	2022/08/24	Sodium, total	mg/L	96.0
	G404		2023/02/14	Sodium, total	mg/L	70.0
UA	G404		2023/06/07	Sodium, total	mg/L	81.0
	G404	C C	2023/08/14	Sodium, total	mg/L	78.0
UA	G404		2023/11/21		mg/L	94.0
UA	G404		2015/11/21		mg/L	180
UA	G404		2016/02/15		mg/L	150
UA	G404		2016/05/19	Sulfate, total	mg/L	140
UA	G404	C C	2016/08/02	Sulfate, total	mg/L	190
UA	G404		2016/11/22	Sulfate, total	mg/L	380
	G404		2017/02/18	Suifate, total	mg/L	230
	G404		2017/05/16		mg/L	160
UA	G404		2017/07/14		mg/L	310
UA	6404		2017/10/28	Suirate, total	mg/L	390
UA	6404		2018/05/12	Suitate, total	mg/L	370
UA	G404		2018/08/04	Suitate, total	mg/L	410
UA	G404		2019/01/24	Suitate, total	mg/L	220
UA	G404	0	2019/08/16	Sulfate, total	mg/L	170
UA	G404	C	2020/01/22	Sulfate, total	mg/L	200
UA	G404	С	2020/08/12	Sulfate, total	mg/L	190
UA	G404	С	2020/10/13	Sulfate, total	mg/L	280
UA	G404	С	2021/01/21	Sulfate, total	mg/L	200
UA	G404	С	2021/04/27	Sulfate, total	mg/L	250
UA	G404	С	2021/08/17	Sulfate, total	mg/L	470
UA	G404	С	2021/10/26	Sulfate, total	mg/L	500
UA	G404	С	2022/02/08	Sulfate, total	mg/L	480
UA	G404	С	2022/05/10	Sulfate, total	mg/L	520
UA	G404	С	2022/08/24	Sulfate, total	mg/L	810
UA	G404	С	2022/11/09	Sulfate, total	mg/L	840

UA	G404	С	2023/02/14	Sulfate, total	mg/L	510
UA	G404	С	2023/06/07	Sulfate, total	mg/L	700
UA	G404	С	2023/08/14	Sulfate, total	mg/L	678
UA	G404	С	2023/11/21	Sulfate, total	mg/L	647
UA	G404	С	2015/10/07	Sulfate, total	mg/L	290
UA	G404	С	2015/11/21	Temperature (Celsius)	degrees C	17.0
UA	G404	с	2016/02/15	Temperature (Celsius)	degrees C	8.10
UA	G404	C	2016/05/19	Temperature (Celsius)	degrees C	18.7
UA	G404	C C	2016/08/02	Temperature (Celsius)	degrees C	19.5
	G404	c	2016/11/22	Temperature (Celsius)	degrees C	16.0
	G404	c	2017/02/18	Temperature (Celsius)	degrees C	15.9
	G404	c	2017/05/16	Temperature (Celsius)	degrees C	15.4
	G404	c C	2017/03/10	Temperature (Celsius)	degrees C	19.4
	G404	C	2017/07/14	Temperature (Celsius)	dogroos C	12.6
	G404	C	2017/10/28	Temperature (Celsius)	degrees C	13.0
UA	G404	C C	2018/05/12	Temperature (Celsius)	degrees C	14.4
UA	G404	C C	2018/08/04	Temperature (Celsius)	degrees C	15.5
UA	G404	C C	2019/01/24	Temperature (Celsius)	degrees C	11.3
UA	G404	C	2019/08/16	Temperature (Celsius)	degrees C	17.0
UA	G404	С	2020/01/22	Temperature (Celsius)	degrees C	7.60
UA	G404	С	2020/08/12	Temperature (Celsius)	degrees C	22.9
UA	G404	С	2020/10/13	Temperature (Celsius)	degrees C	18.8
UA	G404	С	2021/01/21	Temperature (Celsius)	degrees C	10.7
UA	G404	С	2021/04/27	Temperature (Celsius)	degrees C	17.6
UA	G404	С	2021/08/17	Temperature (Celsius)	degrees C	24.4
UA	G404	С	2021/10/26	Temperature (Celsius)	degrees C	18.6
UA	G404	С	2022/02/08	Temperature (Celsius)	degrees C	8.90
UA	G404	С	2022/05/10	Temperature (Celsius)	degrees C	18.1
UA	G404	С	2022/08/24	Temperature (Celsius)	degrees C	22.7
UA	G404	С	2022/11/09	Temperature (Celsius)	degrees C	19.8
UA	G404	С	2023/02/14	Temperature (Celsius)	degrees C	10.7
UA	G404	С	2023/06/07	Temperature (Celsius)	degrees C	17.3
UA	G404	С	2023/08/14	Temperature (Celsius)	degrees C	19.4
UA	G404	C	2023/11/21	Temperature (Celsius)	degrees C	13.7
UA	G404	C	2015/11/21	Total Dissolved Solids	mg/l	580
UA	G404	c	2016/02/15	Total Dissolved Solids	mg/L	560
	G404	c	2016/05/19	Total Dissolved Solids	mg/l	460
	G404	c	2016/08/02	Total Dissolved Solids	mg/L	620
	G101	c	2016/00/02	Total Dissolved Solids	mg/L	880
	G404	c C	2010/11/22	Total Dissolved Solids	mg/L mg/l	740
	G404	C	2017/02/18	Total Dissolved Solids	mg/L	640
	G404	C C	2017/03/10	Total Dissolved Solids	mg/L	860
	G404	C C	2017/07/14	Total Dissolved Solids	mg/L	800
UA	G404	C C	2017/10/28	Total Dissolved Solids	mg/L	950
UA	G404	C C	2018/05/12	Total Dissolved Solids	mg/L	1,000
	G404		2018/08/04	Total Dissolved Solids	mg/L	1,000
	G404		2019/01/24	Total Dissolved Solids	mg/L	/20
UA	6404		2019/08/16		mg/L	600
UA	G404	C	2020/01/22	Total Dissolved Solids	mg/L	700
UA	G404	L -	2020/08/12	Total Dissolved Solids	mg/L	720
UA	G404	C	2020/10/13	Total Dissolved Solids	mg/L	1,200
UA	G404	С	2021/01/21	Total Dissolved Solids	mg/L	910
UA	G404	С	2021/04/27	Total Dissolved Solids	mg/L	1,200
UA	G404	С	2021/08/17	Total Dissolved Solids	mg/L	1,500
UA	G404	С	2021/10/26	Total Dissolved Solids	mg/L	1,400
UA	G404	С	2022/02/08	Total Dissolved Solids	mg/L	1,300
UA	G404	С	2022/05/10	Total Dissolved Solids	mg/L	1,500
UA	G404	С	2022/08/24	Total Dissolved Solids	mg/L	1,800
UA	G404	С	2022/11/09	Total Dissolved Solids	mg/L	1,900
UA	G404	С	2023/02/14	Total Dissolved Solids	mg/L	1,200
UA	G404	С	2023/06/07	Total Dissolved Solids	mg/L	1,300
UA			0000/00/11	Total Dissolved Selids	ma/l	1 600
	G404	С	2023/08/14	TOLAI DISSOIVEU SOIIUS	ilig/L	1,000
UA	G404 G404	C C	2023/08/14 2023/11/21	Total Dissolved Solids	mg/L	1,370
UA UA	G404 G404 G404	c c c	2023/08/14 2023/11/21 2015/10/07	Total Dissolved Solids Total Dissolved Solids Total Dissolved Solids	mg/L mg/L	1,370 860

UA	G405	С	2016/02/15	pH (field)	SU	7.1
UA	G405	С	2016/05/18	pH (field)	SU	6.9
UA	G405	С	2016/08/02	pH (field)	SU	6.8
UA	G405	С	2016/11/22	pH (field)	SU	6.9
UA	G405	с	2017/02/18	pH (field)	SU	7.0
UA	G405	С	2017/05/16	pH (field)	SU	7.1
UA	G405	c	2017/07/14	pH (field)	SU	6.8
UA	G405	c	2017/10/28	pH (field)	SU	7.0
	G405	c	2018/05/12	nH (field)	SU	6.9
	G405	c	2018/08/04	nH (field)	SU	6.6
	G405	c	2010/00/01	pH (field)	SU	6.6
	G405	c	2019/01/25	pH (field)	SU	6.7
	G405	c c	2013/08/20	pH (field)	SU SU	7.0
	G405	C C	2020/01/22	pir (field)	50 SU	7.0
	G405	C C	2020/08/12	pri (field)	SU	7.0
UA	G405	C c	2020/10/13		SU	7.0
UA	G405	C	2021/01/21	pH (field)	SU	6.9
UA	G405	C	2021/04/27	pH (field)	SU	7.0
UA	G405	C	2021/08/17	pH (field)	SU	7.0
UA	G405	С	2021/10/26	pH (field)	SU	6.9
UA	G405	С	2022/02/08	pH (field)	SU	7.0
UA	G405	С	2022/05/10	pH (field)	SU	7.0
UA	G405	С	2022/08/24	pH (field)	SU	6.7
UA	G405	С	2022/11/09	pH (field)	SU	6.8
UA	G405	С	2023/02/14	pH (field)	SU	7.0
UA	G405	С	2023/06/06	pH (field)	SU	6.8
UA	G405	С	2023/08/11	pH (field)	SU	7.1
UA	G405	С	2023/11/21	pH (field)	SU	7.0
UA	G405	С	2015/10/07	pH (field)	SU	7.4
UA	G405	С	2015/11/21	Oxidation Reduction Potential	mV	23.0
UA	G405	с	2016/02/15	Oxidation Reduction Potential	mV	93.0
UA	G405	c	2016/05/18	Oxidation Reduction Potential	mV	5.00
UA	G405	c	2016/08/02	Oxidation Reduction Potential	mV	23.0
UA	G405	C C	2016/11/22	Oxidation Reduction Potential	mV	34.0
	G405	c	2017/02/18	Oxidation Reduction Potential	mV	50.0
	G405	c	2017/05/16	Oxidation Reduction Potential	mV	57.0
	G405	c	2017/03/10	Ovidation Reduction Potential	m\/	30.0
	G405	c c	2017/07/14	Ovidation Reduction Potential	mV	18.0
	G405	c c	2017/10/28	Ovidation Reduction Potential	mV	21.0
	G405	C C	2018/03/12	Oxidation Reduction Potential	mV	57.0
	G405	C C	2018/08/04	Ovidation Reduction Potential	111 V ma\/	57.0
UA	G405		2019/01/25	Oxidation Reduction Potential		58.0
UA	G405		2019/08/20	Oxidation Reduction Potential	mv mv	62.0
UA	G405	C c	2020/01/22	Oxidation Reduction Potential	mv	120
UA	G405	C	2020/08/12	Oxidation Reduction Potential	mV	48.5
UA	6405		2020/10/13	Oxidation Reduction Potential	mv	83.9
UA	6405		2021/01/21	Uxidation Reduction Potential	mv	/5.6
UA	6405	L	2021/04/27	Uxidation Reduction Potential	mv	59.4
UA	G405	C	2021/08/17	Oxidation Reduction Potential	mV	57.2
UA	G405	C .	2021/10/26	Oxidation Reduction Potential	mV	43.0
UA	G405	С	2022/02/08	Oxidation Reduction Potential	mV	152
UA	G405	С	2022/05/10	Oxidation Reduction Potential	mV	86.4
UA	G405	С	2022/08/24	Oxidation Reduction Potential	mV	38.0
UA	G405	С	2022/11/09	Oxidation Reduction Potential	mV	25.0
UA	G405	С	2023/02/14	Oxidation Reduction Potential	mV	295
UA	G405	С	2023/06/06	Oxidation Reduction Potential	mV	68.0
UA	G405	С	2023/08/11	Oxidation Reduction Potential	mV	-21.0
UA	G405	С	2023/11/21	Oxidation Reduction Potential	mV	76.0
UA	G405	С	2015/11/21	Eh	V	0.22
UA	G405	С	2016/02/15	Eh	V	0.29
UA	G405	С	2016/05/18	Eh	V	0.20
UA	G405	С	2016/08/02	Eh	V	0.22
UA	G405	С	2016/11/22	Eh	V	0.23
UA	G405	С	2017/02/18	Eh	V	0.25
UA	G405	С	2017/05/16	Eh	V	0.25

UA	G405	С	2017/07/14	Eh	V	0.22
UA	G405	с	2017/10/28	Eh	V	0.21
UA	G405	c	2018/05/12	Eh	V	0.22
	G405	c	2018/08/04	Eb	V	0.25
	G405	c	2010/00/04	Eh	V	0.25
	G405	C C	2019/01/23	Eh	V	0.20
UA	G405	C C	2019/08/20		V	0.20
UA	G405	C C	2020/01/22		V	0.32
UA	G405	C	2020/08/12	En	V	0.24
UA	G405	С	2020/10/13	Eh	V	0.28
UA	G405	С	2021/01/21	Eh	V	0.27
UA	G405	С	2021/04/27	Eh	V	0.25
UA	G405	С	2021/08/17	Eh	V	0.25
UA	G405	С	2021/10/26	Eh	V	0.24
UA	G405	С	2022/02/08	Eh	V	0.35
UA	G405	с	2022/05/10	Eh	V	0.28
UA	G405	C	2022/08/24	Eh	V	0.23
	G405	c	2022/00/21	Eb	V	0.23
	G405	c	2022/11/05	Eh	V	0.22
	G405	C C	2023/02/14		V	0.49
UA	G405		2023/06/06		V	0.20
UA	G405	C	2023/08/11	En	V	0.17
UA	G405	С	2023/11/21	Eh	V	0.27
UA	G405	С	2017/07/14	Alkalinity, bicarbonate	mg/L CaCO3	280
UA	G405	С	2020/01/22	Alkalinity, bicarbonate	mg/L CaCO3	280
UA	G405	С	2021/01/21	Alkalinity, bicarbonate	mg/L CaCO3	280
UA	G405	С	2021/08/17	Alkalinity, bicarbonate	mg/L CaCO3	270
UA	G405	С	2022/02/08	Alkalinity, bicarbonate	mg/L CaCO3	250
UA	G405	с	2022/08/24	Alkalinity, bicarbonate	mg/L CaCO3	260
UA	G405	с	2023/02/14	Alkalinity, bicarbonate	mg/L CaCO3	280
UA	G405	c	2023/06/06	Alkalinity, bicarbonate	mg/L CaCO3	280
	G405	c	2023/08/00		mg/L CaCO3	286
	G405	c	2023/08/11	Alkalinity, bicarbonate	mg/L CaCO3	280
	6405	C C	2023/11/21			280
UA	G405		2022/08/24	Aikainity, carbonate	mg/L CaCO3	10.0
UA	G405	C	2015/11/21	Barlum, total	mg/L	0.0510
UA	G405	C	2016/02/15	Barium, total	mg/L	0.0180
UA	G405	С	2016/05/18	Barium, total	mg/L	0.0200
UA	G405	С	2016/08/02	Barium, total	mg/L	0.0280
UA	G405	С	2016/11/22	Barium, total	mg/L	0.0220
UA	G405	С	2017/02/18	Barium, total	mg/L	0.0210
UA	G405	С	2017/05/16	Barium, total	mg/L	0.0240
UA	G405	С	2017/07/14	Barium, total	mg/L	0.0350
UA	G405	с	2018/05/12	Barium, total	mg/L	0.0260
UA	G405	C	2018/08/04	Barium, total	mg/l	0.0200
	G405	c	2019/01/25	Barium total	mg/L	0.0410
	G405	c c	2019/01/29	Barium total	mg/L	0.0410
	G405	с С	2010/01/20	Parium total		0.0300
	G405		2020/01/22	Darium total	mg/L	0.0300
	0405		2020/08/12		IIIB/L	0.0220
	G405		2020/10/13	Barium, total	mg/L	0.0220
UA	6405		2021/01/21	Barium, total	mg/L	0.0200
UA	G405	C	2021/04/27	Barium, total	mg/L	0.0140
UA	G405	С	2021/08/17	Barium, total	mg/L	0.0150
UA	G405	С	2021/10/26	Barium, total	mg/L	0.0150
UA	G405	С	2022/02/08	Barium, total	mg/L	0.0150
UA	G405	С	2022/05/10	Barium, total	mg/L	0.0150
UA	G405	С	2022/08/24	Barium, total	mg/L	0.0160
UA	G405	С	2022/11/09	Barium, total	mg/L	0.0140
UA	G405	с	2023/02/14	Barium. total	mg/L	0.0200
	G405	- C	2023/06/06	Barium total	mg/l	0.0130
	G405	с С	2023/00/00	Parium total	mg/L	0.0150
	G405		2023/00/11	Darium total	mg/L	0.0150
	G405		2023/11/21	Darium total	IIIB/L	0.0259
UA	6405		2015/10/07	Barlum, total	mg/L	0.0690
UA	G405	С	2015/11/21	Boron, total	mg/L	17.0
UA	G405	С	2016/02/15	Boron, total	mg/L	16.0
UA	G405	С	2016/05/18	Boron, total	mg/L	15.0

UA	G405	С	2016/08/02	Boron, total	mg/L	17.0
UA	G405	С	2016/11/22	Boron, total	mg/L	13.0
UA	G405	С	2017/02/18	Boron, total	mg/L	12.0
UA	G405	С	2017/05/16	Boron, total	mg/L	4.00
UA	G405	С	2017/07/14	Boron, total	mg/L	15.0
UA	G405	С	2017/10/28	Boron, total	mg/L	11.0
UA	G405	С	2018/05/12	Boron, total	mg/L	9.10
UA	G405	c	2018/08/04	Boron, total	mg/L	7.80
UA	G405	c	2019/01/25	Boron, total	mg/l	7.80
	G405	c	2019/08/20	Boron total	mg/L	4.80
	G405	c	2020/01/22	Boron total	mg/L	8 50
	G405	c	2020/01/22	Boron total	mg/L	8.90
	G405	c	2020/00/12	Boron total	mg/L	11.0
	G405	c c	2020/10/13	Boron, total	mg/L	11.0
	G405	c c	2021/01/21	Boron, total	mg/L	0.60
	G405	C C	2021/04/27	Boron, total	mg/L	9.00
	G405	C C	2021/08/17	Boron, total	mg/L	12.0
UA	G405		2021/10/28		mg/L	12.0
UA	G405	C	2022/02/08	Boron, total	mg/L	10.0
UA	G405	C	2022/05/10	Boron, total	mg/L	10.0
UA	G405	C	2022/08/24	Boron, total	mg/L	9.40
UA	G405	C	2022/11/09	Boron, total	mg/L	9.10
UA	G405	C	2023/02/14	Boron, total	mg/L	10.0
UA	G405	С	2023/06/06	Boron, total	mg/L	9.50
UA	G405	С	2023/08/11	Boron, total	mg/L	10.8
UA	G405	С	2023/11/21	Boron, total	mg/L	15.4
UA	G405	С	2015/10/07	Boron, total	mg/L	20.0
UA	G405	С	2015/11/21	Calcium, total	mg/L	330
UA	G405	С	2016/02/15	Calcium, total	mg/L	320
UA	G405	С	2016/05/18	Calcium, total	mg/L	320
UA	G405	С	2016/08/02	Calcium, total	mg/L	280
UA	G405	С	2016/11/22	Calcium, total	mg/L	250
UA	G405	С	2017/02/18	Calcium, total	mg/L	270
UA	G405	С	2017/05/16	Calcium, total	mg/L	190
UA	G405	С	2017/07/14	Calcium, total	mg/L	320
UA	G405	С	2017/10/28	Calcium, total	mg/L	300
UA	G405	С	2018/05/12	Calcium, total	mg/L	260
UA	G405	С	2018/08/04	Calcium, total	mg/L	220
UA	G405	С	2019/01/25	Calcium, total	mg/L	220
UA	G405	С	2019/08/20	Calcium, total	mg/L	140
UA	G405	с	2020/01/22	Calcium, total	mg/L	240
UA	G405	С	2020/08/12	Calcium, total	mg/L	220
UA	G405	с	2020/10/13	Calcium, total	mg/L	220
UA	G405	С	2021/01/21	Calcium, total	mg/L	250
UA	G405	c	2021/04/27	Calcium, total	mg/L	210
UA	G405	с	2021/08/17	Calcium, total	mg/L	250
UA	G405	c	2021/10/26	Calcium. total	mg/L	230
UA	G405	c.	2022/02/08	Calcium, total		260
UA	G405	c	2022/05/10	Calcium, total	mg/L	280
UA	G405	- C	2022/08/24	Calcium, total	mg/l	250
UA	G405	č	2022/11/09	Calcium, total	mg/l	230
	G405	c	2023/02/14	Calcium total	mg/l	220
	G405	c	2023/06/06	Calcium total	mg/l	250
	G405	C C	2023/08/11	Calcium total	ы. – mg/l	250
	G405	c	2023/00/11	Calcium total	mg/L	200
	G405	C C	2023/11/21		mg/L	1/0
	G405		2015/11/21		mg/L	14.0
	G405		2010/02/15		mg/L	11.0
	G405		2010/05/18		mg/L	9.30
	G405		2010/08/02		mg/L	3.40
UA	6405		2016/11/22		mg/L	19.0
UA	0405		2017/02/18		mg/L	21.0
UA	6405		2017/05/16		mg/L	47.0
UA	6405		2017/07/14	Chioride, total	mg/L	20.0
UA	G405	C	2017/10/28	Chloride, total	mg/L	26.0

UA	G405	С	2018/05/12	Chloride, total	mg/L	23.0
UA	G405	С	2018/08/04	Chloride, total	mg/L	22.0
UA	G405	С	2019/01/25	Chloride, total	mg/L	14.0
UA	G405	С	2019/08/20	Chloride, total	mg/L	17.0
UA	G405	С	2020/01/22	Chloride, total	mg/L	10.0
UA	G405	С	2020/08/12	Chloride, total	mg/L	13.0
UA	G405	С	2020/10/13	Chloride, total	mg/L	12.0
UA	G405	С	2021/01/21	Chloride. total	mg/L	5.90
UA	G405	c	2021/04/27	Chloride, total	mg/L	7.00
UA	G405	c	2021/08/17	Chloride, total	mg/L	7.80
UA	G405	c	2021/10/26	Chloride total	mg/l	11.0
	G405	c	2022/02/08	Chloride total	mg/L	6.20
	G405	c	2022/05/10	Chloride total	mg/L	5.80
	G405	c C	2022/03/10	Chloride, total	mg/L	6.90
	G405	c	2022/00/24	Chloride, total	mg/L	9.10
	G405	C	2022/11/05	Chlorido, total	mg/L	9.10
	G405	C C	2023/02/14		mg/L	9.90
	G405	C C	2023/00/00		mg/L	8.90 14.0
	G405	C C	2023/08/11		mg/L	14.0
UA	G405	C C	2025/11/21		ilig/L	17.0
	G405	C C	2015/10/07		mg/L	7.10
UA	G405	C C	2015/11/21	Cobalt, total	mg/L	0.00340
UA	G405	C	2016/02/15	Cobalt, total	mg/L	<0.000017
UA	G405	C	2016/05/18	Cobalt, total	mg/L	<0.000017
UA	G405	C	2016/08/02	Cobalt, total	mg/L	0.00380
UA	G405	С	2016/11/22	Cobalt, total	mg/L	0.00210
UA	G405	C	2017/02/18	Cobalt, total	mg/L	<0.000017
UA	G405	С	2017/05/16	Cobalt, total	mg/L	<0.000017
UA	G405	С	2017/07/14	Cobalt, total	mg/L	0.00260
UA	G405	С	2018/05/12	Cobalt, total	mg/L	0.00300
UA	G405	С	2018/08/04	Cobalt, total	mg/L	<0.00067
UA	G405	С	2019/01/25	Cobalt, total	mg/L	0.00380
UA	G405	С	2019/08/20	Cobalt, total	mg/L	<0.00067
UA	G405	С	2020/01/22	Cobalt, total	mg/L	<0.00067
UA	G405	С	2020/08/12	Cobalt, total	mg/L	<0.00022
UA	G405	С	2020/10/13	Cobalt, total	mg/L	<0.002
UA	G405	С	2021/01/21	Cobalt, total	mg/L	<0.00022
UA	G405	С	2021/04/27	Cobalt, total	mg/L	<0.002
UA	G405	С	2021/08/17	Cobalt, total	mg/L	<0.00022
UA	G405	С	2021/10/26	Cobalt, total	mg/L	< 0.002
UA	G405	С	2022/02/08	Cobalt, total	mg/L	< 0.00019
UA	G405	С	2022/05/10	Cobalt, total	mg/L	0.00110
UA	G405	С	2022/08/24	Cobalt, total	mg/L	0.00100
UA	G405	С	2022/11/09	Cobalt, total	mg/L	0.000790
UA	G405	С	2023/02/14	Cobalt, total	mg/L	0.00160
UA	G405	С	2023/06/06	Cobalt, total	mg/L	0.000870
UA	G405	С	2023/08/11	Cobalt, total	mg/L	0.00110
UA	G405	С	2023/11/21	Cobalt, total	mg/L	0.00150
UA	G405	С	2015/10/07	Cobalt, total	mg/L	0.00440
UA	G405	С	2023/06/06	Ferrous Iron, dissolved	mg/L	0.250
UA	G405	С	2020/08/12	Iron, dissolved	mg/L	0.0290
UA	G405	С	2020/10/13	Iron, dissolved	mg/L	0.0520
UA	G405	с	2021/01/21	Iron, dissolved	mg/L	0.0390
UA	G405	с	2021/04/27	Iron, dissolved	mg/L	0.0720
UA	G405	С	2021/08/17	Iron, dissolved	mg/L	0.0690
UA	G405	с	2021/10/26	Iron, dissolved	mg/L	0.0690
UA	G405	с	2022/02/08	Iron, dissolved	mg/L	0.0520
UA	G405	с	2022/05/10	Iron, dissolved	mg/L	0.0630
UA	G405	c	2022/08/24	Iron, dissolved	mg/L	0.0950
UA	G405	c	2022/11/09	Iron, dissolved	mg/L	0.120
UA	G405	Č	2023/02/14	Iron, dissolved	mg/l	0.110
	G405	c	2023/06/06	Iron dissolved	mg/l	0.130
	G405	c	2023/08/11	Iron dissolved	mg/l	0.165
	G405	c	2023/11/21	Iron dissolved	ы. – mg/l	0.0788
57	5 +05	~	-525/11/21		····ō/ -	0.0700

UA	G405	С	2015/10/07	Iron, dissolved	mg/L	<0.01
UA	G405	С	2017/07/14	Magnesium, total	mg/L	160
UA	G405	С	2020/01/22	Magnesium, total	mg/L	110
UA	G405	С	2021/01/21	Magnesium, total	mg/L	100
UA	G405	С	2021/08/17	Magnesium, total	mg/L	110
UA	G405	С	2022/02/08	Magnesium, total	mg/L	120
UA	G405	С	2022/08/24	Magnesium, total	mg/L	100
UA	G405	c	2023/02/14	Magnesium, total	mg/L	110
UA	G405	c	2023/06/06	Magnesium, total	mg/l	110
	G405	c	2023/08/11	Magnesium total	mg/L	110
	G405	c	2023/00/11	Magnesium total	mg/L	107
	G405	c	2023/11/21	Manganese dissolved	mg/L	1 10
	G405	c	2018/05/03	Manganese dissolved	mg/L	<0.001
	G405	c c	2018/03/12	Manganese, dissolved	mg/L	<0.001
	G405	C C	2018/08/11	Manganasa dissolved	mg/L	0.490
UA	G405		2018/11/06	Manganese, dissolved	mg/L	0.0690
UA	G405		2019/01/25	Manganese, dissolved	mg/L	0.130
UA	G405	C	2019/05/02	Manganese, dissolved	mg/L	0.290
UA	G405	C	2019/08/16	Manganese, dissolved	mg/L	0.580
UA	G405	C	2019/10/21	Manganese, dissolved	mg/L	0.910
UA	G405	C	2020/01/22	Manganese, dissolved	mg/L	1.00
UA	G405	С	2020/05/06	Manganese, dissolved	mg/L	0.870
UA	G405	С	2020/08/12	Manganese, dissolved	mg/L	0.810
UA	G405	С	2020/10/13	Manganese, dissolved	mg/L	0.800
UA	G405	С	2021/01/21	Manganese, dissolved	mg/L	0.880
UA	G405	С	2021/04/27	Manganese, dissolved	mg/L	0.950
UA	G405	С	2021/08/17	Manganese, dissolved	mg/L	1.10
UA	G405	С	2021/10/26	Manganese, dissolved	mg/L	0.990
UA	G405	С	2022/02/08	Manganese, dissolved	mg/L	0.920
UA	G405	С	2022/05/10	Manganese, dissolved	mg/L	1.00
UA	G405	С	2022/08/24	Manganese, dissolved	mg/L	1.20
UA	G405	С	2022/11/09	Manganese, dissolved	mg/L	1.10
UA	G405	с	2023/02/14	Manganese, dissolved	mg/L	1.30
UA	G405	С	2023/06/06	Manganese, dissolved	mg/L	1.10
UA	G405	С	2023/08/11	Manganese, dissolved	mg/L	1.07
UA	G405	c	2023/11/21	Manganese, dissolved	mg/L	0.868
UA	G405	c	2015/10/07	Manganese, dissolved	mg/L	2.00
UA	G405	c	2023/08/11	Phosphate, dissolved	mg/L	0.0520
UA	G405	C	2017/07/14	Potassium, total	mg/I	0.950
UA	G405	C C	2020/01/22	Potassium, total	mg/l	0.430
	G405	c	2020/01/22	Potassium total	mg/L	0.460
	G405	c	2021/01/21	Potassium total	mg/L	0.500
	G405	c	2021/00/17	Potassium total	mg/L	0.360
	G405	c c	2022/02/08	Potassium total	mg/L	0.400
	G405	C C	2022/06/24	Potassium, total	mg/L	0.500
	G405	C C	2023/02/14	Potassium total	mg/L	0.310
	G405		2023/00/00	Potassium total	mg/L	0.410
	G405		2023/06/11	Detaccium total	mg/L	0.500
	G405		2023/11/21	Fulassium, luidi	mg/L	0.594
	G405		2023/00/00		mg/L	8.UU 7.01
	G405		2023/08/11	Silicuit, alssolvea	mg/L	/.81
UA	0405		2017/07/14		mg/L	120
UA	6405		2020/01/22		mg/L	100
UA	6405		2021/01/21	Sodium, total	mg/L	110
UA	G405	C	2021/08/17	Sodium, total	mg/L	120
UA	G405	C .	2022/02/08	Sodium, total	mg/L	110
UA	G405	С	2022/08/24	Sodium, total	mg/L	100
UA	G405	С	2023/02/14	Sodium, total	mg/L	100
UA	G405	С	2023/06/06	Sodium, total	mg/L	110
UA	G405	С	2023/08/11	Sodium, total	mg/L	109
UA	G405	С	2023/11/21	Sodium, total	mg/L	103
UA	G405	С	2015/11/21	Sulfate, total	mg/L	1,700
UA	G405	С	2016/02/15	Sulfate, total	mg/L	1,700
UA	G405	С	2016/05/18	Sulfate, total	mg/L	1,800
UA	G405	С	2016/08/02	Sulfate, total	mg/L	1,600

UA	G405	С	2016/11/22	Sulfate, total	mg/L	1,400
UA	G405	С	2017/02/18	Sulfate, total	mg/L	1,300
UA	G405	С	2017/05/16	Sulfate, total	mg/L	680
UA	G405	С	2017/07/14	Sulfate, total	mg/L	1,600
UA	G405	с	2017/10/28	Sulfate, total	mg/L	1,300
UA	G405	С	2018/05/12	Sulfate, total	mg/L	1,200
UA	G405	С	2018/08/04	Sulfate, total	mg/L	790
UA	G405	c	2019/01/25	Sulfate, total	mg/L	890
UA	G405	c	2019/08/20	Sulfate, total	mg/L	340
UA	G405	c	2020/01/22	Sulfate, total	mg/L	910
UA	G405	c	2020/08/12	Sulfate, total	mg/L	460
UA	G405	c	2020/10/13	Sulfate, total	mg/L	980
UA	G405	c	2021/01/21	Sulfate, total	mg/l	960
UA	G405	c	2021/04/27	Sulfate, total	mg/l	800
UA	G405	c	2021/08/17	Sulfate, total	mg/L	760
	G405	c	2021/10/26	Sulfate total	mg/l	1 000
	G405	c	2022/02/08	Sulfate total	mg/L	1,000
	G405	c	2022/05/10	Sulfate total	mg/L	1,000
	G405	c	2022/03/10	Sulfate total	mg/L	1,000
	G405	c	2022/00/24		mg/L	910
	G405	c	2022/11/05	Sulfate total	mg/L	950
	G405	c	2023/02/14		mg/L	1 000
	G405	c	2023/00/00		mg/L	916
	G405	c	2023/00/11	Sulfate total	mg/l	897
	G405	c	2023/11/21		mg/L	1 900
	G405	c	2015/10/07	Temperature (Celsius)	degrees (	1,500
	G405	c	2015/11/21	Temperature (Celsius)	degrees C	9.40
	G405	c c	2010/02/13	Temperature (Celsius)	degrees C	17.1
	G405	c c	2010/03/18	Temperature (Celsius)	degrees C	18.9
	G405	c c	2010/08/02	Temperature (Celsius)	degrees C	12.9
	G405	C C	2010/11/22	Temperature (Celsius)	degrees C	15.0
	G405	c c	2017/02/18	Temperature (Celsius)	degrees C	15.0
	G405	C C	2017/03/10	Temperature (Celsius)	degrees C	17.9
	G405	c c	2017/07/14	Temperature (Celsius)	degrees C	12.0
	G405	C C	2017/10/28	Temperature (Celsius)	degrees C	15.0
	G405	c c	2018/03/12	Temperature (Celsius)	degrees C	15.1
	G405	C C	2010/00/04	Temperature (Celsius)	degrees C	12.0
	G405	c c	2019/01/23	Temperature (Celsius)	degrees C	17.1
	G405	C C	2019/08/20	Temperature (Celsius)	degrees C	7.60
	G405	c c	2020/01/22	Temperature (Celsius)	degrees C	7.00
	G405	c c	2020/08/12	Temperature (Celsius)	degrees C	10.6
	G405	C C	2020/10/15	Temperature (Celsius)	degrees C	19.0
	G405	C C	2021/01/21	Temperature (Celsius)	degrees C	11.9
	G405		2021/04/27	Temperature (Celsius)	degrees C	17.4
	G405		2021/08/17	Tomporature (Celsius)	dogroop C	177
	G405	c	2021/10/20	Temperature (Celsius)	degrees C	1/./
	G405	с С	2022/02/08	Tomporature (Celsius)	dogroos C	10 0
	G405	C C	2022/03/10	Temperature (Celsius)	degrees C	10.0 20 0
	G405	C C	2022/00/24	Tomporature (Celsius)	dogroos C	10.9
	G405		2022/11/09	Tomporature (Celsius)	dogroos C	10.6
	G405		2023/02/14	Temperature (Celsius)	degrees C	10.7
	G405		2023/00/00	Temperature (Celsius)	dogroop C	19./
	G405		2023/08/11		dogroce C	10.2
	G405		2023/11/21		mg/l	2 400
	G405		2015/11/21		mg/L	2,400
UA	G405		2016/02/15	Total Dissolved Solids	mg/L	2,500
	G405		2010/05/18	Total Dissolved Solids	mg/L	2,200
UA	6405		2016/08/02	Total Dissolved Solids	mg/L	2,200
	G405		2010/11/22	Total Dissolved Solids	mg/L	2,100
UA	6405		2017/02/18	Total Dissolved Solids	mg/L	1,800
UA	6405		2017/05/16	Total Dissolved Solids	mg/L	1,300
UA	6405		2017/07/14	Total Dissolved Solids	mg/L	2,100
UA	6405	L	2017/10/28	Total Dissolved Solids	mg/L	2,000
UA	G405	C	2018/05/12	Total Dissolved Solids	mg/L	1,900

UA	G405	С	2018/08/04	Total Dissolved Solids	mg/L	1,400
UA	G405	С	2019/01/25	Total Dissolved Solids	mg/L	1,500
UA	G405	С	2019/08/20	Total Dissolved Solids	mg/L	720
UA	G405	С	2020/01/22	Total Dissolved Solids	mg/L	1,400
UA	G405	С	2020/08/12	Total Dissolved Solids	mg/L	1,200
UA	G405	С	2020/10/13	Total Dissolved Solids	mg/L	1,600
UA	G405	С	2021/01/21	Total Dissolved Solids	mg/L	1.600
UA	G405	c	2021/04/27	Total Dissolved Solids	mg/L	1.600
UA	G405	c	2021/08/17	Total Dissolved Solids	mg/l	1,400
UA	G405	C C	2021/10/26	Total Dissolved Solids	mg/l	1,600
	G405	c	2022/02/08	Total Dissolved Solids	mg/L	1 400
	G405	c	2022/02/00	Total Dissolved Solids	mg/L	1,700
	G405	c	2022/03/10	Total Dissolved Solids	mg/L	1,700
	G405	c	2022/00/24	Total Dissolved Solids	mg/L	1,500
	G405	c c	2022/11/05	Total Dissolved Solids	mg/L	1,700
	G405	c c	2023/02/14	Total Dissolved Solids	mg/L	1,500
	G405	C C	2023/00/00	Total Dissolved Solids	mg/L	1,700
UA	G405	C C	2023/08/11	Total Dissolved Solids	ilig/L	1,790
	G405	C C	2023/11/21	Total Dissolved Solids	mg/L	1,610
UA	G405		2015/10/07		mg/L	2,900
UA	G406		2020/10/14	pH (field)	SU	6.5
UA	G406		2021/01/28	pH (field)	SU	6.6
UA	G406	C	2021/05/20	pH (field)	SU	7.0
UA	G406	C	2021/08/17	pH (field)	SU	6.7
UA	G406	C	2021/10/26	pH (field)	SU	6.6
UA	G406	C	2022/02/08	pH (field)	SU	6.5
UA	G406	С	2022/05/10	pH (field)	SU	6.5
UA	G406	С	2022/08/24	pH (field)	SU	6.4
UA	G406	С	2022/11/09	pH (field)	SU	6.5
UA	G406	С	2023/02/14	pH (field)	SU	6.7
UA	G406	С	2023/05/31	pH (field)	SU	6.5
UA	G406	С	2023/08/11	pH (field)	SU	6.7
UA	G406	С	2023/11/20	pH (field)	SU	6.6
UA	G406	С	2020/10/14	Oxidation Reduction Potential	mV	186
UA	G406	С	2021/01/28	Oxidation Reduction Potential	mV	194
UA	G406	С	2021/05/20	Oxidation Reduction Potential	mV	-110
UA	G406	С	2021/08/17	Oxidation Reduction Potential	mV	95.7
UA	G406	С	2021/10/26	Oxidation Reduction Potential	mV	29.4
UA	G406	С	2022/02/08	Oxidation Reduction Potential	mV	174
UA	G406	С	2022/05/10	Oxidation Reduction Potential	mV	132
UA	G406	С	2022/08/24	Oxidation Reduction Potential	mV	165
UA	G406	С	2022/11/09	Oxidation Reduction Potential	mV	225
UA	G406	С	2023/02/14	Oxidation Reduction Potential	mV	284
UA	G406	С	2023/05/31	Oxidation Reduction Potential	mV	166
UA	G406	С	2023/08/11	Oxidation Reduction Potential	mV	81.0
UA	G406	С	2023/11/20	Oxidation Reduction Potential	mV	127
UA	G406	С	2020/10/14	Eh	V	0.38
UA	G406	С	2021/01/28	Eh	V	0.39
UA	G406	С	2021/05/20	Eh	V	0.078
UA	G406	С	2021/08/17	Eh	V	0.29
UA	G406	С	2021/10/26	Eh	V	0.22
UA	G406	С	2022/02/08	Eh	V	0.37
UA	G406	С	2022/05/10	Eh	V	0.33
UA	G406	С	2022/08/24	Eh	V	0.36
UA	G406	С	2022/11/09	Eh	V	0.42
UA	G406	С	2023/02/14	Eh	V	0.48
UA	G406	С	2023/05/31	Eh	V	0.36
UA	G406	с	2023/08/11	Eh	V	0.28
UA	G406	с	2023/11/20	Eh	V	0.32
UA	G406	с	2023/02/14	Alkalinity, bicarbonate	mg/L CaCO3	350
UA	G406	c	2023/05/31	Alkalinity, bicarbonate	mg/L CaCO3	360
UA	G406	c	2023/08/11	Alkalinity, bicarbonate	mg/L CaCO3	347
UA	G406	c	2023/11/20	Alkalinity, bicarbonate	mg/L CaCO3	289
UA	G406	c	2020/10/14	Barium, total	mg/L	0.0130
		-				0.0100

UA	G406	С	2021/01/28	Barium, total	mg/L	0.0120
UA	G406	С	2021/05/20	Barium, total	mg/L	0.730
UA	G406	С	2021/08/17	Barium, total	mg/L	0.0140
UA	G406	С	2021/10/26	Barium, total	mg/L	0.0140
UA	G406	С	2022/02/08	Barium, total	mg/L	0.0160
UA	G406	С	2022/05/10	Barium, total	mg/L	0.0150
UA	G406	С	2022/08/24	Barium. total	mg/L	0.0130
UA	G406	c	2022/11/09	Barium, total	mg/L	0.0120
UA	G406	c	2023/02/14	Barium, total	mg/l	0.0150
	G406	c	2023/05/31	Barium total	mg/l	0.0130
	G406	c	2023/08/31	Barium total	mg/L	0.0139
	G406	c	2023/00/11	Barium total	mg/L	0.0100
	G406	c	2023/11/20	Boron total	mg/L	1 60
	G400	c	2020/10/14	Boron, total	mg/L	1.00
	G400	c c	2021/01/20	Boron total	mg/L	0.170
	G400	c c	2021/03/20	Boron, total	mg/L	1 50
	G406	C C	2021/06/17	Boron total	mg/L	1.50
UA	G400	C C	2021/10/20		ilig/L	1.50
	G406		2022/02/08		mg/L	1.40
UA	G406		2022/05/10		mg/L	1.40
UA	G406		2022/08/24	Boron, total	mg/L	1.50
UA	G406		2022/11/09	Boron, total	mg/L	1.40
UA	G406	C	2023/02/14	Boron, total	mg/L	1.50
UA	G406	C	2023/05/31	Boron, total	mg/L	1.40
UA	G406	C	2023/08/11	Boron, total	mg/L	1.54
UA	G406	C	2023/11/20	Boron, total	mg/L	2.29
UA	G406	С	2020/10/14	Calcium, total	mg/L	230
UA	G406	С	2021/01/28	Calcium, total	mg/L	210
UA	G406	С	2021/05/20	Calcium, total	mg/L	190
UA	G406	С	2021/08/17	Calcium, total	mg/L	210
UA	G406	С	2021/10/26	Calcium, total	mg/L	190
UA	G406	С	2022/02/08	Calcium, total	mg/L	210
UA	G406	С	2022/05/10	Calcium, total	mg/L	210
UA	G406	С	2022/08/24	Calcium, total	mg/L	220
UA	G406	С	2022/11/09	Calcium, total	mg/L	180
UA	G406	С	2023/02/14	Calcium, total	mg/L	200
UA	G406	С	2023/05/31	Calcium, total	mg/L	190
UA	G406	С	2023/08/11	Calcium, total	mg/L	193
UA	G406	С	2023/11/20	Calcium, total	mg/L	206
UA	G406	С	2020/10/14	Chloride, total	mg/L	3.70
UA	G406	С	2021/01/28	Chloride, total	mg/L	2.40
UA	G406	С	2021/05/20	Chloride, total	mg/L	5.50
UA	G406	С	2021/08/17	Chloride, total	mg/L	3.90
UA	G406	С	2021/10/26	Chloride, total	mg/L	3.50
UA	G406	С	2022/02/08	Chloride, total	mg/L	4.80
UA	G406	С	2022/05/10	Chloride, total	mg/L	<4.8
UA	G406	С	2022/08/24	Chloride, total	mg/L	3.00
UA	G406	С	2022/11/09	Chloride, total	mg/L	2.70
UA	G406	С	2023/02/14	Chloride, total	mg/L	4.10
UA	G406	С	2023/05/31	Chloride, total	mg/L	<4.8
UA	G406	С	2023/08/11	Chloride, total	mg/L	4.00
UA	G406	С	2023/11/20	Chloride, total	mg/L	5.00
UA	G406	С	2020/10/14	Cobalt, total	mg/L	<0.002
UA	G406	С	2021/01/28	Cobalt, total	mg/L	<0.002
UA	G406	С	2021/05/20	Cobalt, total	mg/L	<0.002
UA	G406	С	2021/08/17	Cobalt, total	mg/L	< 0.002
UA	G406	с	2021/10/26	Cobalt, total	mg/L	<0.002
UA	G406	с	2022/02/08	Cobalt, total	mg/L	<0.002
UA	G406	c	2022/05/10	Cobalt, total	mg/L	<0.00048
UA	G406	c	2022/08/24	Cobalt, total	mg/L	<0.00048
UA	G406	Č	2022/11/09	Cobalt, total	mg/l	<0.00040
	G406	c	2023/02/14	Cobalt total	mg/l	<0.00048
	G406	c	2023/05/31	Cobalt total	mg/l	0.00040
	G406	C C	2023/08/11	Cobalt total	mg/l	0.000320
57	G 700	~	2020/00/11		····ō/ -	0.000000

UA	G406	С	2023/11/20	Cobalt, total	mg/L	0.000800
UA	G406	С	2023/05/31	Ferrous Iron, dissolved	mg/L	0.180
UA	G406	С	2020/08/11	Iron, dissolved	mg/L	0.0170
UA	G406	С	2020/10/14	Iron, dissolved	mg/L	< 0.01
UA	G406	С	2021/01/28	Iron, dissolved	mg/L	< 0.01
UA	G406	С	2021/05/20	Iron, dissolved	mg/L	7.90
UA	G406	с	2021/08/17	Iron, dissolved	mg/L	<0.01
UA	G406	С	2021/10/26	Iron. dissolved	mg/L	<0.01
UA	G406	c	2022/02/08	Iron, dissolved	mg/L	<0.01
UA	G406	C C	2022/05/10	Iron, dissolved	mg/l	0.000980
	G406	c	2022/08/24	Iron dissolved	mg/l	0.00580
	G406	c	2022/00/21	Iron dissolved	mg/L	0.00270
	G406	c	2022/11/03	Iron dissolved	mg/L	<0.00270
	G406	c	2023/02/14	Iron, dissolved	mg/L	<0.00072
	G406	c	2023/03/31	Iron, dissolved	mg/L	<0.00072
	G400	c	2023/00/11	Iron, dissolved	mg/L	<0.0115
	G400	C C	2023/11/20	Magnosium total	mg/L	<0.0115 76.0
	G400	C C	2023/02/14	Magnesium, total	mg/L	70.0
	G406	C C	2023/03/31	Magnesium, total	mg/L	65.0
UA	G400	C C	2023/08/11		ilig/L	65.7
	G406	C C	2023/11/20	Magnesium, total	mg/L	60.1
UA	G406		2018/07/16	Manganese, dissolved	mg/L	4.80
UA	G406	C	2018/08/13	Manganese, dissolved	mg/L	3.90
UA	G406	C	2019/05/02	Manganese, dissolved	mg/L	4.20
UA	G406	C	2019/08/19	Manganese, dissolved	mg/L	4.50
UA	G406	C	2019/10/22	Manganese, dissolved	mg/L	4.60
UA	G406	C	2020/01/23	Manganese, dissolved	mg/L	4.00
UA	G406	С	2020/05/06	Manganese, dissolved	mg/L	4.50
UA	G406	С	2020/08/11	Manganese, dissolved	mg/L	5.10
UA	G406	С	2020/10/14	Manganese, dissolved	mg/L	5.50
UA	G406	С	2021/01/28	Manganese, dissolved	mg/L	4.30
UA	G406	С	2021/05/20	Manganese, dissolved	mg/L	0.170
UA	G406	С	2021/08/17	Manganese, dissolved	mg/L	4.90
UA	G406	С	2021/10/26	Manganese, dissolved	mg/L	4.10
UA	G406	С	2022/02/08	Manganese, dissolved	mg/L	2.20
UA	G406	С	2022/05/10	Manganese, dissolved	mg/L	2.20
UA	G406	С	2022/08/24	Manganese, dissolved	mg/L	4.20
UA	G406	С	2022/11/09	Manganese, dissolved	mg/L	4.60
UA	G406	С	2023/02/14	Manganese, dissolved	mg/L	2.10
UA	G406	С	2023/05/31	Manganese, dissolved	mg/L	4.40
UA	G406	С	2023/08/11	Manganese, dissolved	mg/L	4.45
UA	G406	С	2023/11/20	Manganese, dissolved	mg/L	4.55
UA	G406	С	2023/08/11	Phosphate, dissolved	mg/L	0.0430
UA	G406	С	2023/02/14	Potassium, total	mg/L	0.160
UA	G406	С	2023/05/31	Potassium, total	mg/L	0.150
UA	G406	С	2023/08/11	Potassium, total	mg/L	0.263
UA	G406	С	2023/11/20	Potassium, total	mg/L	0.255
UA	G406	С	2023/05/31	Silicon, dissolved	mg/L	14.0
UA	G406	С	2023/08/11	Silicon, dissolved	mg/L	11.9
UA	G406	С	2023/02/14	Sodium, total	mg/L	43.0
UA	G406	С	2023/05/31	Sodium, total	mg/L	38.0
UA	G406	С	2023/08/11	Sodium, total	mg/L	37.2
UA	G406	С	2023/11/20	Sodium, total	mg/L	32.5
UA	G406	С	2020/10/14	Sulfate, total	mg/L	610
UA	G406	С	2021/01/28	Sulfate, total	mg/L	580
UA	G406	С	2021/05/20	Sulfate, total	mg/L	25.0
UA	G406	с	2021/08/17	Sulfate, total	mg/L	540
UA	G406	с	2021/10/26	Sulfate. total	mg/L	480
UA	G406	с	2022/02/08	Sulfate. total	mg/L	490
UA	G406	с	2022/05/10	Sulfate, total	mg/L	510
UA	G406	c	2022/08/24	Sulfate. total	mg/L	470
UA	G406	c	2022/11/09	Sulfate, total	mg/L	470
UA	G406	c	2023/02/14	Sulfate, total	mg/L	450
UA	G406	- C	2023/05/31	Sulfate, total	mg/l	480
- ' '		-	,,,			

UA	G406	С	2023/08/11	Sulfate, total	mg/L	482
UA	G406	С	2023/11/20	Sulfate, total	mg/L	450
UA	G406	С	2020/10/14	Temperature (Celsius)	degrees C	17.5
UA	G406	С	2021/01/28	Temperature (Celsius)	degrees C	12.1
UA	G406	с	2021/05/20	Temperature (Celsius)	degrees C	26
UA	G406	С	2021/08/17	Temperature (Celsius)	degrees C	18.9
UA	G406	c	2021/10/26	Temperature (Celsius)	degrees C	16.8
UA	G406	C C	2022/02/08	Temperature (Celsius)	degrees C	12.3
	G406	c	2022/05/10	Temperature (Celsius)	degrees (	16.2
	G406	c	2022/08/24	Temperature (Celsius)	degrees C	20.5
	G406	c	2022/00/21	Temperature (Celsius)	degrees C	10.1
	G406	c	2022/11/05	Temperature (Celsius)	degrees C	12.6
	G400	c c	2023/02/14	Temperature (Celsius)	degrees C	21.0
	G400	C C	2023/03/31	Temperature (Celsius)	degrees C	16.0
	G406	C C	2023/08/11	Temperature (Celsius)	degrees C	10.9
UA	G406		2023/11/20	Tetriperature (Celsius)	degrees C	15.7
UA	G406	C	2020/10/14	Total Dissolved Solids	mg/L	1,200
UA	G406	C	2021/01/28	Total Dissolved Solids	mg/L	1,200
UA	G406	C	2021/05/20	Total Dissolved Solids	mg/L	920
UA	G406	C	2021/08/17	Total Dissolved Solids	mg/L	1,200
UA	G406	С	2021/10/26	Total Dissolved Solids	mg/L	1,000
UA	G406	С	2022/02/08	Total Dissolved Solids	mg/L	990
UA	G406	С	2022/05/10	Total Dissolved Solids	mg/L	1,000
UA	G406	С	2022/08/24	Total Dissolved Solids	mg/L	1,100
UA	G406	С	2022/11/09	Total Dissolved Solids	mg/L	980
UA	G406	С	2023/02/14	Total Dissolved Solids	mg/L	1,200
UA	G406	С	2023/05/31	Total Dissolved Solids	mg/L	1,100
UA	G406	С	2023/08/11	Total Dissolved Solids	mg/L	1,070
UA	G406	С	2023/11/20	Total Dissolved Solids	mg/L	1,060
UA	G407	С	2020/10/14	pH (field)	SU	6.6
UA	G407	С	2021/01/28	pH (field)	SU	6.9
UA	G407	С	2021/04/26	pH (field)	SU	6.7
UA	G407	с	2021/08/17	pH (field)	SU	6.7
UA	G407	С	2021/10/26	pH (field)	SU	6.7
UA	G407	c	2022/02/08	pH (field)	SU	6.7
UA	G407	c	2022/05/10	pH (field)	SU	6.6
	G407	c	2022/08/24	nH (field)	SU	6.4
	G407	c	2022/11/08	nH (field)	SU	6.7
	G407	c	2022/11/00	nH (field)	SU	6.5
	G407	c	2023/02/14	pH (field)	SU SU	6.6
	G407	c c	2023/03/31	pH (field)	SU SU	6.8
	G407	C C	2023/08/10	pir (field)	50 SU	0.8
	G407	C C	2023/11/20	PH (IIeld) Ovidation Reduction Retential	30 m\/	110
UA	G407		2020/10/14	Oxidation Reduction Potential		119
UA	G407		2021/01/28	Oxidation Reduction Potential	mv	104
	6407		2021/04/26	Oxidation Reduction Potential		110
UA	6407		2021/08/17	Oxidation Reduction Potential	mv	113
UA	6407		2021/10/26	Oxidation Reduction Potential	mv	25.1
UA	G407	C	2022/02/08	Oxidation Reduction Potential	mV	146
UA	6407	L -	2022/05/10	Uxidation Reduction Potential	mv	185
UA	G407	С	2022/08/24	Oxidation Reduction Potential	mV	122
UA	G407	С	2022/11/08	Oxidation Reduction Potential	mV	82.0
UA	G407	С	2023/02/14	Oxidation Reduction Potential	mV	265
UA	G407	С	2023/05/31	Oxidation Reduction Potential	mV	162
UA	G407	С	2023/08/10	Oxidation Reduction Potential	mV	12.0
UA	G407	С	2023/11/20	Oxidation Reduction Potential	mV	124
UA	G407	С	2020/10/14	Eh	V	0.31
UA	G407	С	2021/01/28	Eh	V	0.30
UA	G407	С	2021/04/26	Eh	V	0.31
UA	G407	С	2021/08/17	Eh	V	0.30
UA	G407	С	2021/10/26	Eh	V	0.22
UA	G407	С	2022/02/08	Eh	V	0.34
UA	G407	С	2022/05/10	Eh	V	0.38
UA	G407	С	2022/08/24	Eh	V	0.31
UA	G407	С	2022/11/08	Eh	V	0.28

UA	G407	С	2023/02/14	Eh	V	0.46
UA	G407	С	2023/05/31	Eh	V	0.35
UA	G407	с	2023/08/10	Eh	V	0.20
UA	G407	c	2023/11/20	Eh	V	0.32
UA	G407	c	2023/02/14	Alkalinity, bicarbonate	mg/L CaCO3	460
UA	G407	c	2023/05/31	Alkalinity, bicarbonate	mg/L CaCO3	510
UA	G407	c	2023/08/10	Alkalinity, bicarbonate	mg/L CaCO3	502
	G407	c	2023/00/10	Alkalinity, bicarbonate	mg/L CaCO3	550
	G407	c	2020/10/14	Barium total	mg/L cuccos	0.0140
	G407	c	2020/10/14	Barium total	mg/L	0.0140
	G407	c	2021/01/20	Barium total	mg/L	0.0120
	G407	C C	2021/04/20	Barium total	mg/L	0.0130
	G407	C C	2021/08/17	Barium total	mg/L	0.0120
	G407	C C	2021/10/20	Ballulli, total	mg/L	0.0120
	G407	C C	2022/02/08	Barium, total	mg/L	0.0470
UA	G407		2022/05/10	Barlum, total	mg/L	0.0120
UA	G407	C	2022/08/24	Barlum, total	mg/L	0.0110
UA	G407	C	2022/11/08	Barium, total	mg/L	0.0120
UA	G407	C	2023/02/14	Barium, total	mg/L	0.0130
UA	G407	C	2023/05/31	Barium, total	mg/L	0.0120
UA	G407	C	2023/08/10	Barium, total	mg/L	0.0132
UA	G407	С	2023/11/20	Barium, total	mg/L	0.0193
UA	G407	С	2020/10/14	Boron, total	mg/L	0.100
UA	G407	С	2021/01/28	Boron, total	mg/L	0.0630
UA	G407	С	2021/04/26	Boron, total	mg/L	0.0650
UA	G407	С	2021/08/17	Boron, total	mg/L	0.0900
UA	G407	С	2021/10/26	Boron, total	mg/L	0.150
UA	G407	С	2022/02/08	Boron, total	mg/L	0.100
UA	G407	С	2022/05/10	Boron, total	mg/L	0.100
UA	G407	С	2022/08/24	Boron, total	mg/L	0.0760
UA	G407	С	2022/11/08	Boron, total	mg/L	0.0770
UA	G407	С	2023/02/14	Boron, total	mg/L	0.150
UA	G407	С	2023/05/31	Boron, total	mg/L	0.0900
UA	G407	С	2023/08/10	Boron, total	mg/L	0.0614
UA	G407	С	2023/11/20	Boron, total	mg/L	0.139
UA	G407	С	2020/10/14	Calcium, total	mg/L	250
UA	G407	С	2021/01/28	Calcium, total	mg/L	270
UA	G407	С	2021/04/26	Calcium, total	mg/L	340
UA	G407	с	2021/08/17	Calcium, total	mg/L	290
UA	G407	С	2021/10/26	Calcium, total	mg/L	280
UA	G407	с	2022/02/08	Calcium, total	mg/L	400
UA	G407	С	2022/05/10	Calcium, total	mg/L	280
UA	G407	c	2022/08/24	Calcium, total	mg/L	300
UA	G407	c	2022/11/08	Calcium, total	mg/L	290
UA	G407	с	2023/02/14	Calcium, total	mg/L	270
UA	G407	с	2023/05/31	Calcium, total	mg/L	270
UA	G407	c	2023/08/10	Calcium. total	mg/L	230
UA	G407	c	2023/11/20	Calcium, total	mg/L	397
UA	G407	č	2020/10/14	Chloride, total	mg/l	12 0
	G407	c	2021/01/28	Chloride total	mg/l	11.0
	G407	c	2021/04/26	Chloride total	mg/l	15.0
	G407	c	2021/08/17	Chloride total	mg/l	16.0
	G407	c	2021/10/26	Chloride total	mg/l	15.0
	G407	C C	2022/02/02	Chloride total	mg/l	12.0
	G407	с С	2022/02/06	Chloride total	mg/l	13.0
	G407	C C	2022/03/10		mg/L	11.0
	G407	C C	2022/00/24		mg/L	11.0
	G407		2022/11/08	Chlorida total	mg/L	12.0
	G407		2023/02/14		mg/L	12.0
	G407		2023/05/31		mg/L	11.0
UA	6407		2023/08/10		mg/L	11.0
UA	6407		2023/11/20		mg/L	12.0
UA	6407		2020/10/14		mg/L	<0.002
UA	6407		2021/01/28	Lobalt, total	mg/L	<0.002
UA	G407	C	2021/04/26	Cobalt, total	mg/L	< 0.002

UA	G407	С	2021/08/17	Cobalt, total	mg/L	<0.002
UA	G407	С	2021/10/26	Cobalt, total	mg/L	<0.002
UA	G407	С	2022/02/08	Cobalt, total	mg/L	0.00620
UA	G407	С	2022/05/10	Cobalt, total	mg/L	0.000490
UA	G407	С	2022/08/24	Cobalt, total	mg/L	0.000930
UA	G407	С	2022/11/08	Cobalt, total	mg/L	<0.00048
UA	G407	с	2023/02/14	Cobalt, total	mg/L	<0.00048
UA	G407	С	2023/05/31	Cobalt, total	mg/L	0.000700
UA	G407	С	2023/08/10	Cobalt. total	mg/L	0.000800
UA	G407	C	2023/11/20	Cobalt. total	mg/L	0.00200
UA	G407	С	2023/05/31	Ferrous Iron. dissolved	mg/L	0.270
UA	G407	C	2020/08/11	Iron. dissolved	mg/L	0.0150
UA	G407	c	2020/10/14	Iron, dissolved	mg/L	<0.01
UA	G407	C C	2021/01/28	Iron, dissolved	mg/l	<0.01
UA	G407	c	2021/04/26	Iron, dissolved	mg/L	0.0170
UA	G407	C C	2021/08/17	Iron, dissolved	mg/l	0.0460
UA	G407	C C	2021/10/26	Iron, dissolved	mg/L	<0.01
	G407	c	2022/02/08	Iron dissolved	mg/l	<0.01
	G407	c	2022/05/10	Iron dissolved	mg/L	0.0140
	G407	c	2022/08/24	Iron dissolved	mg/L	0.0130
	G407	c	2022/00/24	Iron dissolved	mg/L	0.0100
	G407	c	2022/11/00	Iron dissolved	mg/L	0.0310
	G407	C	2023/02/14	Iron, dissolved	mg/L	0.0100
	G407	c c	2023/03/31	Iron dissolved	mg/L	0.0100
	G407	C	2023/08/10	Iron, dissolved	mg/L	0.0130
	G407	C	2023/11/20	Magnosium total	mg/L	170
	G407	C C	2023/02/14	Magnesium, total	mg/L	170
	G407	C	2023/03/31	Magnesium, total	mg/L	151
	G407	C C	2023/08/10	Magnesium, total	mg/L	250
	G407	C	2023/11/20	Magnesium, total	mg/L	0.0770
	G407	C	2018/03/05	Manganese, dissolved	mg/L	1 20
	G407	C C	2018/07/10	Manganese, dissolved	mg/L	0.0740
	G407	C C	2018/08/13	Manganese, dissolved	mg/L	0.0740
	G407	C C	2010/11/07	Manganese, dissolved	mg/L	0.400
	G407	C C	2019/01/23	Manganese, dissolved	mg/L	1.20
	G407	C C	2019/03/03	Manganese, dissolved	mg/L	0.240
	G407	C C	2019/08/19	Manganese, dissolved	mg/L	1.20
	G407	C	2019/10/22	Manganese, dissolved	mg/L	0.420
	G407	C C	2020/01/23	Manganese, dissolved	mg/L	0.430
	G407	C	2020/03/07	Manganese, dissolved	mg/L	0.390
	G407	C C	2020/08/11	Manganese, dissolved	mg/L	0.450
	G407	C C	2020/10/14	Manganese, dissolved	mg/L	0.100
	G407	C C	2021/01/28	Manganese, dissolved	mg/L	0.230
	G407	C	2021/04/20	Manganese, dissolved	mg/L	0.220
	G407	C C	2021/00/1/	Manganese, dissolved	mg/l	0.200
	G407	c	2021/10/20	Manganese dissolved	mg/L	0.320
	G407		2022/02/08	Manganese dissolved	mg/L	0.310
	G407	c	2022/03/10	Manganese dissolved	mg/L	0.220
	G407		2022/00/24	Manganese, dissolved	mg/L	0.300
	G407	c	2022/11/00	Manganese dissolved	mg/L	0.200
	G407	C C	2023/02/14	Manganese dissolved	mg/L	0.210
	G407	C C	2023/05/31	Manganese dissolved	mg/L	0.360
	G407	с С	2023/06/10	Manganese, dissolved	mg/L	0.445
	G407		2023/11/20	Phosphata dissolved	mg/L	0.005
	6407		2023/08/10		mg/L	2.005
	G407		2023/02/14	Potassium, total	mg/L	2.90
	G407		2023/05/31	Polassium total	mg/L	2.70
	G407		2023/08/10	Polassium, total	mg/L	2.76
	G407		2023/11/20	FuldSSIUTH, LUIAI	mg/L	4.14
	G407		2023/05/31	Silicon, dissolved	mg/L	9.80
	6407		2023/08/10	Silicon, alssolvea	mg/L	8.89
UA	6407		2023/02/14	Soaium, total	mg/L	90.0
UA	6407		2023/05/31		mg/L	88.0
UA	G407	L	2023/08/10	Sodium, total	mg/L	85.8

UA	G407	С	2023/11/20	Sodium, total	mg/L	106
UA	G407	С	2020/10/14	Sulfate, total	mg/L	830
UA	G407	С	2021/01/28	Sulfate, total	mg/L	990
UA	G407	С	2021/04/26	Sulfate, total	mg/L	960
UA	G407	С	2021/08/17	Sulfate, total	mg/L	400
UA	G407	С	2021/10/26	Sulfate, total	mg/L	960
UA	G407	С	2022/02/08	Sulfate, total	mg/L	1,100
UA	G407	С	2022/05/10	Sulfate, total	mg/L	1,000
UA	G407	С	2022/08/24	Sulfate, total	mg/L	970
UA	G407	С	2022/11/08	Sulfate, total	mg/L	440
UA	G407	С	2023/02/14	Sulfate, total	mg/L	950
UA	G407	С	2023/05/31	Sulfate, total	mg/L	1,100
UA	G407	С	2023/08/10	Sulfate, total	mg/L	956
UA	G407	С	2023/11/20	Sulfate, total	mg/L	1,010
UA	G407	С	2020/10/14	Temperature (Celsius)	degrees C	18.3
UA	G407	С	2021/01/28	Temperature (Celsius)	degrees C	9.90
UA	G407	С	2021/04/26	Temperature (Celsius)	degrees C	17.1
UA	G407	С	2021/08/17	Temperature (Celsius)	degrees C	20.5
UA	G407	С	2021/10/26	Temperature (Celsius)	degrees C	17.6
UA	G407	С	2022/02/08	Temperature (Celsius)	degrees C	11.2
UA	G407	С	2022/05/10	Temperature (Celsius)	degrees C	15.2
UA	G407	С	2022/08/24	Temperature (Celsius)	degrees C	21.2
UA	G407	С	2022/11/08	Temperature (Celsius)	degrees C	18.0
UA	G407	С	2023/02/14	Temperature (Celsius)	degrees C	11.5
UA	G407	С	2023/05/31	Temperature (Celsius)	degrees C	19.2
UA	G407	С	2023/08/10	Temperature (Celsius)	degrees C	19.2
UA	G407	С	2023/11/20	Temperature (Celsius)	degrees C	14.2
UA	G407	С	2020/10/14	Total Dissolved Solids	mg/L	1,800
UA	G407	С	2021/01/28	Total Dissolved Solids	mg/L	2,000
UA	G407	С	2021/04/26	Total Dissolved Solids	mg/L	1,800
UA	G407	С	2021/08/17	Total Dissolved Solids	mg/L	2,200
UA	G407	С	2021/10/26	Total Dissolved Solids	mg/L	2,000
UA	G407	С	2022/02/08	Total Dissolved Solids	mg/L	2,000
UA	G407	С	2022/05/10	Total Dissolved Solids	mg/L	2,200
UA	G407	С	2022/08/24	Total Dissolved Solids	mg/L	2,200
UA	G407	С	2022/11/08	Total Dissolved Solids	mg/L	2,100
UA	G407	С	2023/02/14	Total Dissolved Solids	mg/L	2,100
UA	G407	С	2023/05/31	Total Dissolved Solids	mg/L	2,000
UA	G407	С	2023/08/10	Total Dissolved Solids	mg/L	1,870
UA	G407	С	2023/11/20	Total Dissolved Solids	mg/L	2,010

Notes:

< = results is less than detection limit

B = Background

C = Compliance

HSU = Hydrostratigraphic Unit

LCU = Lower Confining Unit

UA = Uppermost Aquifer

mg/L = milligrams per liter

SU = standard units

V = volts

## Attachment I

## Antidegradation Assessment Report (Hansen 2017)

### Antidegradation Assessment for Management of Coal Combustion Residuals Impoundment Waters

Coffeen Power Station Illinois Power Generating Company NPDES Permit No. IL0000108

November 21, 2017

#### Prepared for:

Illinois Power Generating Company 1500 Eastport Plaza Drive Collinsville, Illinois 62234

#### Prepared by:

Hanson Professional Services Inc. 1525 South Sixth Street Springfield, Illinois 62703





#### Table of Contents

Se	ection <u>P</u>	'age
1.	Introduction	3
2.	Purpose and Anticipated Benefits	3
3.	Identification and Characterization of the Affected Water Body	5
4.	Identification of Proposed Pollutant Load Increases or Potential Impacts on Uses	5
	<ul><li>4.1 Water Sampling and Analyses</li><li>4.2 Pollutant Load Increases from Ash Pond Unwatering Discharge</li><li>4.3 Pollutant Load Increases from Ash Pond Dewatering Discharge</li></ul>	5 6 10
5.	Fate and Effect of Parameters Proposed for Increased Loading	10
6.	Assessments of Alternatives for Less Increase in Loading or Minimal Environmental Degradation	ı. 12
	<ul> <li>6.1 Water Management Alternatives Considered</li></ul>	12 13 13 13 13 14 14 14 14 15
7.	Identification of Preferred Alternative	15
8.	References	15

#### **Figures and Tables**

Figure 1 Site Map	4
Table 1 Water Samples Collected and Analyzed	5
Table 2 Ash Pond Unwaters and Receiving Waters Sample Analytical Results	. 6
Table 3 Ash Pond Dewaters Sample Analytical Results	. 8
Table 4 Antidegradation Assessment – Ash Pond Unwaters	. 9
Table 5 Antidegradation Assessment – Ash Pond Dewaters	11
Table 6 Water Management Alternatives Considered	13

#### Appendices

Appendix A EcoCAT Report



Copyright © 2017 by Hanson Professional Services Inc. All rights reserved. This document is intended solely for the use of the individual or the entity to which it is addressed. The information contained in this document shall not be duplicated, stored electronically, or distributed, in whole or in part, without the express written permission of Hanson Professional Services Inc., 1525 S. Sixth Street, Springfield, IL 62703-2886 (217)788-2450, <u>www.hanson-inc.com</u>. Unauthorized reproduction or transmission of any part of this document is a violation of federal law.



#### 1. Introduction

Illinois Power Generating Company (IPGC) will be applying for a modification to NPDES Permit No. IL0000108 to reflect the planned physical alterations at the Coffeen Power Station (Coffeen, or "plant") required to meet the U.S. Environmental Protection Agency (USEPA) coal combustion residuals (CCR) rules. These physical alterations will require short-term discharge of waters from coal combustion residuals (CCR) surface impoundments, also known as "ash ponds". The ash ponds assessed in this report include Ash Ponds 1 and 2. Ash Pond 1 is currently an existing operating CCR impoundment, while Ash Pond 2 is an inactive CCR impoundment previously covered with a soil cover system that will require replacement in accordance with the federal CCR rules. This report assesses the potential effects of proposed pollutant load increases on the water quality of Coffeen Lake in accordance with the requirements of 35 III. Adm. Code §302.105. Alternatives considered to avoid discharging the waters are discussed.

#### 2. Purpose and Anticipated Benefits

USEPA issued a final rule (the "CCR Rule") that regulates the disposal of CCR under Subtitle D of the Resource Conservation and Recovery Act (RCRA). The CCR Rule, effective October 19, 2015, establishes minimum national criteria for continued operation of CCR surface impoundments.¹ To comply with the CCR Rule, IPGC may need to close Coffeen Ash Ponds 1 and 2 by the end of the timeframe allowed by the Rule. Figure 1 illustrates the layout of the Coffeen ash ponds.

The closure plan for the Coffeen ash ponds includes removal of open water from the ash ponds, referred to as "unwatering;" partial removal of pore water contained in CCR-filled portions of the ash ponds, referred to as "dewatering;" grading and shaping the dewatered CCR surface to facilitate storm water runoff; and installation of a compacted vegetated earthen or composite cover system. Both unwatering and dewatering Ash Pond 1 is necessary to grade the CCR and construct the cover system. No unwaters are present in Ash Pond 2. Dewatering Ash Pond 2 will be necessary. The existing dewatering system in Ash Pond 2, which currently directs the dewaters to the Coffeen plant's Gypsum Management Facility (GMF) ponds, may be adequate to maintain the phreatic surface in the pond far enough below the existing cap to facilitate pond closure. However, this report evaluates the Ash Pond 2 dewaters in case the GMF ponds are overwhelmed and discharge of Ash Pond 2 dewaters is needed.

# Due to the large volume of water contained in the ash ponds and the schedule constraints, the preferred alternative to remove the water is to discharge it through the existing NPDES-permitted outfall to Coffeen Lake.

The following sections of this report describe the water sampling, analytical laboratory results, hydraulic and concentration modeling, and alternatives considered to demonstrate the proposed short-term discharge of waters from the ash ponds will result in the continued attainment of water quality standards in Coffeen Lake.

¹ In September 2017, USEPA granted petitions to reconsider the CCR rule. USEPA's reconsideration process may result in revisions to the CCR rule that would change IPGC's current closure plans and future planning regarding the CCR surface impoundments at Coffeen.



#### Figure 1 Site Map




#### 3. Identification and Characterization of the Affected Water Body

Coffeen Lake (segment ROG) is an artificial cooling lake. The lake is listed on the 2016 *Illinois Integrated Water Quality Report and Section 303(d) List*. Fish consumption use is impaired, with a cause of mercury. A Total Maximum Daily Load (TMDL) has been completed for Coffeen Lake that sets allocations for phosphorus.

The IDNR EcoCAT system does not list any state threatened or endangered aquatic species as residing in the receiving water body near the Coffeen plant. A copy of the EcoCAT report is included in Appendix A.

#### 4. Identification of Proposed Pollutant Load Increases or Potential Impacts on Uses

#### 4.1 Water Sampling and Analyses

PDC Laboratories, Inc. (PDC), under subcontract and field oversight by Hanson Professional Services Inc. (Hanson), collected water samples from the ash ponds and receiving waters on October 24, 2016. Grab samples were collected from open water accumulated in Ash Pond 1 to characterize waters that would be discharged during "unwatering" of the ash pond; these waters are referred to in this report as "unwaters." Ash Pond 2 is inactive and was previously covered. Unwaters are not associated with Ash Pond 2.

Grab samples were collected from test pits excavated in the CCR-filled portion of Ash Pond 1 and from wells installed in Ash Pond 2 to characterize waters that would be discharged during "dewatering" of the cells; these waters are referred to in this report as "dewaters." The test pits in Ash Pond 1 were excavated the day before sampling, allowing CCR materials to settle overnight to reduce suspended solids in the samples. Each of the four operable wells in Ash Pond 2 was activated separately and allowed to run until the water appeared clear, then grab samples were collected from the pump discharge. Grab water samples were also collected from Coffeen Lake to evaluate the receiving water that may be affected by the proposed discharges.

In order to further characterize the dewaters as requested by Illinois EPA, an additional round of selected grab samples was collected on January 26, 2017. Table 1 summarizes the water samples collected. Figure 1 shows the sampling locations.

Impoundment/Waterbody Sampled	Unwater Samples	Dewater Samples
Ash Pond 1	AP1d, AP1e, AP1f, AP1g, AP1h	AP1a, AP1b, AP1c
Ash Pond 2	None	AP2e, AP2f, AP2g, AP2h

#### Table 1. Water Samples Collected and Analyzed

	Receiving Water	
Coffeen Lake	CLa, CLb, CLc, CLd	

The water samples were analyzed by PDC for constituents reviewed and approved by Illinois EPA in an email to Ms. Jacquelyn Bush of IPGC on October 11, 2016. PDC is accredited by Illinois EPA to conduct the laboratory analyses for this assessment. The laboratory analytical reports are included in Appendix B.

l:\16jobs\16E0101\Admin\14-Reports\Antidegradation Study\DynegyCoffeen_Antidegradation_20171121.docx



Table 2 summarizes the constituents analyzed and the analytical results of samples of the ash pond unwaters and the receiving water. The individual analytical results at each sample location were averaged for evaluation in this antidegradation assessment. None of the representative average unwaters concentrations exceeded the General Effluent Standards listed in 35 III. Adm. Code §304.

Table 3 summarizes the constituents analyzed and the analytical results of samples collected from CCR-filled portions of the ash ponds to characterize waters that would be discharged during dewatering the ponds. The individual analytical results at each sample location were averaged for evaluation in this antidegradation assessment. The representative average dewater concentrations of total suspended solids (TSS) in Ash Pond 1, Ash Pond 2, and the combined ash pond dewaters exceeded the General Effluent Standard of 15 mg/L listed in 35 III. Adm. Code §304. The representative average dewater concentrations of iron and manganese in Ash Pond 2 dewaters exceeded their respective General Effluent Standards of 2.0 mg/L and 1.0 mg/L. The representative average combined ash pond dewaters concentration of iron exceeded the General Effluent Standard. The representative average the General Effluent Standard ash pond 1 dewaters and the combined ash pond dewaters were less than the General Effluent Standard. All other analytes were less than the General Effluent Standards.

#### 4.2 Pollutant Load Increases from Ash Pond Unwatering Discharge

Discharge of unwaters would occur from removal of the free surface water in Ash Pond 1. These waters result from the normal operation of the Coffeen plant and, except for storm water precipitation into the ash pond cells, are generally drawn from Coffeen Lake. These waters are currently discharged under the authorization of the plant's NPDES permit. No unwaters are present in Ash Pond 2.

The means and methods of collecting and conveying the unwaters are undetermined at this time. For purposes of this antidegradation assessment, substances in unwaters at concentrations less than the General Effluent Standards at 35 III. Adm. Code §304 are considered to be protective of the receiving water quality, i.e., would not cause degradation of the receiving water quality. As shown in Table 2, the representative average unwater concentrations of all the analytes were less than the General Effluent Standards.

Table 4 shows the estimated mass of each substance proposed to be discharged through the existing NPDES outfall to the Coffeen Lake receiving water (the "Added Load"). The Added Load calculations compensate for the existing receiving water quality by subtracting the "Source Load" of each substance based on the analytical results of the lake samples. Table 4 also estimates the predicted effects of discharging the unwaters to the lake and demonstrates the proposed discharge will not cause exceedances of the Public and Food Processing Water Supply Use Standards at 35 III. Adm. Code §302 Subpart C. For substances with no Public and Food Processing Water Supply Use Standard, the chronic General Use Water Quality Standards at 35 III. Adm. Code §302 Subpart B were used for comparison. Lake concentrations were calculated at normal pool volume. For substances where concentrations in the lake already exceed the applicable water quality standards (oil and grease, phenols, and phosphorus), the concentrations. Table 4 illustrates the proposed unwaters discharge will not increase the existing lake concentrations of oil and grease, phenols, and phosphorus in the lake.

The estimated volume of unwaters to be discharged as part of the CCR closure plan is 40 million gallons. The unwatering rate for Ash Pond 1 will vary depending on schedule and pump rates. The calculations shown in Table 4 assume pumping rates of about 347 gpm (0.5 million gallons per day (MGD)) could remove the free water in approximately 80 days.

		General Effluent Standards	Ash pond All concent	surface water s	samples (Colle verted to mg/L	cted October 2 for compariso	4, 2016) n to limits.				Receiving	Water	
				Ash	Pond 1 Unwat	ers		Demos contestine University of		Coffeer	i Lake		Representative
Sample Date			10/24/2016	10/24/2016	10/24/2016	10/24/2016	10/24/2016	Concentrations	10/24/2016	10/24/2016	10/24/2016	10/24/2016	Lake
Sample ID	Units	35 IAC 304	AP1d	AP1e	AP1f	AP1g	AP1h	Concentrations	CLa	CLb	CLc	CLd	Concentrations
Ammonia	mg/L	3	<0.1	<0.1	<0.1	<0.1	<0.1	0.05	<0.1	<0.1	<0.1	<0.1	0.05
Arsenic	mg/L	0.25	0.002	0.0014	0.0015	0.0013	0.0015	0.0015	0.0018	0.0018	0.0018	0.0018	0.0018
Barium	mg/L	2.0	0.2	0.16	0.15	0.14	0.18	0.17	0.054	0.052	0.056	0.054	0.054
Boron	mg/L		2	2.1	2.1	2.1	2.2	2.1	0.27	0.28	0.28	0.27	0.28
Cadmium	mg/L	0.15	<0.001	<0.001	<0.001	<0.001	<0.001	0.0005	<0.001	<0.001	<0.001	<0.001	0.0005
Chloride	mg/L		18	18	17	17	17	17	0.023	0.022	0.022	0.023	0.023
Chromium	mg/L	1.0	< 0.004	< 0.004	<0.004	<0.004	<0.004	0.002	< 0.004	< 0.004	<0.004	<0.004	0.002
Chromium (hexavalent)	mg/L	0.1	< 0.005	<0.005	0.0074	<0.005	<0.005	0.0035	<0.005	<0.005	<0.005	<0.005	0.0025
Copper	mg/L	0.5	0.033	0.016	0.017	0.015	0.014	0.019	0.0091	0.013	0.011	0.012	0.011
Cyanide	mg/L	0.1	< 0.005	<0.005	<0.005	<0.005	<0.005	0.0025	<0.005	<0.005	<0.005	<0.005	0.0025
Fluoride	mg/L	15.0	1.08	1.00	1.00	1.00	0.98	1.01	0.443	0.425	0.426	0.421	0.429
Iron	mg/L	2.0	0.54	0.15	0.11	0.089	0.46	0.27	0.22	0.2	0.27	0.14	0.2
Lead	mg/L	0.2	<0.001	<0.001	<0.001	<0.001	<0.001	0.0005	<0.001	<0.001	<0.001	<0.001	0.0005
Manganese	mg/L	1.0	0.015	0.0095	0.0089	0.0081	0.0097	0.0102	0.015	0.022	0.026	0.024	0.022
Mercury	mg/L	0.0005	<0.0002	<0.0002	<0.0002	<0.0002	<0.0002	0.0001	< 0.0002	<0.0002	<0.0002	<0.0002	0.0001
Nickel	mg/L	1.0	< 0.005	<0.005	<0.005	<0.005	<0.005	0.0025	<0.005	<0.005	<0.005	<0.005	0.0025
Nitrate	mg/L		<0.02	<0.02	<0.02	<0.02	<0.02	0.01	0.07	0.07	0.06	0.07	0.07
Nitrite	mg/L												
Total K Nitrogen	mg/L		<1.0	<1.0	<1.0	<1.0	<1.0	0.5	1.3	1.1	<1.0	<1.0	1.2
Oil and Grease	mg/L	15.0	<6.0	<6.5	<5.7	<5.9	<6.0	6.0	<5.9	<5.7	<5.9	<6.0	2.9
рН		6 to 9	7.21	7.12	7.20	7.21	7.41	7.23	7.22	7.52	7.62	7.30	7.42
Phenols	mg/L	0.3	< 0.005	<0.005	<0.005	<0.005	<0.005	0.0025	< 0.005	<0.005	<0.005	<0.005	0.0025
Phosphorus	mg/L	1.0	0.18	0.12	0.12	0.12	0.15	0.14	0.16	0.14	0.15	0.17	0.16
Selenium	mg/L		0.0015	0.0012	0.0012	0.0014	0.0012	0.0013	<0.001	<0.001	<0.001	<0.001	0.0005
Silver	mg/L	0.1	<0.005	<0.005	<0.005	<0.005	<0.005	0.0025	<0.005	<0.005	<0.005	<0.005	0.0025
Sulfate	mg/L		1000	960	1000	970	1000	986	55	56	54	54	55
Total Dissolved Solids (TDS)	mg/L		980	1200	1200	1200	1200	1156	190	180	160	170	175
Total Suspended Solids (TSS)	mg/L	15.0	9.2	5.6	8	4	6	6.6	7.6	4.8	4.8	<4.0	4.8
Zinc	mg/L	1.0	<0.006	<0.006	<0.006	<0.006	<0.006	0.003	0.006	0.006	<0.006	0.015	0.0075

#### Table 2. Ash Pond Unwaters and Receiving Waters Sample Analytical Results

Notes:

1. Metals are total concentrations

2. Non-detect results are assumed to be half the laboratory reporting limit for calculations.

3. Ash Pond 2 contains no unwaters.



#### Table 3. Ash Pond Dewaters Sample Analytical Results

		General Effluent Standards	Ash pond CCR of All concentration	contact water sar n units converted	nples (Collected C to mg/L for compa	october 24, 2016 arison to limits.	and January 26,	2017)											
					Ash Pond 1				Ash Pond 1				Ash P	ond 2				Ash Pond 2	Combined Ash Ponds
Sample Date			10/24/2016	1/26/2017	10/24/2016	1/26/2017	10/24/2016	1/26/2017	Representative Average	10/24/2016	1/26/2017	10/24/2016	1/26/2017	10/24/2016	1/26/2017	10/24/2016	1/26/2017	Representative Average	Representative Average
Sample ID	Units	35 IAC 304	AP1a	AP1a	AP1b	AP1b	AP1c	AP1c	Dewater Concentrations	AP2e	AP2e	AP2f	AP2f	AP2g	AP2g	AP2h	AP2h	Dewater Concentrations	Dewater Concentrations
Ammonia	mg/L	3	<0.1	<0.1	0.7	0.67	0.42	0.22	0.35	0.65	0.84	1.1	0.92	0.86	0.8	0.82	0.64	0.83	0.59
Arsenic	mg/L	0.25	0.0072	0.0093	0.017	0.0073	0.018	0.01	0.011	0.023	0.014	0.0012	<0.001	0.0055	0.0044	0.075	0.034	0.022	0.017
Barium	mg/L	2.0	0.13	0.13	0.1	0.099	0.13	0.25	0.14	0.026	0.019	0.022	0.014	0.02	0.015	0.023	0.013	0.02	0.08
Boron	mg/L		3.8	1.6	3.1	2.3	2.9	1.6	2.6	5.3	4.2	2	1.6	4.3	3.1	14	6.8	5.2	3.86
Cadmium	mg/L	0.15	< 0.001	< 0.001	< 0.001	<0.001	<0.001	<0.001	0.0005	< 0.001	< 0.001	<0.001	<0.001	0.0046	0.012	< 0.001	< 0.001	0.0025	0.00
Chloride	mg/L		3.2	9	13	10	13	14	10.4	<5	<5	<5	<5	<5	<5	1.7	1.6	2.3	6.3
Chromium	mg/L	1.0	< 0.004	0.0045	< 0.004	0.0052	< 0.004	0.0057	0.004	< 0.004	<0.004	<0.004	<0.004	< 0.004	<0.004	< 0.004	<0.004	0.002	0.003
Chromium (hexavalent)	mg/L	0.1	< 0.005	< 0.005	< 0.005	<0.005	<0.005	<0.005	0.0025	<0.005	<0.005	0.0055	<0.005	< 0.005	<0.005	<0.005	<0.005	0.0030	0.0028
Copper	mg/L	0.5	< 0.003	< 0.003	< 0.003	< 0.003	0.0043	0.0041	0.0024	< 0.003	<0.003	< 0.003	<0.003	< 0.003	<0.003	< 0.003	< 0.003	0.0015	0.0020
Cyanide	mg/L	0.1	< 0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	0.0025	<0.005	<0.005	<0.005	<0.005	< 0.005	<0.005	<0.005	<0.005	0.0025	0.0025
Fluoride	mg/L	15.0	<0.25	0.142	0.977	0.507	0.614	0.512	0.480	0.438	0.485	0.398	0.32	0.506	0.377	0.406	0.181	0.389	0.434
Iron	mg/L	2.0	0.57	0.9	0.83	1.2	0.77	2.2	1.08	350	320	460	380	360	290	24	22	276	138
Lead	mg/L	0.2	< 0.001	< 0.001	< 0.001	0.0012	< 0.001	0.0015	0.0008	< 0.001	< 0.001	<0.001	<0.001	< 0.001	<0.001	< 0.001	< 0.001	0.0005	0.0006
Manganese	mg/L	1.0	0.012	0.0086	0.074	0.041	0.053	0.022	0.035	2.0	1.9	2.3	2.0	2.9	2.2	1.0	0.9	1.90	0.97
Mercury	mg/L	0.0005	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	0.0001	<0.0002	< 0.0002	< 0.0002	< 0.0002	< 0.0002	<0.0002	< 0.0002	< 0.0002	0.0001	0.0001
Nickel	mg/L	1.0	< 0.005	<0.005	0.0061	0.0087	<0.005	<0.005	0.0041	<0.005	<0.005	<0.005	<0.005	0.0064	<0.005	<0.005	<0.005	0.0030	0.0036
Nitrate	mg/L		< 0.02	<0.1	< 0.02	<0.1	< 0.02	<0.1	0.06	< 0.02	<0.1	< 0.02	<0.1	< 0.02	<0.1	< 0.02	<0.1	0.06	0.06
Nitrite	mg/L			<0.1		<0.1		<0.1	0.05		<0.1		<0.15		<0.15		<0.1	0.11	0.08
Total K Nitrogen	mg/L		<1.0	0.35	1.5	0.0014	1.4	0.6	0.65	1.2	0.78	1.5	0.77	1.1	0.81	1.4	0.9	1.06	0.85
Oil and Grease	mg/L	15.0	<5.7	<3.2	7.8	<3.1	8.3	<3.1	3.9	<6.0	<3.1	<5.9	<3.2	<5.7	<3.3	<5.7	<3	4.5	4.21
рН		6 to 9	6.99	6.52	7.01	6.92	7.05	6.85	6.890	6.49	5.96	6.42	5.99	6.46	6.34	7.17	6.27	6.39	6.64
Phenols	mg/L	0.3	< 0.005	< 0.005	< 0.005	<0.005	< 0.005	<0.005	0.0025	< 0.005	0.019	< 0.005	<0.005	< 0.005	<0.005	< 0.005	< 0.005	0.005	0.004
Phosphorus	mg/L	1.0	0.21	0.16	0.16	0.065	0.17	0.22	0.16	0.84	0.16	0.83	0.4	0.17	0.1	0.26	0.038	0.35	0.26
Selenium	mg/L		0.003	0.018	0.0069	0.0021	0.0031	0.003	0.006	<0.001	<0.001	<0.001	<0.001	<0.001	<0.001	< 0.001	<0.001	0.0005	0.0033
Silver	mg/L	0.1	< 0.005	< 0.003	< 0.005	< 0.003	< 0.005	< 0.003	0.002	< 0.005	< 0.003	< 0.005	< 0.003	< 0.005	< 0.003	< 0.005	< 0.003	0.004	0.003
Sulfate	mg/L		1500	1300	1300	1500	1600	1200	1400	1500	1400	1500	1200	2300	1800	1300	880	1485	1443
Total Dissolved Solids (TDS)	mg/L		1800	1900	1600	2200	1900	1700	1850	1700	1800	1700	1600	2400	2600	1500	1400	1838	1844
Total Suspended Solids (TSS)	mg/L	15.0	17	8.8	27	20	9.6	58	23	120	110	120	160	120	150	22	39	105	64
Zinc	mg/L	1.0	< 0.006	<0.006	0.0092	0.0064	0.0082	0.0064	0.006	0.017	0.02	<0.006	<0.006	0.016	0.028	<0.006	<0.006	0.012	0.009

<u>Notes:</u> 1. Metals are total concentrations 2. Non-detect results are assumed to be half the laboratory reporting limit for calculations.





#### Table 4. Antidegradation Assessment - Ash Pond Unwaters

				Ash	Pond 1 - U	nwaters		Flow Mixir	ng with Process Wa	ater	Coffeen Lake					
	35 IAC	35 IAC		Treatm	nent Flowra	ate (gpm) =	347	Average F	lowrate (gpm) =	305,500	Norr	nal Po	ol Volume (gall	ons) =	7,039,4	140,000
Contaminant	304	302 Chronic		To	Total Volume (gallons) = 40,000,000			Process Water	• • • •			Lake	Lake Conc. w/			Additional Treatment
	(mg/L)		Concentration	Meet	Total Load	Source	Added Load	<b>Concentration - CLb</b>	Concentration at	Meet 304?	Coffeen Lake	Meet	Effluent	Meet	Meet	to meet 302 or Lake
		(mg/L)	(mg/L)	304?	(lbs)	Load (lbs)	(lbs)	(mg/L)	Outrail (mg/L)		(mg/L)	302?	(mg/L)	302?	Lаке?	(lbs)
Ammonia	3	2.08	0.05	yes	16.69	16.69	0.00	0.05	0.05	yes	0.05	yes	0.05	yes	-	-
Arsenic	0.25	0.05	0.0015	yes	0.51	0.60	-0.09	0.0018	0.002	yes	0.002	yes	0.002	yes	-	-
Barium	2	1.0	0.17	yes	55.42	18.03	37.39	0.052	0.052	yes	0.054	yes	0.054	yes	-	-
Boron	-	1.0	2.1	-	701.06	91.81	609.25	0.28	0.282	-	0.275	yes	0.275	yes	-	-
Cadmium	0.15	0.010	0.0005	yes	0.17	0.17	0.00	0.0005	0.0005	yes	0.0005	yes	0.0005	yes	-	-
Chloride	-	250	17	-	5 <i>,</i> 808.8	7.5	5,801.25	0.022	0.042	-	0.023	yes	0.023	yes	-	-
Chromium	1	0.050	0.002	yes	0.67	0.67	0.00	0.002	0.0020	yes	0.0020	yes	0.0020	yes	-	-
Chromium (hex)	0.1	0.011	0.003	yes	1.16	0.83	0.33	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Copper	0.5	0.015	0.019	yes	6.34	3.76	2.58	0.013	0.0130	yes	0.0113	yes	0.0113	yes	-	-
Cyanide	0.1	5.2	0.0025	yes	0.83	0.83	0.00	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Fluoride	15	1.4	1.01	yes	337.8	143.1	194.71	0.425	0.426	yes	0.429	yes	0.429	yes	-	-
Iron	2	0.3	0.27	yes	90	69.27	20.80	0.20	0.20	yes	0.208	yes	0.207	yes	-	-
Lead	0.2	0.050	0.0005	yes	0.17	0.17	0.00	0.0005	0.0005	yes	0.0005	yes	0.0005	yes	-	-
Manganese	1	1.0	0.0102	yes	3.42	7.26	-3.84	0.0220	0.0220	yes	0.0218	yes	0.0218	yes	-	-
Mercury	0.0005	0.0011	0.0001	yes	0.0334	0.03	0.00	0.0005	0.0005	yes	0.0001	yes	0.0001	yes	-	-
Nickel	1	0.007	0.0025	yes	0.83	0.83	0.00	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Nitrate (302.304)	-	10	0.01	-	3.34	23.37	-20.03	0.07	0.070	-	0.070	yes	0.070	yes	-	-
Nitrite	-	-	-	-	-	-	-	-	-	-	-	-	-	•	-	-
O&G	15	0.1	6.0	yes	2,009.7	980.6	1,029.05	2.85	2.9	yes	2.9	no	2.9	no	yes	-
рН	6 to 9	6 to 9	7.23	yes	-	-	-	7.52	7.52	yes	7.42	yes	7.42	yes	-	-
Phenols	0.3	0.001	0.0025	yes	0.83	0.83	0.00	0.0025	0.0025	yes	0.0025	no	0.0025	no	yes	-
Phosphorus	1	0.05	0.14	yes	46.07	51.74	-5.68	0.14	0.14	yes	0.16	no	0.15	no	yes	-
Selenium	-	0.01	0.0013	-	0.43	0.17	0.27	0.0005	0.0005	-	0.0005	yes	0.0005	yes	-	-
Silver	0.1	0.005	0.0025	yes	0.83	0.83	0.00	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Sulfate	-	250	986	-	329,163	18,278	310,885.71	56.0	57.1	-	54.8	yes	54.8	yes	-	-
TDS	-	500	1156	-	385,916	58,421	327,494.10	180	181	-	175	yes	175	yes	-	-
TSS	15	-	7	yes	2,190	1,602	587.55	4.8	4.8	yes	4.8	yes	4.8	-	-	-
ΤΚΝ	-	-	0.5	-	166.9	400.6	-233.69	1.1	1.1	-	1.2	yes	1.2	-	-	-
Zinc	1	0.041	0.003	yes	1.00	2.50	-1.50	0.0060	0.0060	yes	0.0075	yes	0.0075	yes	-	-

This table shows the "Added Load" of pollutants from unwaters that would be discharged to Coffeen Lake. The table shows the proposed discharge will not cause exceedances of the 35 IAC Section 302 Public and Food Processing Water Supply Standards in the lake.

#### <u>Notes</u>

* Hardness-based numeric water quality standards are calculated using analytical result of 110 mg/L from January 13, 2017 sampling.

* Concentration is represented as a mean of all samples collected. Non-detect results were assumed to be half of the detection limit.

* Concentration at outfall is weighted based on flow rate and concentration of process water flow.

* Additional treatment is the amount of additional treament needed to reduce the concentration of the effluent water to meet either the 302 water quality standard or the concentration of the source water (Coffeen



#### 4.3 Pollutant Load Increases from Ash Pond Dewatering Discharge

Discharge of dewaters would occur from removal of the water from pore spaces in deposited ash in Ash Ponds 1 and 2. The means and methods of collecting and conveying the dewaters are undetermined at this time. This antidegradation assessment assumes the dewaters from Ash Ponds 1 and 2 will be combined for discharge.

For purposes of this antidegradation assessment, substances in dewaters at concentrations less than the General Effluent Standards at 35 III. Adm. Code §304 are considered to be protective of the receiving water quality, i.e., would not cause degradation of the receiving water quality. As shown in Table 3 and Table 5, the representative average dewater concentrations of TSS in Ash Pond 1, Ash Pond 2, and the combined ash pond dewaters exceeded the General Effluent Standard. The representative average dewater concentrations of iron and manganese in Ash Pond 2 dewaters exceeded their respective General Effluent Standards. The representative average combined ash pond dewaters concentration of iron exceeded the General Effluent Standard. The representative average concentrations of manganese in Ash Pond 1 dewaters and the combined ash pond dewaters were less than the General Effluent Standard. All other analytes were less than the General Effluent Standards.

Table 5 shows the estimated mass of each substance proposed to be discharged through the existing NPDES outfall to Coffeen Lake receiving water (the "Added Load"). Table 5 estimates the predicted effects of discharging the dewaters to the lake and demonstrates the proposed discharge will not cause exceedances of the Public and Food Processing Water Supply Use Standards at 35 III. Adm. Code §302 Subpart C. For substances with no Public and Food Processing Water Supply Use Standard, the chronic General Use Water Quality Standards at 35 III. Adm. Code §302 Subpart B were used for comparison. Lake concentrations were calculated at normal pool volume. For substances where concentrations in the lake already exceed the applicable water quality standards (oil and grease, phenols, and phosphorus), the concentrations. Table 5 illustrates the proposed dewaters discharge will not increase the existing lake concentrations of oil and grease, phenols, and phosphorus in the lake.

The estimated combined volume of dewaters to be discharged from Ash Ponds 1 and 2 as part of the CCR closure plan is 25 million gallons. The dewaters are expected to be discharged over approximately 120 to 180 days, at a rate of approximately 0.1 to 0.2 MGD. Ash Pond 2 may be dewatered using the pumps in the existing wells. The dewatering volume may be reduced if less dewatering is required to construct the cover system. The proposed short-term CCR dewatering discharge will contribute a negligible effect on receiving water concentrations.

#### 5. Fate and Effect of Parameters Proposed for Increased Loading

Tables 4 and 5 show the estimated mass of each substance proposed to be discharged through the existing NPDES outfall to Coffeen Lake from the ash pond unwatering and dewatering activities (the "Added Load" on each table). The tables also estimate the predicted effects of discharging the unwaters and dewaters and demonstrate the proposed discharges will not cause exceedances of the Public and Food Processing Water Supply Use Standards at 35 III. Adm. Code §302 Subpart C or increase the existing lake concentrations. For substances with no Public and Food Processing Water Supply Use Standards at 35 III. Adm. Code §302 Subpart C or Supply Use Standard, the chronic General Use Water Quality Standards at 35 III. Adm. Code §302 Subpart B were used for comparison.



#### Table 5. Antidegradation Assessment - Ash Pond Dewaters

		25 14 6	A	sh Por	nds 1 and 2	- Dewaters		Flow Mixir	ng with Process Wa	ater	Coffeen Lake					
	35 IAC	35 IAC	-	Treatm	nent Flowra	ate (gpm) =	100	Average F	lowrate (gpm) =	305,500	Norr	nal Po	ol Volume (gall	ons) =	7,039,4	40,000
Contaminant	304	302 Chronic		То	tal Volume	(gallons) =	25,000,000	Process Water	<b>.</b>			Lake	Lake Conc. w/			Additional Treatment
	(mg/L)		Concentration	Meet	Total Load	Source	Added Load	<b>Concentration - CLb</b>	Concentration at	Meet 304?	Coffeen Lake	Meet	Effluent	Meet	Meet	to meet 302 or Lake
		(mg/L)	(mg/L)	304?	(lbs)	Load (lbs)	(lbs)	(mg/L)	Outrall (mg/L)		(mg/L)	302?	(mg/L)	302?	Laker	(lbs)
Ammonia	3	2.08	0.59	yes	123.15	10.43	112.71	0.05	0.05	yes	0.05	yes	0.05	yes	-	-
Arsenic	0.25	0.05	0.0170	yes	3.54	0.38	3.16	0.0018	0.002	yes	0.002	yes	0.002	yes	-	-
Barium	2	1.0	0.08	yes	16.57	11.27	5.30	0.052	0.052	yes	0.054	yes	0.054	yes	-	-
Boron	-	1.0	3.9	-	804.60	57.38	747.22	0.280	0.281	-	0.275	yes	0.275	yes	-	-
Cadmium	0.15	0.010	0.0015	yes	0.31	0.10	0.20	0.0005	0.0005	yes	0.0005	yes	0.0005	yes	-	-
Chloride	-	250	6	-	1,320.1	4.7	1,315.44	0.022	0.024	-	0.023	yes	0.023	yes	-	-
Chromium	1	0.050	0.003	yes	0.58	0.42	0.16	0.002	0.0020	yes	0.0020	yes	0.0020	yes	-	-
Chromium (hex)	0.1	0.011	0.003	yes	0.57	0.52	0.05	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Copper	0.5	0.015	0.002	yes	0.41	2.35	-1.95	0.013	0.0130	yes	0.0113	yes	0.0113	yes	-	-
Cyanide	0.1	5.2	0.0025	yes	0.52	0.52	0.00	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Fluoride	15	1.4	0.43	yes	90.6	89.5	1.13	0.425	0.425	yes	0.429	yes	0.429	yes	-	-
Iron	2	0.3	138.41	no	28,880	43.29	28,836.56	0.20	0.25	yes	0.21	yes	0.21	yes	-	-
Lead	0.2	0.050	0.0006	yes	0.13	0.10	0.03	0.0005	0.0005	yes	0.0005	yes	0.0005	yes	-	-
Manganese	1	1.0	0.9657	yes	201.49	4.54	196.95	0.022	0.0223	yes	0.0218	yes	0.0218	yes	-	-
Mercury	0.0005	0.0011	0.0001	yes	0.0209	0.02	0.00	0.0005	0.0005	yes	0.0001	yes	0.0001	yes	-	-
Nickel	1	0.007	0.0036	yes	0.74	0.52	0.22	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Nitrate (302.304)	-	10	0.06	-	12.52	14.61	-2.09	0.07	0.070	-	0.070	yes	0.070	yes	-	-
Nitrite	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-
O&G	15	0.1	4.2	yes	879.4	612.9	266.46	2.85	2.9	yes	2.9	no	2.9	no	yes	-
рН	6 to 9	6 to 9	6.64	yes	-	-	-	7.52	7.52	yes	7.42	yes	7.42	yes	-	-
Phenols	0.3	0.001	0.0035	yes	0.74	0.52	0.22	0.0025	0.0025	yes	0.0025	no	0.0025	no	yes	-
Phosphorus	1	0.05	0.26	yes	53.61	32.34	21.27	0.14	0.14	yes	0.16	no	0.15	no	yes	-
Selenium	-	0.01	0.0033	-	0.68	0.10	0.58	0.0005	0.0005	-	0.0005	yes	0.0005	yes	-	-
Silver	0.1	0.005	0.0030	yes	0.63	0.52	0.10	0.0025	0.0025	yes	0.0025	yes	0.0025	yes	-	-
Sulfate	-	250	1443	1	300,975	11,423	289,551	56	56.5	-	54.8	yes	54.8	yes	-	-
TDS	-	500	1844	-	384,695	36,513	348,182	180	181	-	175	yes	175	yes	-	-
TSS	15	-	64	no	13,408	1,002	12,406.74	4.8	4.8	yes	4.8	yes	4.8	-	-	-
ΤΚΝ	-	-	0.9	-	178.2	250.4	-72.22	1.1	1.1	-	1.2	yes	1.2	-	-	-
Zinc	1	0.041	0.009	yes	1.84	1.56	0.28	0.006	0.0060	yes	0.0075	yes	0.0075	yes	-	-

This table shows the "Added Load" of pollutants from dewaters that would be discharged to Coffeen Lake. The table shows the proposed discharge will not cause exceedances of the 35 IAC Section 302 Public and Food Processing Water Supply Standards in the lake.

#### <u>Notes</u>

* Hardness-based numeric water quality standards are calculated using analytical result of 110 mg/L from January 13, 2017 sampling.

* Concentration is represented as a mean of all samples collected. Non-detect results were assumed to be half of the detection limit.

* Concentration at outfall is weighted based on flow rate and concentration of process water flow.

* Additional treatment is the amount of additional treament needed to reduce the concentration of the effluent water to meet either the 302 water quality standard or the concentration of the source water (Coffeen



Fish consumption use of Coffeen Lake is listed as impaired, with a cause of mercury. A TMDL has been completed for Coffeen Lake that sets allocations for phosphorus. The concentrations of mercury in the proposed discharges will not cause exceedances of the Public and Food Processing Water Supply Use Standards. The proposed unwaters and dewaters discharges will not increase the existing lake concentrations of the causes of impairment. Since the proposed short-term discharges would not cause exceedances of the Public and Food Processing Water Supply Use standards or contribute to the cause of impairment in the lake, adverse impacts to the existing uses of the water body are not anticipated.

# 6. Assessments of Alternatives for Less Increase in Loading or Minimal Environmental Degradation

#### 6.1 Water Management Alternatives Considered

Discharge of unwaters would occur from removal of the free surface water in Ash Pond 1. These waters result from the normal operation of the Coffeen plant and, except for storm water precipitation into the ash pond cells, are generally drawn from Coffeen Lake. These waters comply with the General Effluent Standards at 35 III. Adm. Code §304 and are currently discharged under the authorization of the plant's NPDES permit. No unwaters are present in Ash Pond 2.

IPGC has considered management alternatives for the dewaters that could avoid or minimize increase in pollutant loading to the receiving water. In addition to assessment of potential degradation of receiving waters that could result from the dewatering discharges, an important criterion used in the alternatives analysis is the reliability of the time required to remove the dewaters from the ash ponds. The unwatering and dewatering must be completed in a limited time frame to enable the regulatory-driven CCR closure construction activities. The alternatives are summarized in Table 6 and discussed in the following sections.

#### Table 6. Water Management Alternatives Considered

Alternatives that Avoid Discharge to Receiving Water

- No action. (No unwatering or dewatering of ash ponds.)
- Mechanical evaporation.
- Agricultural irrigation.
- Land application.
- Use ash pond water in power generation plant processes.

Alternatives that Discharge to Receiving Water

- Discharge through existing NPDES Outfall 001. This is the preferred alternative.
- Discharge with additional treatment.
  - Coagulation/flocculation.
  - Precipitation/filtration.
  - Reverse osmosis.



#### 6.2 Alternatives that Avoid Discharge to Receiving Water

#### 6.2.1 No Action Alternative

The closure plan for the Coffeen Ash Ponds 1 and 2 includes installation of a compacted earthen material and vegetated or composite cover system. Site preparation for installation of the cover system requires removal of open water from the ash ponds and partial removal of pore water contained in CCR-filled portions of the ash ponds. Impoundment closure to comply with the federal CCR Rule could not be achieved without removing the unwaters and dewaters. Therefore, the no action alternative is not feasible and is excluded from further consideration.

#### 6.2.2 Mechanical Evaporation

IPGC and Hanson evaluated dewatering the ash ponds by mechanical evaporation. Hanson consulted with one mechanical evaporation equipment provider to discuss the feasibility of removing the ash pond dewaters by evaporation. Based on the information reviewed and the typical climate in this project area, mechanical evaporators could each be expected to evaporate approximately 60,000 gallons per day. Multiple evaporators would be needed to remove the estimated 25 million gallons of dewaters from the ash ponds.

Evaporation rates would be dependent upon many factors such as performance of the evaporation equipment, water make-up and chemistry, ambient temperature and humidity, solar radiation, wind, free flow of air over the ash ponds, and other factors. Evaporation could occur only in the warmer months, between approximately April and October, with the most efficient evaporation occurring in mid-summer.

It is unlikely that ideal evaporation conditions would occur for enough duration to eliminate the total 25 million gallons of dewaters. The unpredictability of weather and unreliability of evaporation rates make this alternative infeasible to comply with the CCR closure timeframes.

#### 6.2.3 Agricultural Irrigation

IPGC and Hanson evaluated using the CCR dewaters for agricultural irrigation. The Coffeen plant is located in a rural agricultural area, although the plant is situated between Coffeen Lake and other waterbodies including East Fork Shoal Creek and Rocky Ford Lakes. Review of aerial photography does not indicate that irrigation is currently used in the vicinity of the plant. Dewaters could be pumped from the ash ponds and piped to fields east of the plant. However, the nearest agricultural fields do not appear to be feasible for the installation of large irrigation rigs due to the presence of large high-voltage electric transmission lines. The nearest fields that could potentially be irrigated would require running about 1.2 miles of temporary piping across and along County Road 1650E. It is unknown if permission could be obtained from the landowners and/or tenant farmers to utilize the irrigation rigs in their fields, and what conditions or payments may be required to obtain permission. It is likely IPGC would have to compensate the farmers for at least one season of crops. Since the purpose of the irrigation would be to remove the dewaters from the ash ponds, it is likely that water would be applied at higher rates than desired for crop growth, resulting in damaged crop or diminished yields.

IPGC has not estimated the cost to negotiate permissions and install the temporary piping to the agricultural irrigation rig(s). As with the mechanical evaporation discussed above, it is unlikely that ideal conditions would occur for enough duration to eliminate the total 25 million gallons of dewaters. The unpredictability of weather and unreliability of evaporation and infiltration rates make this alternative



infeasible to comply with the CCR closure timeframes. The technical obstacles and potential detrimental effects to local farms make this alternative infeasible for the proposed short-term discharge.

#### 6.2.4 Land Application

IPGC and Hanson evaluated land application of the CCR dewaters. Dewaters could be utilized on site for dust control. Land-applied water would be dissipated by evaporation and infiltration. In order to avoid discharge to the receiving water, land application would need to be controlled so that surface runoff did not occur. Due to the large volume of dewaters to be removed, the relatively compact size of the Coffeen plant, and the small area of pervious surfaces for infiltration, it is unlikely the dewaters could be eliminated in a timely manner by land application on stored coal or ground surfaces without causing plant inefficiency (wet coal) or safety or housekeeping issues. Land application is infeasible to eliminate the total 25 million gallons of dewaters within the CCR closure timeframes.

#### 6.2.5 Use CCR Dewaters in Power Generation Plant Processes

IPGC and Hanson evaluated using the CCR dewaters in power plant processes. The plant uses makeup water for various processes. However, the quality of the dewaters, including concentrations of iron, sulfate, TSS, and total dissolved solids (TDS) would not be usable in the processes without substantial pretreatment. The likely pretreatment processes would generate waste streams that would result in wastewater discharges or disposal. Due to the undesirable water quality and the large volume of dewaters, it is infeasible to eliminate the anticipated total 25 million gallons of dewaters by using it in plant processes.

Currently the existing Ash Pond 2 dewatering system is directed to the GMF system, which recirculates to the "closed-loop" scrubber system. This dewatering system could be adequate to lower the Ash Pond 2 phreatic surface, facilitate Ash Pond 2 closure, and reduce the volume of Ash Pond 2 dewaters that would need to be discharged to Coffeen Lake during Ash Pond 2 closure. However, the GMF ystem could be overwhelmed with the large volume of Ash Pond 2 dewaters. Therefore, the option to discharge Ash Pond 2 dewaters to Coffeen Lake must be available.

#### 6.3 Alternatives that Discharge to Receiving Water

#### 6.3.1 Discharge through Existing NPDES Outfall

IPGC and Hanson evaluated discharging the dewaters through the existing NPDES Outfall 001. This is the normal operation and discharge of the ash pond waters. The dewaters would be conveyed through the outfall using existing infrastructure, including pumps, piping, and outfall structures.

Table 5 estimates the predicted effects of discharging the dewaters to the lake and demonstrates the proposed discharge will not cause exceedances of the Public and Food Processing Water Supply Use Standards or the chronic General Use Water Quality Standards at 35 III. Adm. Code §302. For substances where concentrations in the lake already exceed the applicable water quality standards (oil and grease, phenols, and phosphorus), the concentrations of these substances in the proposed dewaters discharge are equivalent to the existing lake concentrations. Table 5 illustrates the proposed dewaters discharge will not increase the existing concentrations of oil and grease, phenols, and phosphorus in the lake.

Pollutant loading from the proposed dewatering would increase during the short-term discharges (approximately 120 to 180 days). Considering the demonstration presented in Table 5, no adverse



impacts to the existing uses of the receiving water are anticipated. Pollutant loading would decrease when the short-term dewaters discharges are completed. This alternative eliminates the dewaters in the shortest time and will enable the dewatering to be completed within the CCR closure timeframes.

#### 6.3.2 Direct Discharge with Additional Treatment

IPGC and Hanson conducted cursory evaluations of treatment processes to reduce pollutant concentrations in the dewaters discharges. Wastewater pretreatment processes could conceivably be installed prior to Outfall 001. Pretreatment processes including oxidation, precipitation, coagulation, and flocculation would reduce the TSS in the dewaters and could reduce the dissolved concentrations of certain pollutants such as iron and manganese. However, industry experience has shown that biological treatment, chemical precipitation, or ion exchange processes are not effective in reducing concentrations of boron.

Specialized adsorption processes or reverse osmosis (RO) could be utilized to reduce the concentration of boron in the ash pond dewaters. These technologies are complex, expensive, and generate waste streams that need to be disposed or treated. Considering the large volume of dewaters (25 million gallons total), it is predicted the volumes of wastewaters from the pretreatment processes would be substantially large and concentrated to make these processes infeasible for the proposed short-term discharges of ash pond dewaters.

#### 7. Identification of Preferred Alternative

Discharging the unwaters and dewaters through the existing NPDES outfall is consistent with the plant's normal operation. This alternative would use existing infrastructure at minimal or no additional cost and has been demonstrated to not cause exceedances of the Public and Food Processing Water Supply Standard or the chronic General Use Water Quality Standards. This alternative will remove the dewaters in the shortest practicable time to comply with the CCR closure timeframes. Discharging the dewaters through the existing NPDES outfall is IPGC's preferred alternative.

#### 8. References

- Integrated Water Quality Report and 303d Lists. (2016). Retrieved from Illinois Environmental Protection Agency: http://www.epa.illinois.gov/topics/water-quality/watershedmanagement/tmdls/303d-list/index
- National Water Quality Monitoring Council. (2016, October 26). Retrieved from http://www.waterqualitydata.us/portal/
- Illinois Environmental Protection Agency. *Public Notice/Fact Sheet* (2009, July 30). Notice No. SMT:05012101.daa. NPDES Permit IL0000108.
- Illinois Environmental Protection Agency. *Public Notice/Fact Sheet* (2011, April 25). Notice No. SMT:05012102.daa. NPDES Permit IL0000108.
- Illinois Environmental Protection Agency. *Public Notice/Fact Sheet* (2015, August 31). Notice No. SMT:15070201.smt. NPDES Permit IL0000108.



## Appendix

## **EcoCAT Report**





Applicant: Hanson Professional Services Inc. Contact: Doug Dorsey Address: 1525 S. 6th St. Springfield, IL 62703 Project: Coffeen Lake Address: 134 CIPS Lane, Coffeen

IDNR Project Number: 1704719 Date:

11/25/2016

Description: Antidegradation study for CCR Discharge

#### Natural Resource Review Results

This project was submitted for information only. It is not a consultation under Part 1075.

The Illinois Natural Heritage Database shows the following protected resources may be in the vicinity of the project location:

Eastern Blue-Eyed Grass (Sisyrinchium atlanticum)

#### Location

The applicant is responsible for the accuracy of the location submitted for the project.

County: Montgomery

Township, Range, Section: 7N, 3W, 3 7N, 3W, 4 7N, 3W, 9 7N, 3W, 10 7N, 3W, 11 7N, 3W, 14 7N, 3W, 15 7N, 3W, 22 7N, 3W, 23 IL Department of Natural Resources Contact

Impact Assessment Section 217-785-5500 **Division of Ecosystems & Environment** 

#### Disclaimer

The Illinois Natural Heritage Database cannot provide a conclusive statement on the presence, absence, or condition of natural resources in Illinois. This review reflects the information existing in the Database at the time of this inquiry, and should not be regarded as a final statement on the site being considered, nor should it be a substitute for detailed site surveys or field surveys required for environmental assessments. If additional protected resources are encountered during the project's implementation, compliance with applicable statutes and regulations is required.



#### ATTACHMENT V

IDNR Project Number: 1704719

#### Terms of Use

By using this website, you acknowledge that you have read and agree to these terms. These terms may be revised by IDNR as necessary. If you continue to use the EcoCAT application after we post changes to these terms, it will mean that you accept such changes. If at any time you do not accept the Terms of Use, you may not continue to use the website.

1. The IDNR EcoCAT website was developed so that units of local government, state agencies and the public could request information or begin natural resource consultations on-line for the Illinois Endangered Species Protection Act, Illinois Natural Areas Preservation Act, and Illinois Interagency Wetland Policy Act. EcoCAT uses databases, Geographic Information System mapping, and a set of programmed decision rules to determine if proposed actions are in the vicinity of protected natural resources. By indicating your agreement to the Terms of Use for this application, you warrant that you will not use this web site for any other purpose.

2. Unauthorized attempts to upload, download, or change information on this website are strictly prohibited and may be punishable under the Computer Fraud and Abuse Act of 1986 and/or the National Information Infrastructure Protection Act.

3. IDNR reserves the right to enhance, modify, alter, or suspend the website at any time without notice, or to terminate or restrict access.

#### Security

EcoCAT operates on a state of Illinois computer system. We may use software to monitor traffic and to identify unauthorized attempts to upload, download, or change information, to cause harm or otherwise to damage this site. Unauthorized attempts to upload, download, or change information on this server is strictly prohibited by law.

Unauthorized use, tampering with or modification of this system, including supporting hardware or software, may subject the violator to criminal and civil penalties. In the event of unauthorized intrusion, all relevant information regarding possible violation of law may be provided to law enforcement officials.

#### Privacy

EcoCAT generates a public record subject to disclosure under the Freedom of Information Act. Otherwise, IDNR uses the information submitted to EcoCAT solely for internal tracking purposes.



# **Appendix E**

**Groundwater Polishing Evaluation Report** 



engineers | scientists | innovators

# **Groundwater Polishing Evaluation Report**

# **Coffeen Power Plant – Ash Pond No. 2 Unit**

## (IEPA ID No. W1350150004-02)

Prepared for

**Illinois Power Generating Company** 1500 Eastport Plaza Drive Collinsville, Illinois 62234

Prepared by

Geosyntec Consultants, Inc. 500 W. Wilson Bridge Road, Suite 250 Worthington, Ohio 43085

Project Number: GLP8078

April 1, 2025

EX	ECUT	TIVE SU	JMMARY	1
1.	INT	RODUC	CTION	3
2.	SITE 2.1 2.2 2.3	BACK Site O Identif Geoch	GROUNDverview verview ied Exceedances of the GWPS emical Conceptual Site Model	5 5 6 7
3.	GRC 3.1 3.2	PUNDW Metho 3.1.1 Result 3.2.1 3.2.2 3.2.3	VATER POLISHING REMEDY EVALUATION ds Model Set-Up s and Discussion Model Results Speciation Modeling Reaction modeling	8 9 10 10 13 13
4.	CON	CLUSI	ONS	15
5.	REF	ERENC	ES	16

#### LIST OF TABLES

Table 1	Summary of Geochemical Model Inputs
Table 2	Geochemical Modeling Response of Sorbing Phases

#### LIST OF INTERNAL FIGURES

- Figure 1 Percentage of Sorbed Boron
- Figure 2 Modeled Boron Behavior
- Figure 3 Percentage of Sorbed Sulfate
- Figure 4 Modeled Sulfate Behavior
- Figure 5 Modeled Sorbing Phase Behavior



#### LIST OF ATTACHMENTS

Attachment A	Potentiometric Surface Map – August 2023
Attachment B	PHREEQC Input File and Thermodynamic Database
Attachment C	Details of Geochemical Model Parameterization
Attachment D	Complete Geochemical Modeling Outputs



#### **ACRONYMS AND ABBREVIATIONS**

AP1	Ash Pond No. 1
AP2	Ash Pond No. 2
CAAA	Corrective Actions Alternative Analysis
CCR	Coal combustion residuals
COC	Constituent of concern
CPP	Coffeen Power Plant
DA	Deep aquifer
DCU	Deep confining unit
GCSM	Geochemical conceptual site model
GWPS	Groundwater protection standard
IEPA	Illinois Environmental Protection Agency
LCU	Lowermost confining unit
mg/kg	milligrams per kilogram
redox	oxidation-reduction
SEP	Sequential extraction procedure
SRNL	Savannah River National Laboratory
UA	Uppermost aquifer
UCU	Uppermost confining unit
USEPA	United States Environmental Protection Agency
TDS	Total dissolved solids
XRD	X-ray diffraction



### **EXECUTIVE SUMMARY**

This document has been prepared as an attachment to the Corrective Actions Alternative Analysis (CAAA) prepared by Gradient for Coffeen Power Plant Ash Pond No. 2 (AP2) Unit. The constituents of concern (COCs) addressed this document are boron, pH, sulfate, and total dissolved solids (TDS), which have been identified as having exceedances¹ of the site-specific groundwater protection standards (GWPS) at the time of this analysis. Natural geochemical processes may be appropriate as a "polishing step" for residual plume management after effective source control implementation if there are no risks to receptors and/or the contaminant plume is not expanding (United States Environmental Protection Agency [USEPA] 1999; USEPA 2015). Source control is a major component of every corrective action considered in the CAAA, and there are no risks to human health or the environment at Coffeen AP2.

Natural groundwater polishing processes, which include both physical and chemical mechanisms, reduce the concentration of COCs in the groundwater. After source control is implemented, a geochemical trailing gradient may form in the subsurface as conditions undergo a return to background water quality which could affect chemical groundwater polishing mechanisms (Savannah River National Laboratory, 2011). This report supports groundwater polishing as a component of the proposed corrective action by evaluating the contribution of chemical mechanisms to groundwater polishing under current conditions and after source control implementation. The groundwater flow and transport model estimated the time to reach the GWPS based on hydraulic properties of the aquifer. The results of this groundwater polishing evaluation contextualize these estimates by evaluating the potential for attenuation of COCs and for previously attenuated COCs to be mobilized to groundwater as groundwater quality returns to background conditions.

Groundwater polishing mechanisms were assessed using speciation and reaction geochemical models: speciation models assess the distribution of constituents between solid and aqueous phases, and reaction models evaluate how that distribution may change with changing site conditions (USEPA 2015). Inputs to the model include geochemically reactive solid mineral phases, compliance well groundwater composition, and background groundwater composition based on site-specific data.

The results of the groundwater polishing evaluation indicate that some chemical attenuation of boron and sulfate is feasible under current conditions through sorption to iron and aluminum oxide solids and, in the case of sulfate, barite precipitation. Modeling indicates that boron and sulfate attenuation via sorption onto mineral surfaces should remain stable under future conditions, as iron and aluminum oxide mineral phases are predicted to experience minor (if any) dissolution with background groundwater interaction. Additionally, barite precipitation was predicted in all future

¹ Throughout this document, "exceedance" or "exceedances" is intended to refer only to potential exceedances of proposed applicable background statistics or Groundwater Protection Standards as described in the proposed groundwater monitoring program which was submitted to the IEPA on October 25, 2021 as part of Illinois Power Resource Generating, LLC's operating permit application for the Coffeen Power Plant Ash Pond No. 2. That operating permit application, including the proposed groundwater monitoring program, remains under review by the IEPA and therefore Illinois Power Resource Generating, LLC has not identified any actual exceedances.



scenarios. Remobilization of sulfate is unlikely to affect the estimated time to reach the GWPS based on modeling results; however, mobilization of currently attenuated boron at some locations could result in a longer time to reach the GWPS compared to sulfate. It is anticipated that attenuation of sulfate will contribute to a reduction in TDS concentrations. The low pH exceedance at a single well is predicted to resolve due to influence from near-neutral pH background groundwater. These results will inform corrective action groundwater monitoring and adaptive site management, critical components of every corrective action considered in the CAAA.



### 1. INTRODUCTION

This document has been prepared as an attachment to the Corrective Actions Alternatives Analysis (CAAA) prepared by Gradient for Coffeen Power Plant (CPP) Ash Pond No. 2 (AP2) Unit. The purpose of the CAAA is to holistically evaluate potentially viable corrective actions to remediate groundwater and achieve compliance with site-specific groundwater protection standards (GWPS) for all monitored parameters under Title 35 of the Illinois Administrative Code (35 I.A.C.) § 845.600. The constituents of concern (COCs) addressed in this document are boron, pH, sulfate, and total dissolved solids (TDS)², which have been identified as having exceedances of the site-specific groundwater protection standard (GWPS) at the time of this analysis. In the CAAA, all corrective actions considered consist of source control and residual plume management. Natural geochemical processes may be appropriate as a "polishing step" for residual plume management after effective source control implementation, if there are no risks to receptors and/or the contaminant plume is not expanding (United States Environmental Protection Agency [USEPA] 1999; USEPA 2015). Source control is a major component of every corrective action considered in the CAAA, and there are no risks to human health or the environment at Coffeen AP2.³

Groundwater polishing processes include both physical and chemical mechanisms within the groundwater which reduce the concentration of COCs in the groundwater. Physical components of groundwater polishing, including advection, dilution, and dispersion, are assessed by groundwater flow and transport modeling (Groundwater Modeling Technical Memorandum⁴). Chemical mechanisms of groundwater polishing include sorption and mineral precipitation. After source control is implemented, a geochemical trailing gradient may form in the subsurface as conditions undergo a return to background water quality which could affect chemical groundwater polishing mechanisms (Savannah River National Laboratory [SRNL], 2011). The chemical mechanisms of groundwater polishing at Coffeen AP2 are evaluated herein using a geochemical modeling to evaluate the influence of chemical mechanisms on groundwater polishing under current conditions and after source control implementation.

The groundwater flow and transport model (Groundwater Modeling Technical Memorandum⁵) estimated the time for sulfate (as a conservative surrogate) to reach the GWPS under different potential corrective actions based on physical components of groundwater polishing and did not incorporate any potential chemical controls on parameter distribution. This geochemical modeling effort supports the assessment of groundwater polishing as a component of the proposed corrective action by evaluating the potential for chemical attenuation of boron and sulfate before and after

 $^{^2}$  TDS measurements represent the total mass of dissolved constituents in a sample rather than a single chemical behavior. Because sulfate is the dominant contributor to TDS, results for sulfate in this analysis also apply to TDS.

³ The Human Health and Ecological Risk Assessment serves as Appendix A of the CAAA to which this report is attached.

⁴ The Groundwater Modeling Technical Memorandum serves as Appendix B of the Corrective Action Alternatives Analysis Supporting Information Report; the Corrective Action Alternatives Analysis Supporting Information Report serves as Appendix B of the CAAA to which this report is attached. ⁵ Ibid.



source control as a means of contextualizing the times estimated in the flow and transport model. This analysis also provides an initial foundation for understanding groundwater chemistry to inform adaptive site management as a key component of the Corrective Action Groundwater Monitoring Program⁶.

⁶ The Corrective Action Groundwater Monitoring Program serves as Appendix B.1 to the Construction Permit Application.

### 2. SITE BACKGROUND

### 2.1 Site Overview

A thorough overview of general site characteristics is presented in Section 1 of the CAAA to which this document is attached and summarized here. The CPP property is located approximately two miles south of the city of Coffeen, Illinois, and bordered by two lobes of Coffeen Lake to the west, east, and south, and by agricultural land to the north. The CPP AP2 impoundment is located to the north of the CPP Ash Pond No. 1 (AP1) coal combustion residuals (CCR) unit (IEPA No. W1350150004-0101), and south of the Gypsum Management Facility Recycle Pond (IEPAIEPA No. W1350150004-04). An unnamed tributary runs north to south to the east of AP2. AP2 is a 78-acre unlined surface impoundment that received bottom ash and fly ash between 1972 until the mid-1980's, when it was capped with a 2-foot compacted clay and soil cap. AP2 was closed starting in 2019 in accordance with the closure plan that was submitted to and approved by IEPA using a geomembrane cover system. The cover system installation was completed on November 17, 2020. The geomembrane cap design addresses the potential for slope failure and water infiltration into the closed CCR unit by directing the drainage of surface water (i.e., precipitation) off the cover system.

A groundwater monitoring network was proposed in accordance with 35 I.A.C. § 845.630 to monitor groundwater quality which passes the waste boundary as part of the Operating Permit Application to Illinois Environmental Protection Agency (IEPA) for the AP2 unit (Burns & McDonnell 2021). The proposed groundwater monitoring network is shown in **Attachment A**. The monitoring network consists of 8 compliance monitoring wells (G401, G402, G403, G404, G405, G406, G407, and G1001) and 3 background wells (G270, G280, and G281).

The geology underlying the Site in the vicinity of AP2 consists of five distinct hydrostratigraphic units (NRT, 2017; Ramboll, 2021⁷):

- Upper Confining Unit (UCU): The UCU underlies the majority of the AP2 footprint. It consists of a Loess Unit and the upper portion of the Hagarstown Member, which has low permeability clays and silts with generally greater than 60% fines. The UCU was encountered across most of the CPP.
- Uppermost Aquifer (UA): The UA is comprised of moderately permeable sands, silty sand, and clayey gravel of the Hagarstown Member and, in some portions of the Site, the Vandalia Member. Limited direct contact between AP2 CCR and the UA may occur in pre-construction ravines on the eastern edge of the AP2 footprint.

⁷ This document references a Hydrogeologic Site Characterization Report prepared by Ramboll that discusses conditions at CPP Ash Pond. No. 1 (Unit No. 101) but is referenced here due to the presence of identical hydrostratigraphic units given their proximity.



- Lower Confining Unit (LCU): The LCU underlies the UA. It consists of three low hydraulic conductivity soils: the sandy clay till of the Vandalia Member, the silt of the Mulberry Grove Formation, and the compacted clay till of the Smithboro Member.
- **Deep Aquifer (DA):** The DA is a thin (generally less than 5 ft thick), discontinuous unit composed of sands and silty sand units of the Yarmouth Soil.
- **Deep Confining Unit (DCU):** The DCU underlies the DA. It consists of the Lierle Clay of the Banner Formation and acts as an aquitard due to its low hydraulic conductivity.

There is a groundwater flow divide within the UA in the center of the CPP property between the two lobes of Coffeen Lake. Groundwater in the UA flows from the center of the CPP property west toward Coffeen Lake on the western side of the groundwater flow divide, and east toward the Unnamed Tributary, the eastern lobe of Coffeen Lake, and the discharge flume on the eastern side of the groundwater flow divide. AP2 is east of the groundwater flow divide, so groundwater flow in the vicinity of AP2 is generally to the south and east. The groundwater to the west of AP2 is separated from the groundwater flow regime under AP2 by the groundwater divide. Groundwater flow within the UA has little vertical component due to the underlying low-permeability LCU. The flow direction in the UA is consistent and likely influenced by the proximity to and hydraulic connection with Coffeen Lake. A map showing representative groundwater flow direction in the UA at the site is shown in **Attachment A**.

#### 2.2 Identified Exceedances of the GWPS

The following GWPS exceedances at compliance groundwater monitoring wells likely attributable to Coffeen AP2 were observed from 2023 Q2 through 2023 Q4 (Ramboll, 2024):

- •Boron Observed at monitoring wells G401, G402, G404, and G405.
- •pH Observed at monitoring well G401.
- •Sulfate Observed at monitoring wells G401, G402, G404, G405, and G406.
- •TDS Observed at monitoring wells G401, G402, G404, and G405.

The data set for geochemical modeling was finalized after the 2023 Q4 sampling event. Groundwater at these compliance wells is representative of groundwater conditions downgradient of the unit, and samples may be referred to as downgradient groundwater.

Modeling parameters with observed exceedances is appropriate to the scope of the CAAA. Additionally, the selected remedy will meet the performance standards of 35 I.A.C. § 845.670(d) and the Corrective Action Plan will be submitted to the Agency on or before June 12, 2025. Once implemented and completed, the selected remedy will attain the GWPSs.

GWPS exceedances within the AP2 network are only present within the UA. No GWPS exceedances were noted within other hydrostratigraphic units.



#### 2.3 Geochemical Conceptual Site Model

A Geochemical Conceptual Site Model (GCSM)⁸ was developed for CPP AP2 to describe the geochemical processes that contribute to mobilization and attenuation of constituents in the environment under current conditions, including evaluating whether chemical interactions of COCs with aquifer solids contribute to attenuation of aqueous concentrations at compliance monitoring wells. This discussion relies on lab reports and raw data previously presented in the Nature and Extent Report previously submitted to IEPA on June 12, 2024 (Ramboll 2024) in accordance with 35 I.A.C. § 845.650(d)(1) and provided again in full as Appendix D of the CAAA to which this report is attached.

The primary source of boron and sulfate to groundwater of the UA within the monitoring network is AP2 CCR porewater, based on boron and sulfate concentrations within the source and relationships to hydrogeological patterns at the Site.

Limited variability in pH or oxidation-reduction (redox) conditions is observed between upgradient (background) and downgradient locations since the completion of source control in 2020, with pH values in the UA observed to be generally stable and circumneutral, and redox conditions observed to be relatively oxidizing. pH values within background wells are consistently circumneutral, such that mixing with downgradient compliance wells will maintain near-neutral pH conditions. Some wells within the UA appear to have redox fluctuations related to seasonal conditions since completion of closure activities.

Boron and sulfate in the groundwater system may be attenuated via adsorption and surface complexation reactions within portions of the UA. Boron and sorption to iron oxyhydroxide phases in particular is well-studied and is likely occurring within the subsurface near AP2 due to the ubiquitous nature of these materials. Groundwater conditions from the UA are predicted to favor amorphous iron oxide stability at some locations. The detected presence of iron oxides, including magnetite, in some site solids supports the potential for occurrence of this mechanism. The presence of clay minerals (e.g., kaolinite) in UA solids material suggests that adsorption to clays may be another potential attenuation mechanism for boron at locations near AP2. Additionally, boron sorption to aluminum oxide phases is also common in natural systems with low to neutral pH conditions. Crystalline aluminum oxide mineral phases were not detected in mineralogical analyses of aquifer solids samples, although amorphous aluminum oxide solid phases are widespread in natural environments and likely constitute another boron attenuation mechanism near AP2.

The GCSM findings suggest the potential for chemical attenuation of both boron and sulfate based on detected abundances of iron oxide and clay minerals and groundwater redox conditions favorable for the stability of these potential sorbing surfaces.

⁸ The GCSM is a component of the Nature and Extent Report previously submitted to IEPA (Ramboll 2024) and is provided as Appendix D of the CAAA to which this report is attached.



#### **3. GROUNDWATER POLISHING REMEDY EVALUATION**

This groundwater polishing evaluation uses geochemical modeling to evaluate chemical attenuation of COCs under current conditions and to predict changes in attenuation at exceedance locations following source control. This evaluation will therefore further assess if chemical mechanisms of groundwater polishing will contribute to the remedy achieving the GWPS in a reasonable amount of time. Speciation and reaction models are geochemical models that can be used to evaluate the potential for chemical attenuation in groundwater. Speciation models assess the distribution of constituents between solid and aqueous phases, and reaction models evaluate how that distribution may change with changing site conditions (USEPA 2015). The results of geochemical modeling provide insight into groundwater polishing mechanisms and additional context for the time estimated to reach the GWPS determined by the groundwater flow and transport model⁹, which is based on hydraulic properties of the aquifer and does not take into account chemical interactions occurring within the hydrologic unit.

#### 3.1 Methods

Geochemical modeling was done in PHREEQC Version 3 (USGS 2021) using a modified MINETQ v4 thermodynamic database (as described in relevant sections below). The geochemical modeling of groundwater polishing under current/future conditions completed includes speciation and reaction modeling (US EPA 2015):

- 1. Speciation: To understand groundwater polishing mechanisms under current conditions, a solid phase representative of site conditions is equilibrated with current downgradient groundwater. The results of speciation modeling represent the association of COCs with the solid phase under current conditions through mechanisms such as sorption or precipitation.
- 2. Reaction: In the reaction modeling, the solid phase generated during the speciation modeling phase is reacted iteratively with background groundwater. These results represent the geochemical conditions expected after the source is controlled during which a trailing geochemical gradient may be created (SRNL 2011). The reactions with background groundwater assess the potential for a trailing geochemical gradient to drive changes in groundwater chemistry. Persistence of elevated groundwater COC concentrations over several reaction iterations suggests a trailing geochemical gradient may be more likely to affect the time to reach the GWPS.

The equilibrium thermodynamic modeling approach used herein allows that the solid and aqueous phases reach equilibrium during each step. The primary goal of this model is to inform the assessment of whether groundwater polishing is an appropriate remedy for the site by evaluating dominant geochemical reactions that may occur at time scales relevant to groundwater flow, including adsorption and certain mineral dissolution/precipitation (i.e., iron and aluminum

⁹ The Groundwater Modeling Technical Memorandum serves as Appendix B of the Corrective Action Supporting Information Report; the Corrective Action Supporting Information Report serves as Appendix B of the CAAA to which this report is attached.



(hydr)oxides, carbonates, and some sulfates) as identified in the GCSM¹⁰. The model therefore includes those parameters that are expected to contribute to those reactions (as discussed below) and does not include every constituent of the solid phase and groundwater in order to capture "the salient aspects of the system's behavior without introducing unnecessary complexity" (USEPA 2015). This model is therefore a semi-quantitative estimation of chemical behavior in the subsurface rather than a prediction of groundwater quality, consistent with USEPA guidance that geochemical modeling "is often most helpful for identifying relative changes in contaminant speciation and distribution" (USEPA 2015).

#### 3.1.1 Model Set-Up

Inputs to the model include solid phase composition, downgradient groundwater composition for wells with boron and sulfate GWPS exceedances, and background groundwater composition. The PHREEQC input file and modified MINTEQ v4 database are provided in **Attachment B**. The data included for model parameterization is summarized in **Table 1** and discussed in greater detail in **Attachment C**. All data used in the model and discussed below are provided in the Nature and Extent Report¹¹.

#### 3.1.1.1 Solid Phase Inputs

Iron hydroxide (ferrihydrite, [Fe(OH)₃]) and aluminum hydroxide (gibbsite, [Al(OH)₃]) are widespread in the environment known to act as sorbing phases for many groundwater constituents, including boron and sulfate (Dzombak and Morel 1990; Karamalidis and Dzombak 2010). Model input concentrations for ferrihydrite and gibbsite are ideally derived from sequential extraction procedure (SEP) analyses of iron and aluminum respectively. Because SEP analyses for iron and aluminum were not completed for AP2 samples, model input concentrations for crystalline iron oxide for AP2 were derived using site-specific total metals and mineralogy (X-ray diffraction [XRD]) datasets, and input concentrations for ferrihydrite were taken from an SEP dataset compiled from analogous geological systems as described in greater detail in **Attachment C**. Gibbsite input concentrations for AP2 were taken directly from the analogous compiled SEP dataset.

Metal oxide concentrations representing the 25th percentile, median, and 75th percentile of the observed data were used to test the sensitivity of the model to the amount of sorbing phase present. Both ferrihydrite and goethite were allowed to dissolve or precipitate in the reaction phase of the model.

Calcite and dolomite were included as mineral phases in the model because carbonate mineral formation and dissolution are often major controls on groundwater pH (Stumm and Morgan 1996; Stackelberg et al. 2020). Calcite is present in site aquifer solids in excess. Dolomite was

¹⁰ The GCSM is a component of the Nature and Extent Report previously submitted to IEPA (Ramboll 2024) and is provided as Appendix D of the CAAA to which this report is attached.

¹¹ The Nature and Extent Report was previously submitted to IEPA (Ramboll 2024) and is provided as Appendix D of the CAAA to which this report is attached. The Nature and Extent report contains laboratory reports and tabulated results from solid phase analysis and tabulated results from groundwater analyses. Laboratory reports for groundwater data are provided quarterly to IEPA and posted to the facility's operating record in accordance with 35 I.A.C. § 845.800(d)(15).

not detected in site-specific XRD samples. Model inputs for both minerals were based on site-specific XRD results. Both calcite and dolomite were allowed to dissolve or precipitate in the reaction phase of the model.

Barite (BaSO₄) and gypsum (CaSO₄) are minerals that contain sulfate and have the potential to form under ambient environmental conditions in a timeframe consistent with the remedial effort. These minerals therefore may affect sulfate attenuation. Neither mineral phase was observed in mineralogical results for the site; therefore, both were made available to precipitate from the aqueous solution but did not have initial concentrations provided.

#### 3.1.1.2 Aqueous Inputs

In addition to the boron and sulfate, the following parameters are included to capture the expected attenuation and mobilization mechanisms (see Section 2.3):

- Temperature, pH, and pe (calculated from field-measured oxidation-reduction potential based on groundwater temperature).
- Major ions: Alkalinity, chloride, fluoride, calcium, magnesium, potassium, and sodium.
- Oxyanions: Silicon and phosphate.
- Redox-active metals: Aluminum, iron, and manganese.
- Remaining constituents regulated under 35 I.A.C. § 845.600¹².

This full suite of geochemical parameters for this model was measured in Quarter 2 and Quarter 3, 2023. The medians of these results were used in the model to represent average groundwater interacting with the solid phase. For downgradient wells with exceedances of boron and/or sulfate (Section 2.2), the median for each parameter was calculated for each location individually. For background wells, a single median for each parameter was calculated using data from all background locations (see Section 2.1).

#### 3.2 Results and Discussion

#### 3.2.1 Model Results

Geochemical modeling results are shown on **Figures 1 through 5** below. Current geochemical conditions are represented in model output figures as 'Speciation Model' and subsequent reaction calculation results are represented with 'First Reaction' and 'Second Reaction'. Full modeling results are provided in **Attachment D**.

¹² Mercury, thallium, total dissolved solids, and radium were not included in the model. Mercury reactions within the environment are highly complex and would require a separate modeling effort, and the high frequency of non-detect concentrations in the groundwater indicate it would not contribute to model outcomes. Thallium forms a non-reactive monovalent cation and is rarely detected in the groundwater and is therefore not expected to contribute to model outcomes. Total dissolved solids are not a chemical parameter, but rather the result of other chemical abundances taken together. Radium is not included in most thermodynamic databases.





Figure 1: Percentage of Sorbed Boron







Figure 3: Percentage of Sorbed Sulfate



Figure 4: Modeled Sulfate Behavior





#### Figure 5: Modeled Sorbing Phase Behavior

#### 3.2.2 Speciation Modeling

Results of speciation modeling support the determination of the GCSM that chemical attenuation of boron is likely to occur. Speciation calculations indicate that between 70 to 86% of boron present in groundwater at compliance wells with boron exceedances will sorb to mineral surfaces (**Figure 1**), with most of the predicted sorption associated with the aluminum oxide (gibbsite) phase (**Attachment D**). Sensitivity assessments demonstrate the influence of variable sorbing mineral mass inputs on boron sorption, with the 25th percentile and 75th percentile values for mineral mass accounting for differences of up to 8% of aqueous boron sorbed under current conditions. These results suggest that boron sorption under current geochemical conditions is thermodynamically favorable, although the absolute amount of sorbed boron is somewhat sensitive to the amount of sorbent.

Speciation calculations for sulfate indicate that in wells with sulfate exceedances approximately 3 to 8% of sulfate present in (modeled) downgradient compliance well groundwater will sorb to mineral surfaces (**Figure 3**). Sensitivity assessments demonstrate a minor influence of variable sorbing mineral mass inputs on sulfate sorption, with the 25th percentile and 75th percentile values for mineral mass accounting for differences of up to 2% of aqueous sulfate sorbed under current conditions. These results suggest that some component of sulfate sorption is predicted under current geochemical conditions, although sulfate sorption is less favorable than boron sorption.

#### 3.2.3 Reaction modeling

Reaction modeling results of conditions following source control demonstrate that aqueous boron and sulfate concentrations change with background groundwater interaction. Aqueous boron concentrations are predicted to decrease with each iterative reaction at all wells with boron exceedances (**Figure 2**). Some minor degree of boron desorption is predicted for all wells following each iterative reaction; however, the impact of this desorption on aqueous boron concentrations is generally offset by background groundwater containing less aqueous boron. G401 and G402 are predicted to achieve the boron GWPS after the second iterative reaction for all model scenarios. G404 and G405 are not predicted to achieve the boron GWPS after the second iterative reaction although boron concentrations continue to decrease. These results suggest that in some locations, mobilization of currently attenuated boron could result in a longer observed time to reach the GWPS compared to sulfate.

Aqueous sulfate concentrations are predicted to decrease at all wells with each iterative reaction (**Figure 4**). Some degree of sulfate desorption is predicted with background groundwater interaction in model, particularly at G401; however, the impact of this desorption on aqueous sulfate concentrations is offset by interaction with background groundwater containing less aqueous sulfate. Barite precipitation is predicted in all post-source control scenarios (**Figure 5**), which provides an additional attenuation mechanism for aqueous sulfate. All modeled wells are predicted to achieve the sulfate GWPS within one iterative reaction, indicating that mobilization of currently attenuated sulfate is unlikely to affect the time to reach the GWPS.

Boron and sulfate are predicted to sorb to ferrihydrite and gibbsite. Both minerals are predicted to be stable and exhibit minor (less than 0.01%, **Table 2**) predicted dissolution under post-source control conditions (**Figure 5**). Barite is predicted to precipitate under post-source control conditions in all model scenarios. The predicted stability of sorbing mineral phases and precipitation of barite under post-source control conditions demonstrates the continued feasibility of boron and sulfate chemical attenuation mechanisms in AP2.

These results suggest that chemical attenuation of boron and sulfate should remain feasible following source control efforts. The primary chemical attenuation mechanism for boron is anticipated to be sorption to aluminum and iron oxide mineral phases which are predicted to be stable in post-source control conditions. Chemical attenuation mechanisms for sulfate are expected to include sorption to iron and aluminum oxide minerals and precipitation of barite. These results suggest that mobilization of currently attenuated sulfate is unlikely to affect the modeled time to reach the GWPS, and that mobilization of previously attenuated boron may result in a longer observed time to reach the GWPS compared to sulfate. Chemical attenuation of sulfate is also expected to contribute to a reduction in TDS at locations G401, G402, G404, and G405. The low pH exceedance at G401 is modeled to resolve after the first iterative reaction due to the influence of more circumneutral pH groundwater migrating from background locations and its interactions with aquifer solids present in the UA.

### 4. CONCLUSIONS

This report evaluated the contribution of chemical mechanisms to groundwater polishing via geochemical modeling. The results of the groundwater polishing evaluation also contextualize estimates of the modeled time to reach the GWPS by evaluating potential changes in boron and sulfate attenuation as groundwater quality returns to background conditions.

Geochemical modeling of current AP2 geochemical conditions demonstrates chemical attenuation of boron and sulfate via sorption to aquifer solids, particularly iron and aluminum oxides and (applicable to sulfate only) precipitation of barite. Modeling of anticipated future conditions predicts a minor component of desorption of boron and sulfate from solids that will be offset by interaction with background groundwater containing lower concentrations of these COCs, resulting in net aqueous concentration decreases at all wells with exceedances. Barite precipitation is predicted under future conditions, which will provide an additional attenuation mechanism for sulfate. Modeling also predicts that iron and aluminum oxide sorbing minerals phases will remain stable in post-source control conditions, and as a result this chemical attenuation mechanism will remain viable. It is expected that attenuation of sulfate will also contribute to a reduction in TDS at all wells with TDS exceedances. It is also expected that the low pH values at G401 will resolve due to interaction with neutral pH background groundwater and the buffering capacity of the carbonate minerals in the UA.

Results of the geochemical modeling suggest that mobilization of currently attenuated sulfate is unlikely to affect the modeled time to reach the GWPS, and that mobilization of previously attenuated boron may result in a longer observed time to reach the GWPS compared to sulfate. The results will inform corrective action groundwater monitoring and adaptive site management, critical components of every corrective action considered in the CAAA.

#### 5. REFERENCES

Burns & McDonnell. 2021. Initial Operating Permit – Coffeen Ash Pond 2. October.

Dzombak D.A. and Morel F.M.M. 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, New York.

Karamalidis A.K. and Dzombak D.A. 2010. Surface Complexation Modeling: Gibbsite. John Wiley & Sons, New York.

Natural Resource Technology [NRT]. 2017. Hydrogeologic Site Characterization Report – Ash Pond No. 2 Coffeen Power Station, Coffeen Illinois. January.

Ramboll. 2021. Hydrogeologic Site Characterization Report – Coffeen Power Plant Ash Pond No. 1. October.

Ramboll. 2024. Nature and Extent Report – Coffeen Power Plant, Ash Pond No. 2, IEPA ID No. 102. April.

Savannah River National Laboratory. 2011. The Scenarios Approach to Attenuation-Based Remedies for Inorganic and Radionuclide Contaminants. SRNL-STI-2011-00459. August.

Stackelberg P.E., Belitz K., Brown C.J., Erickson M.L., Elliot S.M., Kauffman L.J., Ransom K.M., and Reddy J.E. 2020. Machine Learning Predictions of pH in the Glacial Aquifer System, Northern USA. Groundwater, 59(3):352-368. https://doi.org/10.1111/gwat.13063

Stumm W. and Morgan J.J. 1996. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. Third edition. John Wiley & Sons, New York.

USEPA. 1999. Use of Monitored Natural Attenuation at Superfund, RCRA Corrective Action, and Underground Storage Tank Sites. Office of Solid Waste and Emergency Response. Directive 9200.4-17P. April.

USEPA. 2015. Use of Monitored Natural Attenuation for Inorganic Contaminants in Groundwater at Superfund Sites. Office of Solid Waste and Emergency Response. Directive 9283.1-36. August.

United States Geological Survey (USGS). 2021. PHREEQC Version 3. December. https://www.usgs.gov/software/phreeqc-version-3
## **TABLES**

## Table 1. Summary of Geochemical Model InputsGroundwater Polishing Evaluation ReportCoffeen Power Plant - Ash Pond No. 2

Model Component	Parameters	Data source(s)		
Solid Phase	Iron (hydr)oxides, aluminum (hydr)oxides	Site-specific total metals and X-ray diffraction results from solid samples (crystalline iron oxides). Analoguous compiled sequential extraction procedure dataset (ferrihydrite and gibbsite).		
Downgradient groundwater (COC exceedance locations)	Calcite and dolomite	X-ray diffraction results Median concentrations per well from data collected in O2 and O3 2023		
Background groundwater	Sulfate, iron, manganese, major ions ¹ , 845 constituents ¹	Median concentrations from all network background wells using data collected in Q2 and Q3 2023		

¹See Section 3.1.1.2 for details.

## Table 2 - Geochemical Modeling Response of Sorbing Phases Groundwater Polishing Evaluation Report Coffeen Power Plant - Ash Pond No. 2

Parameter	Hydrostratigraphic Unit	Location	Summary Type	First Reaction Change		Second Reaction Change	
				mg/kg	%	mg/kg	%
Barite	UA		25p	0.00735	NA	0.0124	69.19
		G401	median	0.00786	NA	0.0129	64.04
			75p	0.00800	NA	0.0130	62.63
		G402	25p	0.00531	NA	0.0102	92.76
			median	0.00534	NA	0.0102	91.33
			75p	0.00538	NA	0.0102	90.20
		G404	25p	0.00500	NA	0.00970	93.74
			median	0.00506	NA	0.00967	91.11
			75p	0.00509	NA	0.00966	89.72
		G405	25p	0.00548	NA	0.0103	87.71
			median	0.00561	NA	0.0104	84.71
			75p	0.00567	NA	0.0104	83.23
		G406	25p	0.00523	NA	0.0102	95.80
			median	0.00526	NA	0.0102	94.22
			75p	0.00528	NA	0.0102	93.37
			25p	175	< 0.01	175	< 0.01
		G401	median	249	< 0.01	249	< 0.01
			75p	267	< 0.01	267	< 0.01
			25p	175	< 0.01	175	< 0.01
Ferrihydrite		G402	median	249	< 0.01	249	< 0.01
			75p	267	< 0.01	267	< 0.01
			25p	175	< 0.01	175	< 0.01
	UA	G404	median	249	< 0.01	249	< 0.01
			75p	267	< 0.01	267	< 0.01
			25p	175	< 0.01	175	< 0.01
		G405	median	249	< 0.01	249	< 0.01
			75p	267	< 0.01	267	< 0.01
		G406	25p	175	< 0.01	175	< 0.01
			median	249	< 0.01	249	< 0.01
			75p	267	< 0.01	267	< 0.01
		G401	25p	1270	< 0.01	1270	< 0.01
			median	1430	< 0.01	1430	< 0.01
			75p	1560	< 0.01	1560	< 0.01
		G402	25p	1270	< 0.01	1270	< 0.01
			median	1430	< 0.01	1430	< 0.01
	UA		75p	1560	< 0.01	1560	< 0.01
		G404	25p	1270	< 0.01	1270	< 0.01
Gibbsite			median	1430	<0.01	1430	<0.01
			75p	1560	< 0.01	1560	< 0.01
		G405	25p	1270	<0.01	1270	<0.01
			median	1430	<0.01	1430	<0.01
			75p	1560	<0.01	1560	<0.01
		G406	25p	1270	<0.01	1270	<0.01
			median	1430	< 0.01	1430	< 0.01
			75p	1560	< 0.01	1560	< 0.01

#### Notes:

% = percent

25p = 25th percentile

75p = 75th percentile

mg/kg = milligram/kilogram

UA = Uppermost Aquifer

NA = not applicable

### **ATTACHMENT A**

## Operating Permit Network Map and Potentiometric Surface (August 2023)

PROJECT: 169000XXXX | DATED: 1/4/2024 | DESIGNER: egrea

Y:\Mapping\Projects\22\2285\MXD\GW Contours\Round 2023\Coffeen\AP2 102\2023 AP2 102.apr



- COMPLIANCE MONITORING WELL
- BACKGROUND WELL
- LEACHATE WELL
- MONITORING WELL
- STAFF GAGE, CCR UNIT

620

L Feet

STAFF GAGE, RIVER

325

- GROUNDWATER ELEVATION CONTOUR (2-FT CONTOUR INTERVAL, NAVD88)
  - INFERRED GROUNDWATER ELEVATION CONTOUR
  - GROUNDWATER FLOW DIRECTION
  - REGULATED UNIT (SUBJECT UNIT)
  - SITE FEATURE
  - LIMITS OF FINAL COVER
- PROPERTY BOUNDARY

NOTES: PROPERTY BOUNDARY 1. ELEVATIONS IN PARENTHESES WERE NOT USED FOR CONTOURING. 2. ELEVATIONS IN BRACKETS WERE OBTAINED OUTSIDE OF THE 24-HOUR PERIOD FROM INITIATION OF DEPTH TO GROUNDWATER MEASUREMENTS BUT WITHIN THE SAME SAMPLING EVENT. 3. ELEVATION CONTOURS SHOWN IN FEET, NORTH AMERICAN VERTICAL DATUM OF 1988 (NAVD88)

POTENTIOMETRIC SURFACE MAP AUGUST 8, 2023

2023 ANNUAL GROUNDWATER MONITORING AND CORRECTIVE ACTION REPORT ASH POND NO. 2 COFFEEN POWER PLANT COFFEEN, ILLINOIS RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.



## **ATTACHMENT B**

# PHREEQC Input Files and Thermodynamic Database

### 25th Percentile Metal Oxides/No Charge Balance

```
SELECTED OUTPUT 1
-file COF 845 102 25p cb-false out.csv
-charge balance true
-percent error true
-totals S(6) B Li As C(4) Cl F Ca Mq Na K Ba Si P Mn Fe Al Sb Be Cd Cr Co Pb Mo Se Hfo s
Hfo w Hao
-molalities Hfo_wOH Hfo_wOH2+ Hfo_wOHSO4-2 Hfo_wSO4- Hfo_wOSi(OH)3
Hfo wOSiO(OH)2- Hfo wHCO3 Hfo wCO3- Hfo wPO4-2
Hfo wHPO4- Hfo wH2PO4 Hfo sCO3- Hfo sHCO3
Hfo_sHPO4- Hfo_sH2BO3 Hfo_sH2PO4 Hfo_sOSi(OH)3
Hfo sOSiO(OH)2- Hfo sOHSO4-2 Hfo sSO4-
Hao_SO4- Hao_OHSO4-2 Hao_H2BO3 Hao_H3BO4-
-equilibrium_phases Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
-saturation_indices Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
SOLUTION 1 #G401 (C - UA)
redox pe
units mg/l
density 1
pH 6.09
pe 3.185
temp 14.9
S(6) 2000 as SO4
B 4.07
Li 0.02185
As 0.000795
C(4) 70.7 as CO3
CI 3.3
F 0.201
Ca 499.5
Mg 145.5
Na 71.2
K 2.53
Ba 0.0109
Si 15.6
P 0.011975
Mn 31.5
Fe 88.9
AI 0.00335
Sb 0.0002575
Be 0.0001975
Cd 0.000335
Cr 0.000875
Co 0.133
Pb 0.000205
Mo 0.000335
Se 0.000335
end
SOLUTION 2 #G402 (C - UA)
redox pe
units mg/l
density 1
```

pH 6.955 pe 5.335 temp 20.65 S(6) 590.5 as SO4 B 5.305 Li 0.0215 As 0.00375 C(4) 302 as CO3 CI 3.2 F 0.2635 Ca 211 Mg 129 Na 44.95 K 1.135 Ba 0.0275 Si 13.95 P 0.024975 Mn 0.8635 Fe 0.004525 AI 0.007625 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.0034 Co 0.00295 Pb 0.00225 Mo 0.00235 Se 0.000335 end SOLUTION 3 #G404 (C - UA) redox pe units mg/l density 1 pH 6.765 pe 4.9 temp 18.35 S(6) 689 as SO4 B 11.85 Li 0.00785 As 0.0007225 C(4) 221.5 as CO3 Cl 106.5 F 0.1235 Ca 223 Mg 102.85 Na 79.8 K 0.5285 Ba 0.0305 Si 10.6 P 0.003225 Mn 2.025 Fe 0.0649 AI 0.003475

Sb 0.0006575 Be 0.0001975 Cd 0.000285 Cr 0.00175 Co 0.00177 Pb 0.000355 Mo 0.000735 Se 0.000335 end SOLUTION 4 #G405 (C - UA) redox pe units mg/l density 1 pH 6.965 pe 4.03 temp 18.95 S(6) 958 as SO4 B 10.15 Li 0.00425 As 0.000855 C(4) 169.5 as CO3 Cl 11.45 F 0.2905 Ca 251.5 Mg 110 Na 109.5 K 0.488 Ba 0.0144 Si 7.905 P 0.010475 Mn 1.085 Fe 0.1475 AI 0.005225 Sb 0.00101 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.000985 Pb 0.000465 Mo 0.001 Se 0.00075 end SOLUTION 5 #G406 (C - UA) redox pe units mg/l density 1 pH 6.63 pe 5.755 temp 19.05 S(6) 481 as SO4 B 1.47 Li 0.01095 As 0.0002725

C(4) 212 as CO3 CI 3.2 F 0.267 Ca 191.5 Mg 65.35 Na 37.6 K 0.2065 Ba 0.01345 Si 12.95 P 0.008975 Mn 4.425 Fe 0.003055 Al 0.005175 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.00066 Pb 0.000205 Mo 0.000335 Se 0.000335 end EQUILIBRIUM_PHASES 1 #G401 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 1 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 1 save surface 1 end EQUILIBRIUM_PHASES 2 #G402 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 2 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 2 save surface 2 end EQUILIBRIUM_PHASES 3 #G404 (C - UA) - 25p Barite 0 0

Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 3 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 3 save surface 3 end EQUILIBRIUM_PHASES 4 #G405 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 4 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao OH Gibbsite equilibrium phase 0.033 2496 -equil 4 save surface 4 end EQUILIBRIUM_PHASES 5 #G406 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 5 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 5 save surface 5 end SOLUTION 6 #average background redox pe units mg/l density 1 pH 6.805 pe 4.95 temp 15.45 S(6) 91 B 0.0046 Li 0.0027 As 0.000485

C(4) 209 Cl 70.5 charge F 0.305 Ca 79.25 Mg 37.3 Na 81.15 K 0.5945 Ba 0.05855 Si 7.8 P 0.0083 Mn 0.118 Fe 0.012375 AI 0.013 Sb 0.0003075 Be 0.0001975 Cd 0.000235 Cr 0.00135 Co 0.00035 Pb 0.000405 Mo 0.0007 Se 0.000335 SAVE solution 6 end **#FIRST REACTION** #G401 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G401 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G402 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2 SAVE surface 2 end #G402 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2

SAVE surface 2 end #G404 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 **USE SURFACE 3** SAVE equilibrium_phases 3 SAVE surface 3 end #G404 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 USE SURFACE 3 SAVE equilibrium_phases 3 SAVE surface 3 end #G405 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 **USE SURFACE 4** SAVE equilibrium_phases 4 SAVE surface 4 end #G405 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 USE SURFACE 4 SAVE equilibrium_phases 4 SAVE surface 4 end #G406 (C - UA) - First Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5 USE SURFACE 5** SAVE equilibrium_phases 5 SAVE surface 5 end #G406 (C - UA) - Second Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5** USE SURFACE 5 SAVE equilibrium_phases 5 SAVE surface 5 end

### 25th Percentile Metal Oxides/Charge Balance on Chloride

```
SELECTED OUTPUT 1
-file COF 845 102 25p cb-true out.csv
-charge balance true
-percent error true
-totals S(6) B Li As C(4) Cl F Ca Mq Na K Ba Si P Mn Fe Al Sb Be Cd Cr Co Pb Mo Se Hfo s
Hfo w Hao
-molalities Hfo_wOH Hfo_wOH2+ Hfo_wOHSO4-2 Hfo_wSO4- Hfo_wOSi(OH)3
Hfo wOSiO(OH)2- Hfo wHCO3 Hfo wCO3- Hfo wPO4-2
Hfo wHPO4- Hfo wH2PO4 Hfo sCO3- Hfo sHCO3
Hfo_sHPO4- Hfo_sH2BO3 Hfo_sH2PO4 Hfo_sOSi(OH)3
Hfo sOSiO(OH)2- Hfo sOHSO4-2 Hfo sSO4-
Hao_SO4- Hao_OHSO4-2 Hao_H2BO3 Hao_H3BO4-
-equilibrium_phases Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
-saturation_indices Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
SOLUTION 1 #G401 (C - UA)
redox pe
units mg/l
density 1
pH 6.09
pe 3.185
temp 14.9
S(6) 2000 as SO4
B 4.07
Li 0.02185
As 0.000795
C(4) 70.7 as CO3
Cl 3.3 charge
F 0.201
Ca 499.5
Mg 145.5
Na 71.2
K 2.53
Ba 0.0109
Si 15.6
P 0.011975
Mn 31.5
Fe 88.9
AI 0.00335
Sb 0.0002575
Be 0.0001975
Cd 0.000335
Cr 0.000875
Co 0.133
Pb 0.000205
Mo 0.000335
Se 0.000335
end
SOLUTION 2 #G402 (C - UA)
redox pe
units mg/l
density 1
```

pH 6.955 pe 5.335 temp 20.65 S(6) 590.5 as SO4 B 5.305 Li 0.0215 As 0.00375 C(4) 302 as CO3 Cl 3.2 charge F 0.2635 Ca 211 Mg 129 Na 44.95 K 1.135 Ba 0.0275 Si 13.95 P 0.024975 Mn 0.8635 Fe 0.004525 AI 0.007625 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.0034 Co 0.00295 Pb 0.00225 Mo 0.00235 Se 0.000335 end SOLUTION 3 #G404 (C - UA) redox pe units mg/l density 1 pH 6.765 pe 4.9 temp 18.35 S(6) 689 as SO4 B 11.85 Li 0.00785 As 0.0007225 C(4) 221.5 as CO3 Cl 106.5 charge F 0.1235 Ca 223 Mg 102.85 Na 79.8 K 0.5285 Ba 0.0305 Si 10.6 P 0.003225 Mn 2.025 Fe 0.0649 AI 0.003475

Sb 0.0006575 Be 0.0001975 Cd 0.000285 Cr 0.00175 Co 0.00177 Pb 0.000355 Mo 0.000735 Se 0.000335 end SOLUTION 4 #G405 (C - UA) redox pe units mg/l density 1 pH 6.965 pe 4.03 temp 18.95 S(6) 958 as SO4 B 10.15 Li 0.00425 As 0.000855 C(4) 169.5 as CO3 Cl 11.45 charge F 0.2905 Ca 251.5 Mg 110 Na 109.5 K 0.488 Ba 0.0144 Si 7.905 P 0.010475 Mn 1.085 Fe 0.1475 AI 0.005225 Sb 0.00101 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.000985 Pb 0.000465 Mo 0.001 Se 0.00075 end SOLUTION 5 #G406 (C - UA) redox pe units mg/l density 1 pH 6.63 pe 5.755 temp 19.05 S(6) 481 as SO4 B 1.47 Li 0.01095 As 0.0002725

C(4) 212 as CO3 Cl 3.2 charge F 0.267 Ca 191.5 Mg 65.35 Na 37.6 K 0.2065 Ba 0.01345 Si 12.95 P 0.008975 Mn 4.425 Fe 0.003055 Al 0.005175 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.00066 Pb 0.000205 Mo 0.000335 Se 0.000335 end EQUILIBRIUM_PHASES 1 #G401 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 1 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 1 save surface 1 end EQUILIBRIUM_PHASES 2 #G402 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 2 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 2 save surface 2 end EQUILIBRIUM_PHASES 3 #G404 (C - UA) - 25p Barite 0 0

Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 3 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 3 save surface 3 end EQUILIBRIUM_PHASES 4 #G405 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 4 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao OH Gibbsite equilibrium phase 0.033 2496 -equil 4 save surface 4 end EQUILIBRIUM_PHASES 5 #G406 (C - UA) - 25p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.098 Ferrihydrite 0 0.0098 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 5 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 5 save surface 5 end SOLUTION 6 #average background redox pe units mg/l density 1 pH 6.805 pe 4.95 temp 15.45 S(6) 91 B 0.0046 Li 0.0027 As 0.000485

C(4) 209 Cl 70.5 charge F 0.305 Ca 79.25 Mg 37.3 Na 81.15 K 0.5945 Ba 0.05855 Si 7.8 P 0.0083 Mn 0.118 Fe 0.012375 AI 0.013 Sb 0.0003075 Be 0.0001975 Cd 0.000235 Cr 0.00135 Co 0.00035 Pb 0.000405 Mo 0.0007 Se 0.000335 SAVE solution 6 end **#FIRST REACTION** #G401 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G401 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G402 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2 SAVE surface 2 end #G402 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 **USE SURFACE 2** SAVE equilibrium_phases 2

SAVE surface 2 end #G404 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 **USE SURFACE 3** SAVE equilibrium_phases 3 SAVE surface 3 end #G404 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 USE SURFACE 3 SAVE equilibrium_phases 3 SAVE surface 3 end #G405 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 **USE SURFACE 4** SAVE equilibrium_phases 4 SAVE surface 4 end #G405 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 USE SURFACE 4 SAVE equilibrium_phases 4 SAVE surface 4 end #G406 (C - UA) - First Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5 USE SURFACE 5** SAVE equilibrium_phases 5 SAVE surface 5 end #G406 (C - UA) - Second Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5** USE SURFACE 5 SAVE equilibrium_phases 5 SAVE surface 5 end

### 75th Percentile Metal Oxides/No Charge Balance

```
SELECTED OUTPUT 1
-file COF 845 102 75p cb-false out.csv
-charge balance true
-percent error true
-totals S(6) B Li As C(4) Cl F Ca Mq Na K Ba Si P Mn Fe Al Sb Be Cd Cr Co Pb Mo Se Hfo s
Hfo w Hao
-molalities Hfo_wOH Hfo_wOH2+ Hfo_wOHSO4-2 Hfo_wSO4- Hfo_wOSi(OH)3
Hfo wOSiO(OH)2- Hfo wHCO3 Hfo wCO3- Hfo wPO4-2
Hfo wHPO4- Hfo wH2PO4 Hfo sCO3- Hfo sHCO3
Hfo_sHPO4- Hfo_sH2BO3 Hfo_sH2PO4 Hfo_sOSi(OH)3
Hfo sOSiO(OH)2- Hfo sOHSO4-2 Hfo sSO4-
Hao_SO4- Hao_OHSO4-2 Hao_H2BO3 Hao_H3BO4-
-equilibrium_phases Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
-saturation_indices Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
SOLUTION 1 #G401 (C - UA)
redox pe
units mg/l
density 1
pH 6.09
pe 3.185
temp 14.9
S(6) 2000 as SO4
B 4.07
Li 0.02185
As 0.000795
C(4) 70.7 as CO3
CI 3.3
F 0.201
Ca 499.5
Mg 145.5
Na 71.2
K 2.53
Ba 0.0109
Si 15.6
P 0.011975
Mn 31.5
Fe 88.9
AI 0.00335
Sb 0.0002575
Be 0.0001975
Cd 0.000335
Cr 0.000875
Co 0.133
Pb 0.000205
Mo 0.000335
Se 0.000335
end
SOLUTION 2 #G402 (C - UA)
redox pe
units mg/l
density 1
```

pH 6.955 pe 5.335 temp 20.65 S(6) 590.5 as SO4 B 5.305 Li 0.0215 As 0.00375 C(4) 302 as CO3 CI 3.2 F 0.2635 Ca 211 Mg 129 Na 44.95 K 1.135 Ba 0.0275 Si 13.95 P 0.024975 Mn 0.8635 Fe 0.004525 AI 0.007625 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.0034 Co 0.00295 Pb 0.00225 Mo 0.00235 Se 0.000335 end SOLUTION 3 #G404 (C - UA) redox pe units mg/l density 1 pH 6.765 pe 4.9 temp 18.35 S(6) 689 as SO4 B 11.85 Li 0.00785 As 0.0007225 C(4) 221.5 as CO3 Cl 106.5 F 0.1235 Ca 223 Mg 102.85 Na 79.8 K 0.5285 Ba 0.0305 Si 10.6 P 0.003225 Mn 2.025 Fe 0.0649 AI 0.003475

Sb 0.0006575 Be 0.0001975 Cd 0.000285 Cr 0.00175 Co 0.00177 Pb 0.000355 Mo 0.000735 Se 0.000335 end SOLUTION 4 #G405 (C - UA) redox pe units mg/l density 1 pH 6.965 pe 4.03 temp 18.95 S(6) 958 as SO4 B 10.15 Li 0.00425 As 0.000855 C(4) 169.5 as CO3 Cl 11.45 F 0.2905 Ca 251.5 Mg 110 Na 109.5 K 0.488 Ba 0.0144 Si 7.905 P 0.010475 Mn 1.085 Fe 0.1475 AI 0.005225 Sb 0.00101 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.000985 Pb 0.000465 Mo 0.001 Se 0.00075 end SOLUTION 5 #G406 (C - UA) redox pe units mg/l density 1 pH 6.63 pe 5.755 temp 19.05 S(6) 481 as SO4 B 1.47 Li 0.01095 As 0.0002725

C(4) 212 as CO3 CI 3.2 F 0.267 Ca 191.5 Mg 65.35 Na 37.6 K 0.2065 Ba 0.01345 Si 12.95 P 0.008975 Mn 4.425 Fe 0.003055 Al 0.005175 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.00066 Pb 0.000205 Mo 0.000335 Se 0.000335 end EQUILIBRIUM_PHASES 1 #G401 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 1 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 1 save surface 1 end EQUILIBRIUM_PHASES 2 #G402 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 2 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 2 save surface 2 end EQUILIBRIUM_PHASES 3 #G404 (C - UA) - 75p Barite 0 0

Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 3 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 3 save surface 3 end EQUILIBRIUM_PHASES 4 #G405 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 4 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao OH Gibbsite equilibrium phase 0.033 2496 -equil 4 save surface 4 end EQUILIBRIUM_PHASES 5 #G406 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 5 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 5 save surface 5 end SOLUTION 6 #average background redox pe units mg/l density 1 pH 6.805 pe 4.95 temp 15.45 S(6) 91 B 0.0046 Li 0.0027 As 0.000485

C(4) 209 Cl 70.5 charge F 0.305 Ca 79.25 Mg 37.3 Na 81.15 K 0.5945 Ba 0.05855 Si 7.8 P 0.0083 Mn 0.118 Fe 0.012375 AI 0.013 Sb 0.0003075 Be 0.0001975 Cd 0.000235 Cr 0.00135 Co 0.00035 Pb 0.000405 Mo 0.0007 Se 0.000335 SAVE solution 6 end **#FIRST REACTION** #G401 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G401 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G402 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2 SAVE surface 2 end #G402 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 **USE SURFACE 2** SAVE equilibrium_phases 2

SAVE surface 2 end #G404 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 **USE SURFACE 3** SAVE equilibrium_phases 3 SAVE surface 3 end #G404 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 USE SURFACE 3 SAVE equilibrium_phases 3 SAVE surface 3 end #G405 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 **USE SURFACE 4** SAVE equilibrium_phases 4 SAVE surface 4 end #G405 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 USE SURFACE 4 SAVE equilibrium_phases 4 SAVE surface 4 end #G406 (C - UA) - First Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5 USE SURFACE 5** SAVE equilibrium_phases 5 SAVE surface 5 end #G406 (C - UA) - Second Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5** USE SURFACE 5 SAVE equilibrium_phases 5 SAVE surface 5 end

### 75th Percentile Metal Oxides/Charge Balance on Chloride

```
SELECTED OUTPUT 1
-file COF 845 102 75p cb-true out.csv
-charge balance true
-percent error true
-totals S(6) B Li As C(4) Cl F Ca Mq Na K Ba Si P Mn Fe Al Sb Be Cd Cr Co Pb Mo Se Hfo s
Hfo w Hao
-molalities Hfo_wOH Hfo_wOH2+ Hfo_wOHSO4-2 Hfo_wSO4- Hfo_wOSi(OH)3
Hfo wOSiO(OH)2- Hfo wHCO3 Hfo wCO3- Hfo wPO4-2
Hfo wHPO4- Hfo wH2PO4 Hfo sCO3- Hfo sHCO3
Hfo_sHPO4- Hfo_sH2BO3 Hfo_sH2PO4 Hfo_sOSi(OH)3
Hfo sOSiO(OH)2- Hfo sOHSO4-2 Hfo sSO4-
Hao_SO4- Hao_OHSO4-2 Hao_H2BO3 Hao_H3BO4-
-equilibrium_phases Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
-saturation_indices Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
SOLUTION 1 #G401 (C - UA)
redox pe
units mg/l
density 1
pH 6.09
pe 3.185
temp 14.9
S(6) 2000 as SO4
B 4.07
Li 0.02185
As 0.000795
C(4) 70.7 as CO3
Cl 3.3 charge
F 0.201
Ca 499.5
Mg 145.5
Na 71.2
K 2.53
Ba 0.0109
Si 15.6
P 0.011975
Mn 31.5
Fe 88.9
AI 0.00335
Sb 0.0002575
Be 0.0001975
Cd 0.000335
Cr 0.000875
Co 0.133
Pb 0.000205
Mo 0.000335
Se 0.000335
end
SOLUTION 2 #G402 (C - UA)
redox pe
units mg/l
density 1
```

pH 6.955 pe 5.335 temp 20.65 S(6) 590.5 as SO4 B 5.305 Li 0.0215 As 0.00375 C(4) 302 as CO3 Cl 3.2 charge F 0.2635 Ca 211 Mg 129 Na 44.95 K 1.135 Ba 0.0275 Si 13.95 P 0.024975 Mn 0.8635 Fe 0.004525 AI 0.007625 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.0034 Co 0.00295 Pb 0.00225 Mo 0.00235 Se 0.000335 end SOLUTION 3 #G404 (C - UA) redox pe units mg/l density 1 pH 6.765 pe 4.9 temp 18.35 S(6) 689 as SO4 B 11.85 Li 0.00785 As 0.0007225 C(4) 221.5 as CO3 Cl 106.5 charge F 0.1235 Ca 223 Mg 102.85 Na 79.8 K 0.5285 Ba 0.0305 Si 10.6 P 0.003225 Mn 2.025 Fe 0.0649 AI 0.003475

Sb 0.0006575 Be 0.0001975 Cd 0.000285 Cr 0.00175 Co 0.00177 Pb 0.000355 Mo 0.000735 Se 0.000335 end SOLUTION 4 #G405 (C - UA) redox pe units mg/l density 1 pH 6.965 pe 4.03 temp 18.95 S(6) 958 as SO4 B 10.15 Li 0.00425 As 0.000855 C(4) 169.5 as CO3 Cl 11.45 charge F 0.2905 Ca 251.5 Mg 110 Na 109.5 K 0.488 Ba 0.0144 Si 7.905 P 0.010475 Mn 1.085 Fe 0.1475 AI 0.005225 Sb 0.00101 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.000985 Pb 0.000465 Mo 0.001 Se 0.00075 end SOLUTION 5 #G406 (C - UA) redox pe units mg/l density 1 pH 6.63 pe 5.755 temp 19.05 S(6) 481 as SO4 B 1.47 Li 0.01095 As 0.0002725

C(4) 212 as CO3 Cl 3.2 charge F 0.267 Ca 191.5 Mg 65.35 Na 37.6 K 0.2065 Ba 0.01345 Si 12.95 P 0.008975 Mn 4.425 Fe 0.003055 Al 0.005175 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.00066 Pb 0.000205 Mo 0.000335 Se 0.000335 end EQUILIBRIUM_PHASES 1 #G401 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 1 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 1 save surface 1 end EQUILIBRIUM_PHASES 2 #G402 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 2 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 2 save surface 2 end EQUILIBRIUM_PHASES 3 #G404 (C - UA) - 75p Barite 0 0

Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 3 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 3 save surface 3 end EQUILIBRIUM_PHASES 4 #G405 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 4 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao OH Gibbsite equilibrium phase 0.033 2496 -equil 4 save surface 4 end EQUILIBRIUM_PHASES 5 #G406 (C - UA) - 75p Barite 0 0 Gypsum 0 0 Gibbsite 0 0.12 Ferrihydrite 0 0.015 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 5 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 5 save surface 5 end SOLUTION 6 #average background redox pe units mg/l density 1 pH 6.805 pe 4.95 temp 15.45 S(6) 91 B 0.0046 Li 0.0027 As 0.000485

C(4) 209 Cl 70.5 charge F 0.305 Ca 79.25 Mg 37.3 Na 81.15 K 0.5945 Ba 0.05855 Si 7.8 P 0.0083 Mn 0.118 Fe 0.012375 AI 0.013 Sb 0.0003075 Be 0.0001975 Cd 0.000235 Cr 0.00135 Co 0.00035 Pb 0.000405 Mo 0.0007 Se 0.000335 SAVE solution 6 end **#FIRST REACTION** #G401 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G401 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G402 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2 SAVE surface 2 end #G402 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 **USE SURFACE 2** SAVE equilibrium_phases 2

SAVE surface 2 end #G404 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 **USE SURFACE 3** SAVE equilibrium_phases 3 SAVE surface 3 end #G404 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 USE SURFACE 3 SAVE equilibrium_phases 3 SAVE surface 3 end #G405 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 **USE SURFACE 4** SAVE equilibrium_phases 4 SAVE surface 4 end #G405 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 USE SURFACE 4 SAVE equilibrium_phases 4 SAVE surface 4 end #G406 (C - UA) - First Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5 USE SURFACE 5** SAVE equilibrium_phases 5 SAVE surface 5 end #G406 (C - UA) - Second Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5** USE SURFACE 5 SAVE equilibrium_phases 5 SAVE surface 5 end

### Median Metal Oxides/No Charge Balance

```
SELECTED OUTPUT 1
-file COF 845 102 median cb-false out.csv
-charge balance true
-percent error true
-totals S(6) B Li As C(4) Cl F Ca Mq Na K Ba Si P Mn Fe Al Sb Be Cd Cr Co Pb Mo Se Hfo s
Hfo w Hao
-molalities Hfo_wOH Hfo_wOH2+ Hfo_wOHSO4-2 Hfo_wSO4- Hfo_wOSi(OH)3
Hfo wOSiO(OH)2- Hfo wHCO3 Hfo wCO3- Hfo wPO4-2
Hfo wHPO4- Hfo wH2PO4 Hfo sCO3- Hfo sHCO3
Hfo_sHPO4- Hfo_sH2BO3 Hfo_sH2PO4 Hfo_sOSi(OH)3
Hfo sOSiO(OH)2- Hfo sOHSO4-2 Hfo sSO4-
Hao_SO4- Hao_OHSO4-2 Hao_H2BO3 Hao_H3BO4-
-equilibrium_phases Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
-saturation_indices Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
SOLUTION 1 #G401 (C - UA)
redox pe
units mg/l
density 1
pH 6.09
pe 3.185
temp 14.9
S(6) 2000 as SO4
B 4.07
Li 0.02185
As 0.000795
C(4) 70.7 as CO3
CI 3.3
F 0.201
Ca 499.5
Mg 145.5
Na 71.2
K 2.53
Ba 0.0109
Si 15.6
P 0.011975
Mn 31.5
Fe 88.9
AI 0.00335
Sb 0.0002575
Be 0.0001975
Cd 0.000335
Cr 0.000875
Co 0.133
Pb 0.000205
Mo 0.000335
Se 0.000335
end
SOLUTION 2 #G402 (C - UA)
redox pe
units mg/l
density 1
```

pH 6.955 pe 5.335 temp 20.65 S(6) 590.5 as SO4 B 5.305 Li 0.0215 As 0.00375 C(4) 302 as CO3 CI 3.2 F 0.2635 Ca 211 Mg 129 Na 44.95 K 1.135 Ba 0.0275 Si 13.95 P 0.024975 Mn 0.8635 Fe 0.004525 AI 0.007625 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.0034 Co 0.00295 Pb 0.00225 Mo 0.00235 Se 0.000335 end SOLUTION 3 #G404 (C - UA) redox pe units mg/l density 1 pH 6.765 pe 4.9 temp 18.35 S(6) 689 as SO4 B 11.85 Li 0.00785 As 0.0007225 C(4) 221.5 as CO3 Cl 106.5 F 0.1235 Ca 223 Mg 102.85 Na 79.8 K 0.5285 Ba 0.0305 Si 10.6 P 0.003225 Mn 2.025 Fe 0.0649 AI 0.003475
Sb 0.0006575 Be 0.0001975 Cd 0.000285 Cr 0.00175 Co 0.00177 Pb 0.000355 Mo 0.000735 Se 0.000335 end SOLUTION 4 #G405 (C - UA) redox pe units mg/l density 1 pH 6.965 pe 4.03 temp 18.95 S(6) 958 as SO4 B 10.15 Li 0.00425 As 0.000855 C(4) 169.5 as CO3 Cl 11.45 F 0.2905 Ca 251.5 Mg 110 Na 109.5 K 0.488 Ba 0.0144 Si 7.905 P 0.010475 Mn 1.085 Fe 0.1475 AI 0.005225 Sb 0.00101 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.000985 Pb 0.000465 Mo 0.001 Se 0.00075 end SOLUTION 5 #G406 (C - UA) redox pe units mg/l density 1 pH 6.63 pe 5.755 temp 19.05 S(6) 481 as SO4 B 1.47 Li 0.01095 As 0.0002725

C(4) 212 as CO3 CI 3.2 F 0.267 Ca 191.5 Mg 65.35 Na 37.6 K 0.2065 Ba 0.01345 Si 12.95 P 0.008975 Mn 4.425 Fe 0.003055 AI 0.005175 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.00066 Pb 0.000205 Mo 0.000335 Se 0.000335 end EQUILIBRIUM_PHASES 1 #G401 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 1 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 1 save surface 1 end EQUILIBRIUM_PHASES 2 #G402 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 2 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 2 save surface 2 end EQUILIBRIUM_PHASES 3 #G404 (C - UA) - median Barite 0 0

Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 3 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 3 save surface 3 end EQUILIBRIUM_PHASES 4 #G405 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 4 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao OH Gibbsite equilibrium phase 0.033 2496 -equil 4 save surface 4 end EQUILIBRIUM_PHASES 5 #G406 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 5 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 5 save surface 5 end SOLUTION 6 #average background redox pe units mg/l density 1 pH 6.805 pe 4.95 temp 15.45 S(6) 91 B 0.0046 Li 0.0027 As 0.000485

C(4) 209 Cl 70.5 charge F 0.305 Ca 79.25 Mg 37.3 Na 81.15 K 0.5945 Ba 0.05855 Si 7.8 P 0.0083 Mn 0.118 Fe 0.012375 AI 0.013 Sb 0.0003075 Be 0.0001975 Cd 0.000235 Cr 0.00135 Co 0.00035 Pb 0.000405 Mo 0.0007 Se 0.000335 SAVE solution 6 end **#FIRST REACTION** #G401 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G401 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G402 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2 SAVE surface 2 end #G402 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 **USE SURFACE 2** SAVE equilibrium_phases 2

SAVE surface 2 end #G404 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 **USE SURFACE 3** SAVE equilibrium_phases 3 SAVE surface 3 end #G404 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 USE SURFACE 3 SAVE equilibrium_phases 3 SAVE surface 3 end #G405 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 **USE SURFACE 4** SAVE equilibrium_phases 4 SAVE surface 4 end #G405 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 USE SURFACE 4 SAVE equilibrium_phases 4 SAVE surface 4 end #G406 (C - UA) - First Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5 USE SURFACE 5** SAVE equilibrium_phases 5 SAVE surface 5 end #G406 (C - UA) - Second Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5** USE SURFACE 5 SAVE equilibrium_phases 5 SAVE surface 5 end

## Median Metal Oxides/Charge Balance on Chloride

```
SELECTED OUTPUT 1
-file COF 845 102 median cb-true out.csv
-charge balance true
-percent error true
-totals S(6) B Li As C(4) Cl F Ca Mq Na K Ba Si P Mn Fe Al Sb Be Cd Cr Co Pb Mo Se Hfo s
Hfo w Hao
-molalities Hfo_wOH Hfo_wOH2+ Hfo_wOHSO4-2 Hfo_wSO4- Hfo_wOSi(OH)3
Hfo wOSiO(OH)2- Hfo wHCO3 Hfo wCO3- Hfo wPO4-2
Hfo wHPO4- Hfo wH2PO4 Hfo sCO3- Hfo sHCO3
Hfo_sHPO4- Hfo_sH2BO3 Hfo_sH2PO4 Hfo_sOSi(OH)3
Hfo sOSiO(OH)2- Hfo sOHSO4-2 Hfo sSO4-
Hao_SO4- Hao_OHSO4-2 Hao_H2BO3 Hao_H3BO4-
-equilibrium_phases Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
-saturation_indices Ferrihydrite Gibbsite Barite Calcite Dolomite(ordered) Gypsum
SOLUTION 1 #G401 (C - UA)
redox pe
units mg/l
density 1
pH 6.09
pe 3.185
temp 14.9
S(6) 2000 as SO4
B 4.07
Li 0.02185
As 0.000795
C(4) 70.7 as CO3
Cl 3.3 charge
F 0.201
Ca 499.5
Mg 145.5
Na 71.2
K 2.53
Ba 0.0109
Si 15.6
P 0.011975
Mn 31.5
Fe 88.9
AI 0.00335
Sb 0.0002575
Be 0.0001975
Cd 0.000335
Cr 0.000875
Co 0.133
Pb 0.000205
Mo 0.000335
Se 0.000335
end
SOLUTION 2 #G402 (C - UA)
redox pe
units mg/l
density 1
```

pH 6.955 pe 5.335 temp 20.65 S(6) 590.5 as SO4 B 5.305 Li 0.0215 As 0.00375 C(4) 302 as CO3 Cl 3.2 charge F 0.2635 Ca 211 Mg 129 Na 44.95 K 1.135 Ba 0.0275 Si 13.95 P 0.024975 Mn 0.8635 Fe 0.004525 AI 0.007625 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.0034 Co 0.00295 Pb 0.00225 Mo 0.00235 Se 0.000335 end SOLUTION 3 #G404 (C - UA) redox pe units mg/l density 1 pH 6.765 pe 4.9 temp 18.35 S(6) 689 as SO4 B 11.85 Li 0.00785 As 0.0007225 C(4) 221.5 as CO3 Cl 106.5 charge F 0.1235 Ca 223 Mg 102.85 Na 79.8 K 0.5285 Ba 0.0305 Si 10.6 P 0.003225 Mn 2.025 Fe 0.0649 AI 0.003475

Sb 0.0006575 Be 0.0001975 Cd 0.000285 Cr 0.00175 Co 0.00177 Pb 0.000355 Mo 0.000735 Se 0.000335 end SOLUTION 4 #G405 (C - UA) redox pe units mg/l density 1 pH 6.965 pe 4.03 temp 18.95 S(6) 958 as SO4 B 10.15 Li 0.00425 As 0.000855 C(4) 169.5 as CO3 Cl 11.45 charge F 0.2905 Ca 251.5 Mg 110 Na 109.5 K 0.488 Ba 0.0144 Si 7.905 P 0.010475 Mn 1.085 Fe 0.1475 AI 0.005225 Sb 0.00101 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.000985 Pb 0.000465 Mo 0.001 Se 0.00075 end SOLUTION 5 #G406 (C - UA) redox pe units mg/l density 1 pH 6.63 pe 5.755 temp 19.05 S(6) 481 as SO4 B 1.47 Li 0.01095 As 0.0002725

C(4) 212 as CO3 Cl 3.2 charge F 0.267 Ca 191.5 Mg 65.35 Na 37.6 K 0.2065 Ba 0.01345 Si 12.95 P 0.008975 Mn 4.425 Fe 0.003055 Al 0.005175 Sb 0.0002575 Be 0.0001975 Cd 0.000235 Cr 0.000875 Co 0.00066 Pb 0.000205 Mo 0.000335 Se 0.000335 end EQUILIBRIUM_PHASES 1 #G401 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 1 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 1 save surface 1 end EQUILIBRIUM_PHASES 2 #G402 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 2 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 2 save surface 2 end EQUILIBRIUM_PHASES 3 #G404 (C - UA) - median Barite 0 0

Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 3 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 3 save surface 3 end EQUILIBRIUM_PHASES 4 #G405 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 4 Hfo_wOH Ferrihydrite equilibrium_phase 0.2 53400 Hfo sOH Ferrihydrite equilibrium phase 0.005 53400 Hao OH Gibbsite equilibrium phase 0.033 2496 -equil 4 save surface 4 end EQUILIBRIUM_PHASES 5 #G406 (C - UA) - median Barite 0 0 Gypsum 0 0 Gibbsite 0 0.11 Ferrihydrite 0 0.014 Calcite 0 1 Dolomite(ordered) 0 2 SURFACE 5 Hfo wOH Ferrihydrite equilibrium phase 0.2 53400 Hfo_sOH Ferrihydrite equilibrium_phase 0.005 53400 Hao_OH Gibbsite equilibrium_phase 0.033 2496 -equil 5 save surface 5 end SOLUTION 6 #average background redox pe units mg/l density 1 pH 6.805 pe 4.95 temp 15.45 S(6) 91 B 0.0046 Li 0.0027 As 0.000485

C(4) 209 Cl 70.5 charge F 0.305 Ca 79.25 Mg 37.3 Na 81.15 K 0.5945 Ba 0.05855 Si 7.8 P 0.0083 Mn 0.118 Fe 0.012375 AI 0.013 Sb 0.0003075 Be 0.0001975 Cd 0.000235 Cr 0.00135 Co 0.00035 Pb 0.000405 Mo 0.0007 Se 0.000335 SAVE solution 6 end **#FIRST REACTION** #G401 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G401 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 1 USE SURFACE 1 SAVE equilibrium_phases 1 SAVE surface 1 end #G402 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2 SAVE surface 2 end #G402 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 2 USE SURFACE 2 SAVE equilibrium_phases 2

SAVE surface 2 end #G404 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 **USE SURFACE 3** SAVE equilibrium_phases 3 SAVE surface 3 end #G404 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 3 USE SURFACE 3 SAVE equilibrium_phases 3 SAVE surface 3 end #G405 (C - UA) - First Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 **USE SURFACE 4** SAVE equilibrium_phases 4 SAVE surface 4 end #G405 (C - UA) - Second Reaction **USE SOLUTION 6** USE EQUILIBRIUM_PHASES 4 USE SURFACE 4 SAVE equilibrium_phases 4 SAVE surface 4 end #G406 (C - UA) - First Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5 USE SURFACE 5** SAVE equilibrium_phases 5 SAVE surface 5 end #G406 (C - UA) - Second Reaction **USE SOLUTION 6 USE EQUILIBRIUM PHASES 5** USE SURFACE 5 SAVE equilibrium_phases 5 SAVE surface 5 end

## Database

#\$Id: minteq.v4.dat 12387 2017-02-09 16:41:47Z dlpark \$ SOLUTION MASTER SPECIES Alkalinity CO3-2 2.0 HCO3 61.0173 E e- 0 0 0 O H2O 0 O 16.00 O(-2) H2O 0 O 0(0) 02 0 0 Ag Ag+ 0.0 Ag 107.868 AI AI+3 0.0 AI 26.9815 As H3AsO4 -1.0 As 74.9216 As(3) H3AsO3 0.0 As As(5) H3AsO4 -1.0 As B H3BO3 0.0 B 10.81 Ba Ba+2 0.0 Ba 137.33 Be Be+2 0.0 Be 9.0122 Br Br- 0.0 Br 79.904 C CO3-2 2.0 CO3 12.0111 C(4) CO3-2 2.0 CO3 12.0111 Cyanide Cyanide- 1.0 Cyanide 26.0177 Dom a Dom a 0.0 C 12.0111 Dom_b Dom_b 0.0 C 12.0111 Dom c Dom c 0.0 C 12.0111 Ca Ca+2 0.0 Ca 40.078 Cd Cd+2 0.0 Cd 112.41 CI CI- 0.0 CI 35.453 Co Co+3 -1.0 Co 58.9332 Co(2) Co+2 0.0 Co Co(3) Co+3 -1.0 Co Cr CrO4-2 1.0 Cr 51.996 Cr(2) Cr+2 0.0 Cr Cr(3) Cr(OH)2+ 0.0 Cr Cr(6) CrO4-2 1.0 Cr Cu Cu+2 0.0 Cu 63.546 Cu(1) Cu+ 0.0 Cu Cu(2) Cu+2 0.0 Cu FF-0.0F18.9984 Fe Fe+3 -2.0 Fe 55.847 Fe(2) Fe+2 0.0 Fe Fe(3) Fe+3 -2.0 Fe H H+ -1.0 H 1.0079 H(0) H2 0 H H(1) H+ -1.0 H Hg Hg(OH)2 0.0 Hg 200.59 Hg(0) Hg 0.0 Hg Hg(1) Hg2+2 0.0 Hg Hg(2) Hg(OH)2 0.0 Hg I I- 0.0 I 126.904 K K+ 0.0 K 39.0983 Li Li+ 0.0 Li 6.941 Mg Mg+2 0.0 Mg 24.305 Mn Mn+3 0.0 Mn 54.938

Mn(2) Mn+2 0.0 Mn Mn(3) Mn+3 0.0 Mn Mn(6) MnO4-2 0.0 Mn Mn(7) MnO4- 0.0 Mn Mo MoO4-2 0.0 Mo 95.94 N NO3- 0.0 N 14.0067 N(-3) NH4+ 0.0 N N(3) NO2- 0.0 N N(5) NO3- 0.0 N Na Na+ 0.0 Na 22.9898 Ni Ni+2 0.0 Ni 58.69 P PO4-3 2.0 P 30.9738 Pb Pb+2 0.0 Pb 207.2 S SO4-2 0.0 SO4 32.066 S(-2) HS- 1.0 S #S(0) S 0.0 S S(6) SO4-2 0.0 SO4 Sb Sb(OH)6- 0.0 Sb 121.75 Sb(3) Sb(OH)3 0.0 Sb Sb(5) Sb(OH)6- 0.0 Sb Se SeO4-2 0.0 Se 78.96 Se(-2) HSe- 0.0 Se Se(4) HSeO3- 0.0 Se Se(6) SeO4-2 0.0 Se Si H4SiO4 0.0 SiO2 28.0843 Sn Sn(OH)6-2 0.0 Sn 118.71 Sn(2) Sn(OH)2 0.0 Sn Sn(4) Sn(OH)6-2 0.0 Sn Sr Sr+2 0.0 Sr 87.62 TI TI(OH)3 0.0 TI 204.383 TI(1) TI+ 0.0 TI TI(3) TI(OH)3 0.0 TI U UO2+2 0.0 U 238.029 U(3) U+3 0.0 U U(4) U+4 -4.0 U U(5) UO2+ 0.0 U U(6) UO2+2 0.0 U V VO2+ -2.0 V 50.94 V(2) V+2 0.0 V V(3) V+3 -3.0 V V(4) VO+2 0.0 V V(5) VO2+ -2.0 V Zn Zn+2 0.0 Zn 65.39 Benzoate Benzoate- 0.0 121.116 121.116 Phenylacetate Phenylacetate- 0.0 135.142 135.142 Isophthalate Isophthalate-2 0.0 164.117 164.117 Diethylamine Diethylamine 1.0 73.138 73.138 Butylamine Butylamine 1.0 73.138 73.138 Methylamine Methylamine 1.0 31.057 31.057 Dimethylamine Dimethylamine 1.0 45.084 45.084 Hexylamine Hexylamine 1.0 101.192 101.192 Ethylenediamine Ethylenediamine 2.0 60.099 60.099 Propylamine Propylamine 1.0 59.111 59.111 Isopropylamine Isopropylamine 1.0 59.111 59.111

```
Trimethylamine Trimethylamine 1.0 59.111 59.111
Citrate Citrate-3 2.0 189.102 189.102
Nta Nta-3 1.0 188.117 188.117
Edta Edta-4 2.0 288.214 288.214
Propionate Propionate- 1.0 73.072 73.072
Butyrate Butyrate- 1.0 87.098 87.098
Isobutyrate Isobutyrate- 1.0 87.098 87.098
Two_picoline Two_picoline 1.0 93.128 93.128
Three picoline Three picoline 1.0 93.128 93.128
Four_picoline Four_picoline 1.0 93.128 93.128
Formate Formate- 0.0 45.018 45.018
Isovalerate Isovalerate- 1.0 101.125 101.125
Valerate Valerate- 1.0 101.125 101.125
Acetate Acetate- 1.0 59.045 59.045
Tartarate Tartarate-2 0.0 148.072 148.072
Glycine Glycine- 1.0 74.059 74.059
Salicylate Salicylate-2 1.0 136.107 136.107
Glutamate Glutamate-2 1.0 145.115 145.115
Phthalate Phthalate-2 1.0 164.117 164.117
SOLUTION SPECIES
e- = e-
log k 0
H20 = H20
log k 0
Aq + = Aq +
log k 0
AI+3 = AI+3
log_k 0
H3AsO4 = H3AsO4
log k 0
H3BO3 = H3BO3
log_k 0
Ba+2 = Ba+2
log_k 0
Be+2 = Be+2
log k 0
Br - = Br -
log k 0
CO3-2 = CO3-2
log_k 0
Cyanide- = Cyanide-
log k 0
Dom_a = Dom_a
log_k 0
Dom_b = Dom_b
log_k 0
Dom_c = Dom_c
log_k 0
Ca+2 = Ca+2
log_k 0
Cd+2 = Cd+2
log_k 0
CI - = CI -
log k 0
```

Co+3 = Co+3log_k 0 CrO4-2 = CrO4-2log_k 0 Cu+2 = Cu+2log_k 0 F- = Flog_k 0 Fe+3 = Fe+3log_k 0 H+ = H+log_k 0 Hg(OH)2 = Hg(OH)2log_k 0 I - = I log_k 0 K + = K +log k 0 Li + = Li +log_k 0 Mg+2 = Mg+2log k 0 Mn+3 = Mn+3log k 0 MoO4-2 = MoO4-2log k 0 NO3- = NO3log_k 0 Na + = Na +log_k 0 Ni+2 = Ni+2log_k 0 PO4-3 = PO4-3log_k 0 Pb+2 = Pb+2log_k 0 SO4-2 = SO4-2log_k 0 Sb(OH)6- = Sb(OH)6log_k 0 SeO4-2 = SeO4-2log_k 0 H4SiO4 = H4SiO4log_k 0 Sn(OH)6-2 = Sn(OH)6-2log_k 0 Sr+2 = Sr+2log_k 0 TI(OH)3 = TI(OH)3log_k 0 UO2+2 = UO2+2log_k 0 VO2+ = VO2+log_k 0

Benzoate- = Benzoatelog k 0 Phenylacetate- = Phenylacetatelog k 0 Isophthalate-2 = Isophthalate-2 log k 0 Zn+2 = Zn+2log k 0 Diethylamine = Diethylamine log_k 0 Butylamine = Butylamine log_k 0 Methylamine = Methylamine log_k 0 Dimethylamine = Dimethylamine log_k 0 Hexylamine = Hexylamine log k 0 Ethylenediamine = Ethylenediamine log k 0 Propylamine = Propylamine log k 0 Isopropylamine = Isopropylamine loa k 0 Trimethylamine = Trimethylamine loa k 0 Citrate-3 = Citrate-3log_k 0 Nta-3 = Nta-3log k 0 Edta-4 = Edta-4log_k 0 Propionate- = Propionatelog_k 0 Butyrate- = Butyratelog k 0 Isobutyrate- = Isobutyratelog_k 0 Two_picoline = Two_picoline log_k 0 Three picoline = Three picoline log k 0 Four_picoline = Four_picoline log_k 0 Formate- = Formatelog_k 0 Isovalerate- = Isovaleratelog k 0 Valerate- = Valeratelog_k 0 Acetate- = Acetatelog k 0 Tartarate-2 = Tartarate-2 log_k 0

Glycine- = Glycinelog k 0 Salicylate-2 = Salicylate-2log_k 0 Glutamate-2 = Glutamate-2 log k 0 Phthalate-2 = Phthalate-2log k 0 SOLUTION_SPECIES Fe+3 + e- = Fe+2log_k 13.032 delta_h -42.7 kJ -gamma 0 0 # Id: 2802810 # log K source: Bard85 # Delta H source: Bard85 **#**T and ionic strength: H3AsO4 + 2e + 2H + = H3AsO3 + H2Olog k 18.898 delta h -125.6 kJ -gamma 0 0 # Id: 600610 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: Sb(OH)6- + 2e- + 3H+ = Sb(OH)3 + 3H2Olog_k 24.31 delta_h 0 kJ -gamma 0 0 # Id: 7407410 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + 3e + 4H + = U+3 + 2H2Olog k 0.42 delta_h -42 kJ -gamma 0 0 # Id: 8908930 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + 2e + 4H + = U+4 + 2H2Olog_k 9.216 delta_h -144.1 kJ -gamma 0 0 # Id: 8918930 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength:  $UO2+2 + e^{-} = UO2+$ log_k 2.785 delta h -13.8 kJ -gamma 0 0 # Id: 8928930

# log K source: MTO3.11 # Delta H source: MTQ3.11 **#**T and ionic strength:  $e^{-} + Mn + 3 = Mn + 2$ log k 25.35 delta h -107.8 kJ -gamma 0 0 # Id: 4704710 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength:  $Co+3 + e^- = Co+2$ log_k 32.4 delta_h 0 kJ -gamma 0 0 # Id: 2002010 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength:  $Cu+2 + e^{-} = Cu+$ log_k 2.69 delta h 6.9 kJ -gamma 0 0 # Id: 2302310 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength:  $V+3 + e^{-} = V+2$ log_k -4.31 delta_h 0 kJ -gamma 0 0 # Id: 9009010 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: VO+2 + e + 2H + = V+3 + H2Olog k 5.696 delta_h 0 kJ -gamma 0 0 # Id: 9019020 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: VO2+ + e + 2H + = VO+2 + H2Olog_k 16.903 delta_h -122.7 kJ -gamma 0 0 # Id: 9029030 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: SO4-2 + 9H+ + 8e- = HS- + 4H2Olog k 33.66 delta_h -60.14 kJ

-gamma 0 0 # Id: 7307320 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Sn(OH)6-2 + 2e- + 4H+ = Sn(OH)2 + 4H2Olog k 19.2 delta_h 0 kJ -gamma 0 0 # Id: 7907910 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: TI(OH)3 + 2e + 3H + = TI + 3H2Olog_k 45.55 delta_h 0 kJ -gamma 0 0 # Id: 8708710 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: HSeO3- + 6e- + 6H+ = HSe- + 3H2Olog_k 44.86 delta h 0 kJ -gamma 0 0 # Id: 7607610 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: SeO4-2 + 2e- + 3H+ = HSeO3- + H2O log_k 36.308 delta_h -201.2 kJ -gamma 0 0 # Id: 7617620 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: 0.5Hg2+2 + e - = Hglog k 6.5667 delta_h -45.735 kJ -gamma 0 0 # Id: 3600000 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: 2Hg(OH)2 + 4H + 2e - = Hg2 + 2 + 4H2Olog_k 43.185 delta_h -63.59 kJ -gamma 0 0 # Id: 3603610 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength:

 $Cr(OH)2+ + 2H+ + e^{-} = Cr+2 + 2H2O$ log k 2.947 delta h 6.36 kJ -gamma 0 0 # Id: 2102110 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: CrO4-2 + 6H+ + 3e- = Cr(OH)2+ + 2H2Olog_k 67.376 delta_h -103 kJ -gamma 0 0 # Id: 2112120 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 2H2O = O2 + 4H + 4e-# Adjusted for equation to aqueous species log k -85.9951 -analytic 38.0229 7.99407E-03 -2.7655e+004 -1.4506e+001 199838.45 2 H+ + 2 e- = H2log k -3.15 delta h -1.759 kcal NO3- + 2 H+ + 2 e- = NO2- + H2O log k 28.570 delta_h -43.760 kcal -gamma 3.0000 0.0000 NO3- + 10 H+ + 8 e- = NH4+ + 3 H2O loa k 119.077 delta h -187.055 kcal -gamma 2.5000 0.0000 Mn+2 + 4H2O = MnO4 + 8H + 5elog_k -127.794 delta h 822.67 kJ -gamma 3 0 # Id: 4700020 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Mn+2 + 4H2O = MnO4-2 + 8H+ + 4elog_k -118.422 delta_h 711.07 kJ -gamma 5 0 # Id: 4700021 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: HS- = S-2 + H+log k -17.3 delta_h 49.4 kJ -gamma 50 # Id: 3307301

# log K source: LMa1987 # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 HSe- = Se-2 + H+log k -15 delta h 48.116 kJ -gamma 0 0 # Id: 3307601 # log K source: SCD3.02 (1968 DKa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 TI(OH)3 + 3H + = TI + 3 + 3H2Olog k 3.291 delta_h 0 kJ -gamma 0 0 # Id: 8713300 # log K source: NIST46.3 # Delta H source: MTO3.11 #T and ionic strength: 0.00 25.0  $0.5Hg2+2 + e^{-} = Hg$ log_k 6.5667 delta h -45.735 kJ -gamma 0 0 # Id: 3600000 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Hg(OH)2 + 2H + = Hg + 2 + 2H2Olog_k 6.194 delta_h -39.72 kJ -gamma 0 0 # Id: 3613300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2H+ = Cr+3 + 2H2Olog k 9.5688 delta_h -129.62 kJ -gamma 0 0 # Id: 2113300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.10 20.0 H2O = OH - + H +log_k -13.997 delta_h 55.81 kJ -gamma 3.5 0 # Id: 3300020 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + = Sn + 2 + 2H2Olog k 7.094 delta h 0 kJ

-gamma 0 0 # Id: 7903301 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 + H + = SnOH + + H2Olog k 3.697 delta_h 0 kJ -gamma 0 0 # Id: 7903302 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 + H2O = Sn(OH)3 + H+log_k -9.497 delta_h 0 kJ -gamma 0 0 # Id: 7903303 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2Sn(OH)2 + 2H + = Sn2(OH)2 + 2 + 2H2Olog_k 9.394 delta h 0 kJ -gamma 0 0 # Id: 7903304 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 3Sn(OH)2 + 2H + = Sn3(OH)4 + 2 + 2H2Olog_k 14.394 delta_h 0 kJ -gamma 0 0 # Id: 7903305 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sn(OH)2 = HSnO2 + H +log_k -8.9347 delta_h 0 kJ -gamma 0 0 # Id: 7903306 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: Sn(OH)6-2 + 6H + = Sn+4 + 6H2Olog_k 21.2194 delta_h 0 kJ -gamma 0 0 # Id: 7913301 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: Sn(OH)6-2 = SnO3-2 + 3H2O

log k -2.2099 delta_h 0 kJ -gamma 0 0 # Id: 7913302 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: Pb+2 + H2O = PbOH+ + H+log_k -7.597 delta_h 0 kJ -gamma 0 0 # Id: 6003300 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + 2H2O = Pb(OH)2 + 2H+log_k -17.094 delta h 0 kJ -gamma 0 0 # Id: 6003301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + 3H2O = Pb(OH)3- + 3H+log k -28.091 delta h 0 kJ -gamma 0 0 # Id: 6003302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2Pb+2 + H2O = Pb2OH+3 + H+log_k -6.397 delta_h 0 kJ -gamma 0 0 # Id: 6003303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 3Pb+2 + 4H2O = Pb3(OH)4+2 + 4H+log k -23.888 delta h 115.24 kJ -gamma 0 0 # Id: 6003304 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 4H2O = Pb(OH)4-2 + 4H+log_k -39.699 delta_h 0 kJ -gamma 0 0 # Id: 6003305 # log K source: MTQ3.11 # Delta H source: MTQ3.11

**#**T and ionic strength: 4Pb+2 + 4H2O = Pb4(OH)4+4 + 4H+log k -19.988 delta_h 88.24 kJ -gamma 0 0 # Id: 6003306 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3BO3 + F - = BF(OH)3 log_k -0.399 delta_h 7.7404 kJ -gamma 2.5 0 # Id: 902700 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: H3BO3 + 2F + H + = BF2(OH)2 + H2Olog k 7.63 delta h 6.8408 kJ -gamma 2.5 0 # Id: 902701 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: H3BO3 + 3F- + 2H+ = BF3OH- + 2H2O log_k 13.22 delta_h -20.4897 kJ -gamma 2.5 0 # Id: 902702 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: AI+3 + H2O = AIOH+2 + H+log k -4.997 delta_h 47.81 kJ -gamma 5.4 0 # Id: 303300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 AI+3 + 2H2O = AI(OH)2+ + 2H+log k -10.094 delta_h 0 kJ -gamma 5.4 0 # Id: 303301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 AI+3 + 3H2O = AI(OH)3 + 3H+log_k -16.791 delta_h 0 kJ -gamma 0 0 # Id: 303303

# log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 AI+3 + 4H2O = AI(OH)4- + 4H+log k -22.688 delta h 173.24 kJ -gamma 4.5 0 # Id: 303302 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI+ + H2O = TIOH + H+log_k -13.207 delta_h 56.81 kJ -gamma 0 0 # Id: 8703300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + 2H + = TIOH + 2 + 2H2Olog_k 2.694 delta h 0 kJ -gamma 0 0 # Id: 8713301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + H + = TI(OH)2 + H2Olog_k 1.897 delta_h 0 kJ -gamma 0 0 # Id: 8713302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 TI(OH)3 + H2O = TI(OH)4 - + H +log k -11.697 delta_h 0 kJ -gamma 0 0 # Id: 8713303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + H2O = ZnOH+ + H+log_k -8.997 delta_h 55.81 kJ -gamma 0 0 # Id: 9503300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + 2H2O = Zn(OH)2 + 2H+log k -17.794 delta h 0 kJ

-gamma 0 0 # Id: 9503301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + 3H2O = Zn(OH)3- + 3H+loa k -28.091 delta_h 0 kJ -gamma 0 0 # Id: 9503302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + 4H2O = Zn(OH)4-2 + 4H+log_k -40.488 delta_h 0 kJ -gamma 0 0 # Id: 9503303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + H2O = CdOH+ + H+log_k -10.097 delta h 54.81 kJ -gamma 0 0 # Id: 1603300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + 2H2O = Cd(OH)2 + 2H+log_k -20.294 delta_h 0 kJ -gamma 0 0 # Id: 1603301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + 3H2O = Cd(OH)3 - + 3H +log_k -32.505 delta_h 0 kJ -gamma 0 0 # Id: 1603302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Cd+2 + 4H2O = Cd(OH)4-2 + 4H+log_k -47.288 delta_h 0 kJ -gamma 0 0 # Id: 1603303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2Cd+2 + H2O = Cd2OH+3 + H+

log k -9.397 delta_h 45.81 kJ -gamma 0 0 # Id: 1603304 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + H + = HgOH + H2Olog k 2.797 delta_h -18.91 kJ -gamma 0 0 # Id: 3613302 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + H2O = Hg(OH)3 - + H +log_k -14.897 delta h 0 kJ -gamma 0 0 # Id: 3613303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + H2O = CuOH+ + H+log k -7.497 delta h 35.81 kJ -gamma 4 0 # Id: 2313300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cu+2 + 2H2O = Cu(OH)2 + 2H+log_k -16.194 delta_h 0 kJ -gamma 0 0 # Id: 2313301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + 3H2O = Cu(OH)3 + 3H +log k -26.879 delta h 0 kJ -gamma 0 0 # Id: 2313302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cu+2 + 4H2O = Cu(OH)4-2 + 4H+log_k -39.98 delta_h 0 kJ -gamma 0 0 # Id: 2313303 # log K source: NIST46.3 # Delta H source: MTQ3.11

```
#T and ionic strength: 1.00 25.0
2Cu+2 + 2H2O = Cu2(OH)2+2 + 2H+
log k -10.594
delta_h 76.62 kJ
-gamma 0 0
# Id: 2313304
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Ag + H2O = AgOH + H+
log_k -11.997
delta_h 0 kJ
-gamma 0 0
# Id: 203300
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 25.0
Ag + + 2H2O = Ag(OH)2 - + 2H +
log k -24.004
delta h 0 kJ
-gamma 0 0
# Id: 203301
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 25.0
Ni+2 + H2O = NiOH + H + H
log_k -9.897
delta_h 51.81 kJ
-gamma 0 0
# Id: 5403300
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Ni+2 + 2H2O = Ni(OH)2 + 2H+
log k -18.994
delta h 0 kJ
-gamma 0 0
# Id: 5403301
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 25.0
Ni+2 + 3H2O = Ni(OH)3 - + 3H +
log k -29.991
delta_h 0 kJ
-gamma 0 0
# Id: 5403302
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 25.0
Co+2 + H2O = CoOH+ + H+
log_k -9.697
delta h 0 kJ
-gamma 0 0
# Id: 2003300
```

# log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + 2H2O = Co(OH)2 + 2H+log_k -18.794 delta h 0 kJ -gamma 0 0 # Id: 2003301 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + 3H2O = Co(OH)3- + 3H+log_k -31.491 delta_h 0 kJ -gamma 0 0 # Id: 2003302 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + 4H2O = Co(OH)4-2 + 4H+log_k -46.288 delta h 0 kJ -gamma 0 0 # Id: 2003303 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2Co+2 + H2O = Co2OH+3 + H+log_k -10.997 delta_h 0 kJ -gamma 0 0 # Id: 2003304 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 4Co+2 + 4H2O = Co4(OH)4+4 + 4H+log k -30.488 delta_h 0 kJ -gamma 0 0 # Id: 2003306 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + 2H2O = CoOOH + 3H +log_k -32.0915 delta_h 260.454 kJ -gamma 0 0 # Id: 2003305 # log K source: NIST2.1.1 # Delta H source: MTQ3.11 #T and ionic strength: Co+3 + H2O = CoOH+2 + H+log k -1.291 delta_h 0 kJ

-gamma 0 0 # Id: 2013300 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Fe+2 + H2O = FeOH+ + H+log k -9.397 delta_h 55.81 kJ -gamma 5 0 # Id: 2803300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+2 + 2H2O = Fe(OH)2 + 2H+log_k -20.494 delta_h 119.62 kJ -gamma 0 0 # Id: 2803302 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+2 + 3H2O = Fe(OH)3- + 3H+log_k -28.991 delta h 126.43 kJ -gamma 50 # Id: 2803301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + H2O = FeOH+2 + H+log_k -2.187 delta_h 41.81 kJ -gamma 50 # Id: 2813300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + 2H2O = Fe(OH)2+ + 2H+log_k -4.594 delta_h 0 kJ -gamma 5.4 0 # Id: 2813301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Fe+3 + 3H2O = Fe(OH)3 + 3H+log k -12.56 delta_h 103.8 kJ -gamma 0 0 # Id: 2813302 # log K source: Nord90 # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Fe+3 + 4H2O = Fe(OH)4- + 4H+

log k -21.588 delta_h 0 kJ -gamma 5.4 0 # Id: 2813303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2Fe+3 + 2H2O = Fe2(OH)2+4 + 2H+log k -2.854 delta_h 57.62 kJ -gamma 0 0 # Id: 2813304 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 3Fe+3 + 4H2O = Fe3(OH)4+5 + 4H+log_k -6.288 delta h 65.24 kJ -gamma 0 0 # Id: 2813305 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mn+2 + H2O = MnOH+ + H+log k -10.597 delta h 55.81 kJ -gamma 50 # Id: 4703300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mn+2 + 3H2O = Mn(OH)3 + 3H +log_k -34.8 delta_h 0 kJ -gamma 50 # Id: 4703301 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Mn+2 + 4H2O = Mn(OH)4-2 + 4H+log k -48.288 delta h 0 kJ -gamma 5 0 # Id: 4703302 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + 4H2O = MnO4 + 8H + 5elog_k -127.794 delta_h 822.67 kJ -gamma 3 0 # Id: 4700020 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1

```
#T and ionic strength:
Mn+2 + 4H2O = MnO4-2 + 8H+ + 4e-
log k -118.422
delta_h 711.07 kJ
-gamma 50
# Id: 4700021
# log K source: NIST2.1.1
# Delta H source: NIST2.1.1
#T and ionic strength:
Cr(OH)2+ + H+ = Cr(OH)+2 + H2O
log_k 5.9118
delta_h -77.91 kJ
-gamma 0 0
# Id: 2113301
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Cr(OH)2+ + H2O = Cr(OH)3 + H+
log k -8.4222
delta h 0 kJ
-gamma 0 0
# Id: 2113302
# log K source: SCD3.02 (1983 RCa)
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 25.0
Cr(OH)2+ + 2H2O = Cr(OH)4- + 2H+
log_k -17.8192
delta_h 0 kJ
-gamma 0 0
# Id: 2113303
# log K source: SCD3.02 (1983 RCa)
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 25.0
Cr(OH)2+ = CrO2- + 2H+
log k -17.7456
delta h 0 kJ
-gamma 0 0
# Id: 2113304
# log K source: MTQ3.11
# Delta H source: MTQ3.11
#T and ionic strength:
V+2 + H2O = VOH + H + H
log_k -6.487
delta_h 59.81 kJ
-gamma 0 0
# Id: 9003300
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
V+3 + H20 = VOH+2 + H+
log_k -2.297
delta_h 43.81 kJ
-gamma 0 0
# Id: 9013300
```

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 V+3 + 2H2O = V(OH)2+ + 2H+log k -6.274 delta h 0 kJ -gamma 0 0 # Id: 9013301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 V+3 + 3H2O = V(OH)3 + 3H+log_k -3.0843 delta_h 0 kJ -gamma 0 0 # Id: 9013302 # log K source: SCD3.02 (1978 TKa) # Delta H source: MTO3.11 #T and ionic strength: 0.10 20.0 2V+3 + 2H2O = V2(OH)2+4 + 2H+log_k -3.794 delta h 0 kJ -gamma 0 0 # Id: 9013304 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2V+3 + 3H2O = V2(OH)3+3 + 3H+log_k -10.1191 delta_h 0 kJ -gamma 0 0 # Id: 9013303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 VO+2 + 2H2O = V(OH)3+ + H+log k -5.697 delta_h 0 kJ -gamma 0 0 # Id: 9023300 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2VO+2 + 2H2O = H2V2O4+2 + 2H+log k -6.694 delta_h 53.62 kJ -gamma 0 0 # Id: 9023301 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 U+4 + H2O = UOH+3 + H+log k -0.597 delta h 47.81 kJ

-gamma 0 0 # Id: 8913300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 U+4 + 2H2O = U(OH)2+2 + 2H+loa k -2.27 delta_h 74.1823 kJ -gamma 0 0 # Id: 8913301 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 3H2O = U(OH)3+ + 3H+log_k -4.935 delta_h 94.7467 kJ -gamma 0 0 # Id: 8913302 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 4H2O = U(OH)4 + 4H+log_k -8.498 delta h 103.596 kJ -gamma 0 0 # Id: 8913303 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 5H2O = U(OH)5- + 5H+log_k -13.12 delta_h 115.374 kJ -gamma 0 0 # Id: 8913304 # log K source: MTO3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 6U+4 + 15H2O = U6(OH)15+9 + 15H+log k -17.155 delta_h 0 kJ -gamma 0 0 # Id: 8913305 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 UO2+2 + H2O = UO2OH+ + H+log_k -5.897 delta_h 47.81 kJ -gamma 0 0 # Id: 8933300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 2UO2+2 + 2H2O = (UO2)2(OH)2+2 + 2H+ log k -5.574 delta_h 41.82 kJ -gamma 0 0 # Id: 8933301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 3UO2+2 + 5H2O = (UO2)3(OH)5+ + 5H+log k -15.585 delta_h 108.05 kJ -gamma 0 0 # Id: 8933302 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + H2O = BeOH+ + H+log_k -5.397 delta h 0 kJ -gamma 6.5 0 # Id: 1103301 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Be+2 + 2H2O = Be(OH)2 + 2H+log k -13.594 delta h 0 kJ -gamma 6.5 0 # Id: 1103302 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Be+2 + 3H2O = Be(OH)3 + 3H +log_k -23.191 delta_h 0 kJ -gamma 6.5 0 # Id: 1103303 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Be+2 + 4H2O = Be(OH)4-2 + 4H+log k -37.388 delta h 0 kJ -gamma 6.5 0 # Id: 1103304 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2Be+2 + H2O = Be2OH+3 + H+log_k -3.177 delta_h 0 kJ -gamma 6.5 0 # Id: 1103305 # log K source: NIST46.4 # Delta H source: MTQ3.11
#T and ionic strength: 0.10 25.0 3Be+2 + 3H2O = Be3(OH)3+3 + 3H+log k -8.8076 delta_h 0 kJ -gamma 6.5 0 # Id: 1103306 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Mg+2 + H2O = MgOH+ + H+log_k -11.397 delta_h 67.81 kJ -gamma 6.5 0 # Id: 4603300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H2O = CaOH+ + H+log k -12.697 delta h 64.11 kJ -gamma 6 0 # Id: 1503300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + H2O = SrOH + + H +log_k -13.177 delta_h 60.81 kJ -gamma 50 # Id: 8003300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ba+2 + H2O = BaOH+ + H+log k -13.357 delta_h 60.81 kJ -gamma 50 # Id: 1003300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 H+ + F- = HFlog k 3.17 delta_h 13.3 kJ -gamma 0 0 # Id: 3302700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 H+ + 2F- = HF2log_k 3.75 delta_h 17.4 kJ -gamma 3.5 0 # Id: 3302701

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 2F + 2H + = H2F2log k 6.768 delta h 0 kJ -gamma 0 0 # Id: 3302702 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Sb(OH)3 + F + H + = SbOF + 2H2Olog_k 6.1864 delta_h 0 kJ -gamma 0 0 # Id: 7402700 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: Sb(OH)3 + F + H + = Sb(OH)2F + H2Olog_k 6.1937 delta h 0 kJ -gamma 0 0 # Id: 7402702 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: H4SiO4 + 4H+ + 6F- = SiF6-2 + 4H2Olog_k 30.18 delta_h -68 kJ -gamma 50 # Id: 7702700 # log K source: Nord90 # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + F - = SnF + + 2H2Olog k 11.582 delta_h 0 kJ -gamma 0 0 # Id: 7902701 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2H + 2F - = SnF2 + 2H2Olog_k 14.386 delta_h 0 kJ -gamma 0 0 # Id: 7902702 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2H + 3F - = SnF3 - + 2H2Olog k 17.206 delta_h 0 kJ

-gamma 0 0 # Id: 7902703 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Sn(OH)6-2 + 6H+ + 6F- = SnF6-2 + 6H2Olog k 33.5844 delta_h 0 kJ -gamma 0 0 # Id: 7912701 # log K source: Bard85 # Delta H source: MTQ3.11 **#**T and ionic strength: Pb+2 + F- = PbF+log_k 1.848 delta_h 0 kJ -gamma 0 0 # Id: 6002700 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Pb+2 + 2F- = PbF2log_k 3.142 delta h 0 kJ -gamma 0 0 # Id: 6002701 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Pb+2 + 3F- = PbF3log_k 3.42 delta_h 0 kJ -gamma 0 0 # Id: 6002702 # log K source: SCD3.02 (1956 TKa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + 4F- = PbF4-2log k 3.1 delta_h 0 kJ -gamma 0 0 # Id: 6002703 # log K source: SCD3.02 (1956 TKa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 H3BO3 + 3H + 4F - = BF4 - + 3H2Olog k 19.912 delta_h -18.67 kJ -gamma 2.5 0 # Id: 902703 # log K source: NIST46.3 # Delta H source: NIST2.1.1 #T and ionic strength: 1.00 25.0 AI+3 + F- = AIF+2

log k7 delta h 4.6 kJ -gamma 5.4 0 # Id: 302700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 AI+3 + 2F- = AIF2+log k 12.6 delta_h 8.3 kJ -gamma 5.4 0 # Id: 302701 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 AI+3 + 3F- = AIF3log_k 16.7 delta h 8.7 kJ -gamma 0 0 # Id: 302702 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 AI+3 + 4F- = AIF4log k 19.4 delta h 8.7 kJ -gamma 4.5 0 # Id: 302703 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI+ + F- = TIFlog_k 0.1 delta_h 0 kJ -gamma 0 0 # Id: 8702700 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + F- = ZnF+log k 1.3 delta_h 11 kJ -gamma 0 0 # Id: 9502700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + F- = CdF+log_k 1.2 delta_h 5 kJ -gamma 0 0 # Id: 1602700 # log K source: NIST46.3 # Delta H source: NIST46.3

#T and ionic strength: 0.00 25.0 Cd+2 + 2F- = CdF2log k 1.5 delta_h 0 kJ -gamma 0 0 # Id: 1602701 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Hg(OH)2 + 2H + F - = HgF + 2H2Olog_k 7.763 delta_h -35.72 kJ -gamma 0 0 # Id: 3612701 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Cu+2 + F- = CuF+log_k 1.8 delta h 13 kJ -gamma 0 0 # Id: 2312700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Aq + F - = AqFlog_k 0.4 delta_h 12 kJ -gamma 0 0 # Id: 202700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + F = NiF +log k 1.4 delta_h 7.1 kJ -gamma 0 0 # Id: 5402700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Co+2 + F- = CoF+log k 1.5 delta_h 9.2 kJ -gamma 0 0 # Id: 2002700 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+3 + F- = FeF+2log_k 6.04 delta_h 10 kJ -gamma 50 # Id: 2812700

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + 2F- = FeF2+log k 10.4675 delta h 17 kJ -gamma 5 0 # Id: 2812701 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Fe+3 + 3F- = FeF3log k 13.617 delta_h 29 kJ -gamma 0 0 # Id: 2812702 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Mn+2 + F = MnF +log_k 1.6 delta h 11 kJ -gamma 5 0 # Id: 4702700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2H+ + F- = CrF+2 + 2H2Olog_k 14.7688 delta_h -70.2452 kJ -gamma 0 0 # Id: 2112700 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 VO+2 + F- = VOF+log k 3.778 delta_h 7.9 kJ -gamma 0 0 # Id: 9022700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 VO+2 + 2F- = VOF2log_k 6.352 delta_h 14 kJ -gamma 0 0 # Id: 9022701 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 VO+2 + 3F- = VOF3log k 7.902 delta h 20 kJ

-gamma 0 0 # Id: 9022702 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 VO+2 + 4F- = VOF4-2log k 8.508 delta_h 26 kJ -gamma 0 0 # Id: 9022703 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 VO2+ + F- = VO2Flog_k 3.244 delta_h 0 kJ -gamma 0 0 # Id: 9032700 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 VO2+ + 2F- = VO2F2log_k 5.804 delta h 0 kJ -gamma 0 0 # Id: 9032701 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 VO2+ + 3F- = VO2F3-2log_k 6.9 delta_h 0 kJ -gamma 0 0 # Id: 9032702 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 VO2+ + 4F- = VO2F4-3log k 6.592 delta_h 0 kJ -gamma 0 0 # Id: 9032703 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 U+4 + F- = UF+3log k 9.3 delta_h 21.1292 kJ -gamma 0 0 # Id: 8912700 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 U+4 + 2F- = UF2+2

log k 16.4 delta_h 30.1248 kJ -gamma 0 0 # Id: 8912701 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 U+4 + 3F- = UF3+log k 21.6 delta_h 29.9156 kJ -gamma 0 0 # Id: 8912702 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 U+4 + 4F- = UF4log_k 23.64 delta h 19.2464 kJ -gamma 0 0 # Id: 8912703 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 5F- = UF5log k 25.238 delta h 20.2924 kJ -gamma 0 0 # Id: 8912704 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 6F- = UF6-2log_k 27.718 delta_h 13.8072 kJ -gamma 0 0 # Id: 8912705 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + F- = UO2F+log k 5.14 delta h 1 kJ -gamma 0 0 # Id: 8932700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + 2F- = UO2F2log_k 8.6 delta_h 2 kJ -gamma 0 0 # Id: 8932701 # log K source: NIST46.3 # Delta H source: NIST46.3

#T and ionic strength: 0.00 25.0 UO2+2 + 3F - = UO2F3 log k 11 delta_h 2 kJ -gamma 0 0 # Id: 8932702 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + 4F- = UO2F4-2log_k 11.9 delta_h 0.4 kJ -gamma 0 0 # Id: 8932703 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + F- = BeF+log k 5.249 delta h 0 kJ -gamma 0 0 # Id: 1102701 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Be+2 + 2F- = BeF2log_k 9.1285 delta_h -4 kJ -gamma 0 0 # Id: 1102702 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Be+2 + 3F- = BeF3log k 11.9085 delta_h -8 kJ -gamma 0 0 # Id: 1102703 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Mg+2 + F- = MgF+log k 2.05 delta_h 13 kJ -gamma 4.5 0 # Id: 4602700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + F- = CaF+log_k 1.038 delta h 14 kJ -gamma 50 # Id: 1502700

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Sr+2 + F- = SrF+log k 0.548 delta h 16 kJ -gamma 0 0 # Id: 8002701 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 Na+ + F- = NaFlog_k -0.2 delta_h 12 kJ -gamma 0 0 # Id: 5002700 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + CI - = SnCI + + 2H2Olog_k 8.734 delta h 0 kJ -gamma 0 0 # Id: 7901801 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + 2CI - SnCl2 + 2H2Olog_k 9.524 delta_h 0 kJ -gamma 0 0 # Id: 7901802 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + 3CI - SnCI3 + 2H2Olog k 8.3505 delta_h 0 kJ -gamma 0 0 # Id: 7901803 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Pb+2 + Cl - = PbCl +log_k 1.55 delta_h 8.7 kJ -gamma 0 0 # Id: 6001800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 2CI - = PbCI2log k 2.2 delta_h 12 kJ

-gamma 0 0 # Id: 6001801 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 3CI - = PbCl3 loa k 1.8 delta h 4 kJ -gamma 0 0 # Id: 6001802 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 4CI - = PbCI4-2log_k 1.46 delta_h 14.7695 kJ -gamma 0 0 # Id: 6001803 # log K source: SCD3.02 (1984 SEa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 TI+ + CI- = TICIlog_k 0.51 delta h -6.2 kJ -gamma 0 0 # Id: 8701800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI+ + 2CI- = TICI2log_k 0.28 delta_h 0 kJ -gamma 0 0 # Id: 8701801 # log K source: SCD3.02 (1992 RAb) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 TI(OH)3 + 3H + CI - = TICI + 2 + 3H2Olog k 11.011 delta_h 0 kJ -gamma 0 0 # Id: 8711800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + 3H + 2CI - = TICI2 + 3H2Olog k 16.771 delta_h 0 kJ -gamma 0 0 # Id: 8711801 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + 3H + 3CI - = TICI3 + 3H2O

log k 19.791 delta_h 0 kJ -gamma 0 0 # Id: 8711802 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + 3H + 4CI - TICI4 + 3H2Olog k 21.591 delta_h 0 kJ -gamma 0 0 # Id: 8711803 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + CI + 2H + = TIOHCI + 2H2Olog_k 10.629 delta h 0 kJ -gamma 0 0 # Id: 8711804 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + Cl = ZnCl +log k 0.4 delta h 5.4 kJ -gamma 4 0 # Id: 9501800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + 2CI - = ZnCI2log_k 0.6 delta_h 37 kJ -gamma 0 0 # Id: 9501801 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + 3CI - = ZnCI3 log k 0.5 delta h 39.999 kJ -gamma 4 0 # Id: 9501802 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + 4CI - = ZnCI4-2log k 0.199 delta_h 45.8566 kJ -gamma 50 # Id: 9501803 # log K source: MTQ3.11 # Delta H source: MTQ3.11

```
#T and ionic strength:
Zn+2 + H2O + CI = ZnOHCI + H+
log k -7.48
delta_h 0 kJ
-gamma 0 0
# Id: 9501804
# log K source: MTQ3.11
# Delta H source: MTQ3.11
#T and ionic strength:
Cd+2 + Cl- = CdCl+
log_k 1.98
delta_h 1 kJ
-gamma 0 0
# Id: 1601800
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Cd+2 + 2CI - = CdCI2
log_k 2.6
delta h 3 kJ
-gamma 0 0
# Id: 1601801
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Cd+2 + 3CI - = CdCl3 -
log_k 2.4
delta_h 10 kJ
-gamma 0 0
# Id: 1601802
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Cd+2 + H2O + CI - = CdOHCI + H+
log k -7.404
delta_h 18.2213 kJ
-gamma 0 0
# Id: 1601803
# log K source: MTQ3.11
# Delta H source: MTQ3.11
#T and ionic strength:
Hg(OH)2 + 2H + CI - = HgCI + 2H2O
log k 13.494
delta_h -62.72 kJ
-gamma 0 0
# Id: 3611800
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Hg(OH)2 + 2H+ + 2CI- = HgCl2 + 2H2O
log_k 20.194
delta_h -92.42 kJ
-gamma 0 0
# Id: 3611801
```

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H + 3CI - = HgCl3 + 2H2Olog_k 21.194 delta h -94.02 kJ -gamma 0 0 # Id: 3611802 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H + 4CI - HgCl4 - 2 + 2H2Olog_k 21.794 delta_h -100.72 kJ -gamma 0 0 # Id: 3611803 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hg(OH)2 + CI + I + 2H + = HgCII + 2H2Olog_k 25.532 delta h -135.3 kJ -gamma 0 0 # Id: 3611804 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Hg(OH)2 + H+ + CI- = HgCIOH + H2Olog_k 10.444 delta_h -42.72 kJ -gamma 0 0 # Id: 3611805 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Cu+2 + Cl- = CuCl+log k 0.2 delta_h 8.3 kJ -gamma 4 0 # Id: 2311800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cu+2 + 2CI - = CuCl2log_k -0.26 delta_h 44.183 kJ -gamma 0 0 # Id: 2311801 # log K source: SCD3.02 (1989 IPa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + 3CI - = CuCl3 log k -2.29 delta_h 57.279 kJ

-gamma 4 0 # Id: 2311802 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cu+2 + 4CI - = CuCl4-2loa k -4.59 delta_h 32.5515 kJ -gamma 5 0 # Id: 2311803 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cu+ + 2CI- = CuCl2log_k 5.42 delta_h -1.7573 kJ -gamma 4 0 # Id: 2301800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+ + 3CI- = CuCl3-2log_k 4.75 delta h 1.0878 kJ -gamma 50 # Id: 2301801 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+ + Cl- = CuCllog_k 3.1 delta_h 0 kJ -gamma 0 0 # Id: 2301802 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag + + CI - = AgCIlog_k 3.31 delta_h -12 kJ -gamma 0 0 # Id: 201800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag + + 2CI - = AgCI2 log_k 5.25 delta_h -16 kJ -gamma 0 0 # Id: 201801 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + 3CI- = AgCl3-2

log_k 5.2 delta_h 0 kJ -gamma 0 0 # Id: 201802 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag + + 4CI - = AgCI4 - 3log_k 5.51 delta_h 0 kJ -gamma 0 0 # Id: 201803 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Ni+2 + CI = NiCI +log_k 0.408 delta h 2 kJ -gamma 0 0 # Id: 5401800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Ni+2 + 2CI - = NiCl2log k -1.89 delta h 0 kJ -gamma 0 0 # Id: 5401801 # log K source: SCD3.02 (1989 IPa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + Cl- = CoCl+log_k 0.539 delta_h 2 kJ -gamma 0 0 # Id: 2001800 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Co+3 + CI - = CoCI+2log k 2.3085 delta h 16 kJ -gamma 0 0 # Id: 2011800 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Fe+3 + CI - = FeCI+2log_k 1.48 delta_h 23 kJ -gamma 50 # Id: 2811800 # log K source: NIST46.3 # Delta H source: NIST46.3

#T and ionic strength: 0.00 25.0 Fe+3 + 2CI- = FeCl2+log k 2.13 delta_h 0 kJ -gamma 50 # Id: 2811801 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Fe+3 + 3CI- = FeCI3log_k 1.13 delta_h 0 kJ -gamma 0 0 # Id: 2811802 # log K source: Nord90 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + Cl - = MnCl +log k 0.1 delta h 0 kJ -gamma 50 # Id: 4701800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 20.0 Mn+2 + 2CI - = MnCI2log_k 0.25 delta_h 0 kJ -gamma 0 0 # Id: 4701801 # log K source: Nord90 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + 3CI - = MnCI3 log k -0.31 delta_h 0 kJ -gamma 50 # Id: 4701802 # log K source: Nord90 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2H+ + CI- = CrCI+2 + 2H2Olog k 9.6808 delta_h -103.62 kJ -gamma 0 0 # Id: 2111800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 Cr(OH)2+ + 2CI- + 2H+ = CrCI2+ + 2H2Olog_k 8.658 delta_h -39.2208 kJ -gamma 0 0 # Id: 2111801

# log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cr(OH)2+ + 2CI- + H+ = CrOHCI2 + H2Olog k 2.9627 delta h 0 kJ -gamma 0 0 # Id: 2111802 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: VO+2 + CI = VOCI+log k 0.448 delta_h 0 kJ -gamma 0 0 # Id: 9021800 # log K source: NIST46.3 # Delta H source: MTO3.11 #T and ionic strength: 1.00 20.0 U+4 + CI - = UCI+3log_k 1.7 delta h -20 kJ -gamma 0 0 # Id: 8911800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + CI = UO2CI+log_k 0.21 delta_h 16 kJ -gamma 0 0 # Id: 8931800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + CI - = BeCI +log k 0.2009 delta_h 0 kJ -gamma 50 # Id: 1101801 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.70 20.0 Sn(OH)2 + 2H + Br - = SnBr + 2H2Olog_k 8.254 delta_h 0 kJ -gamma 0 0 # Id: 7901301 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + 2Br - = SnBr2 + 2H2Olog k 8.794 delta h 0 kJ

-gamma 0 0 # Id: 7901302 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + 3Br - = SnBr3 - + 2H2Oloa k 7.48 delta_h 0 kJ -gamma 0 0 # Id: 7901303 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 3.00 25.0 Pb+2 + Br- = PbBr+log_k 1.7 delta_h 8 kJ -gamma 0 0 # Id: 6001300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 2Br - = PbBr2log_k 2.6 delta h -4 kJ -gamma 0 0 # Id: 6001301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI+ + Br- = TIBrlog_k 0.91 delta_h -12 kJ -gamma 0 0 # Id: 8701300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI+ + 2Br- = TIBr2log_k -0.384 delta_h 12.36 kJ -gamma 0 0 # Id: 8701301 # log K source: NIST46.3 # Delta H source: NIST2.1.1 #T and ionic strength: 4.00 25.0 TI+ + Br- + CI- = TIBrCIlog_k 0.8165 delta_h 0 kJ -gamma 0 0 # Id: 8701302 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: TI+ + I- + Br- = TIIBrlog k 2.185 delta_h 0 kJ -gamma 0 0 # Id: 8703802 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: TI(OH)3 + 3H + Br - = TIBr + 2 + 3H2Olog k 12.803 delta_h 0 kJ -gamma 0 0 # Id: 8711300 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 TI(OH)3 + 3H + 2Br - = TIBr2 + 3H2Olog_k 20.711 delta h 0 kJ -gamma 0 0 # Id: 8711301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 TI(OH)3 + 3Br + 3H + = TIBr3 + 3H2Olog k 27.0244 delta h 0 kJ -gamma 0 0 # Id: 8711302 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: TI(OH)3 + 4Br + 3H + = TIBr4 + 3H2Olog_k 31.1533 delta_h 0 kJ -gamma 0 0 # Id: 8711303 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + Br- = ZnBr+log k -0.07 delta h 1 kJ -gamma 0 0 # Id: 9501300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + 2Br- = ZnBr2log_k -0.98 delta_h 0 kJ -gamma 0 0 # Id: 9501301 # log K source: MTQ3.11 # Delta H source: MTQ3.11

**#**T and ionic strength: Cd+2 + Br- = CdBr+log k 2.15 delta_h -3 kJ -gamma 0 0 # Id: 1601300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + 2Br- = CdBr2log_k 3 delta_h -3 kJ -gamma 0 0 # Id: 1601301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Hq(OH)2 + 2H + Br - = HgBr + 2H2Olog k 15.803 delta h -81.92 kJ -gamma 0 0 # Id: 3611301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2H + 2Br - = HgBr2 + 2H2Olog_k 24.2725 delta_h -127.12 kJ -gamma 0 0 # Id: 3611302 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2H + 3Br - = HgBr3 - + 2H2Olog k 26.7025 delta_h -138.82 kJ -gamma 0 0 # Id: 3611303 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2H + 4Br - = HgBr4 - 2 + 2H2Olog k 27.933 delta_h -153.72 kJ -gamma 0 0 # Id: 3611304 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.50 25.0 Hg(OH)2 + Br + CI + 2H + = HgBrCI + 2H2Olog_k 22.1811 delta_h -113.77 kJ -gamma 0 0 # Id: 3611305

# log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Hg(OH)2 + Br + I + 2H + = HgBrI + 2H2Olog_k 27.3133 delta h -151.27 kJ -gamma 0 0 # Id: 3611306 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Hg(OH)2 + Br + 3I + 2H + = HgBrI3 - 2 + 2H2Olog_k 34.2135 delta_h 0 kJ -gamma 0 0 # Id: 3611307 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Hg(OH)2 + 2Br + 2I + 2H + = HgBr2I2 + 2H2Olog_k 32.3994 delta h 0 kJ -gamma 0 0 # Id: 3611308 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Hg(OH)2 + 3Br + I + 2H + = HgBr3I - 2 + 2H2Olog_k 30.1528 delta_h 0 kJ -gamma 0 0 # Id: 3611309 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Hg(OH)2 + H+ + Br- = HgBrOH + H2Olog k 12.433 delta_h 0 kJ -gamma 0 0 # Id: 3613301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Ag + + Br - = AgBrlog_k 4.6 delta_h 0 kJ -gamma 0 0 # Id: 201300 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag + + 2Br - = AgBr2 log_k 7.5 delta h 0 kJ

-gamma 0 0 # Id: 201301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Aq+ + 3Br- = AqBr3-2log k 8.1 delta_h 0 kJ -gamma 0 0 # Id: 201302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + Br - = NiBr +log_k 0.5 delta_h 0 kJ -gamma 0 0 # Id: 5401300 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cr(OH)2+ + Br- + 2H+ = CrBr+2 + 2H2Olog_k 7.5519 delta h -46.9068 kJ -gamma 0 0 # Id: 2111300 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Be+2 + Br- = BeBr+log_k 0.1009 delta_h 0 kJ -gamma 50 # Id: 1101301 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.70 20.0 Pb+2 + I - = PbI +log_k 2 delta_h 0 kJ -gamma 0 0 # Id: 6003800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + 2I - = PbI2log_k 3.2 delta_h 0 kJ -gamma 0 0 # Id: 6003801 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 TI+ + I- = TII

log k 1.4279 delta_h 0 kJ -gamma 0 0 # Id: 8703800 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: TI+ + 2I- = TII2log_k 1.8588 delta_h 0 kJ -gamma 0 0 # Id: 8703801 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: TI(OH)3 + 4I - + 3H + = TII4 - + 3H2Olog_k 34.7596 delta h 0 kJ -gamma 0 0 # Id: 8713800 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + I - = ZnI +log k -2.0427 delta h -4 kJ -gamma 0 0 # Id: 9503800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 3.00 25.0 Zn+2 + 2I - = ZnI2log_k -1.69 delta_h 0 kJ -gamma 0 0 # Id: 9503801 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cd+2 + I - = CdI +log k 2.28 delta h -9.6 kJ -gamma 0 0 # Id: 1603800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + 2I - = CdI2log_k 3.92 delta_h -12 kJ -gamma 0 0 # Id: 1603801 # log K source: NIST46.3 # Delta H source: NIST46.3

```
#T and ionic strength: 0.00 25.0
Hg(OH)2 + 2H + I - = HgI + 2H2O
log k 19.603
delta_h -111.22 kJ
-gamma 0 0
# Id: 3613801
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.50 25.0
Hg(OH)2 + 2H + 2I - = HgI2 + 2H2O
log_k 30.8225
delta_h -182.72 kJ
-gamma 0 0
# Id: 3613802
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.50 25.0
Hq(OH)2 + 2H + 3I - = HgI3 - + 2H2O
log k 34.6025
delta h -194.22 kJ
-gamma 0 0
# Id: 3613803
# log K source: NIST46.4
# Delta H source: NIST2.1.1
#T and ionic strength: 0.50 25.0
Hq(OH)2 + 2H + 4I - = HqI4 - 2 + 2H2O
log_k 36.533
delta_h -220.72 kJ
-gamma 0 0
# Id: 3613804
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.50 25.0
Ag + + I - = AgI
log k 6.6
delta_h 0 kJ
-gamma 0 0
# Id: 203800
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 18.0
Ag + + 2I - = AgI2 -
log k 11.7
delta_h 0 kJ
-gamma 0 0
# Id: 203801
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.00 18.0
Ag + + 3I - = AgI3 - 2
log_k 12.6
delta_h -122 kJ
-gamma 0 0
# Id: 203802
```

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag + + 4I - = AgI4 - 3log k 14.229 delta h 0 kJ -gamma 0 0 # Id: 203803 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 Cr(OH)2+ + I - + 2H + = CrI + 2 + 2H2Olog_k 4.8289 delta_h 0 kJ -gamma 0 0 # Id: 2113800 # log K source: MTQ3.11 # Delta H source: MTO3.11 **#**T and ionic strength: H+ + HS- = H2Slog_k 7.02 delta h -22 kJ -gamma 0 0 # Id: 3307300 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 2HS - = Pb(HS)2log_k 15.27 delta_h 0 kJ -gamma 0 0 # Id: 6007300 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Pb+2 + 3HS- = Pb(HS)3log k 16.57 delta_h 0 kJ -gamma 0 0 # Id: 6007301 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: TI + HS - = TIHSlog_k 2.474 delta_h 0 kJ -gamma 0 0 # Id: 8707300 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 2TI + HS - = TI2HS +log k 5.974 delta h 0 kJ

-gamma 0 0 # Id: 8707301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 2TI+ + 3HS- + H2O = TI2OH(HS)3-2 + H+log k 1.0044 delta_h 0 kJ -gamma 0 0 # Id: 8707302 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 2TI+ + 2HS- + 2H2O = TI2(OH)2(HS)2-2 + 2H+log_k -11.0681 delta_h 0 kJ -gamma 0 0 # Id: 8707303 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + 2HS - = Zn(HS)2log_k 12.82 delta h 0 kJ -gamma 0 0 # Id: 9507300 # log K source: DHa1993 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + 3HS - = Zn(HS)3 log_k 16.1 delta_h 0 kJ -gamma 0 0 # Id: 9507301 # log K source: MTO3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + 3HS - = ZnS(HS)2-2 + H+log k 6.12 delta_h 0 kJ -gamma 0 0 # Id: 9507302 # log K source: DHa1993 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + 2HS - + 2HS - = Zn(HS)4-2log k 14.64 delta_h 0 kJ -gamma 0 0 # Id: 9507303 # log K source: DHa1993 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + 2HS- = ZnS(HS)- + H+

log k 6.81 delta_h 0 kJ -gamma 0 0 # Id: 9507304 # log K source: DHa1993 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cd+2 + HS- = CdHS+log k 8.008 delta_h 0 kJ -gamma 0 0 # Id: 1607300 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cd+2 + 2HS- = Cd(HS)2log_k 15.212 delta h 0 kJ -gamma 0 0 # Id: 1607301 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cd+2 + 3HS - = Cd(HS)3 log k 17.112 delta h 0 kJ -gamma 0 0 # Id: 1607302 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cd+2 + 4HS- = Cd(HS)4-2log_k 19.308 delta_h 0 kJ -gamma 0 0 # Id: 1607303 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Hg(OH)2 + 2HS - = HgS2 - 2 + 2H2Olog k 29.414 delta h 0 kJ -gamma 0 0 # Id: 3617300 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Hg(OH)2 + 2H + 2HS - = Hg(HS)2 + 2H2Olog_k 44.516 delta_h 0 kJ -gamma 0 0 # Id: 3617301 # log K source: NIST46.3 # Delta H source: MTQ3.11

```
#T and ionic strength: 1.00 20.0
Hg(OH)2 + H+ + 2HS- = HgHS2- + 2H2O
log k 38.122
delta_h 0 kJ
-gamma 0 0
# Id: 3617302
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 1.00 20.0
Cu+2 + 3HS - = Cu(HS)3 -
log_k 25.899
delta_h 0 kJ
-gamma 0 0
# Id: 2317300
# log K source: MTQ3.11
# Delta H source: MTQ3.11
#T and ionic strength:
Aq + HS - = AqHS
log k 13.8145
delta h 0 kJ
-gamma 0 0
# Id: 207300
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.10 20.0
Ag+ + 2HS- = Ag(HS)2-
log_k 17.9145
delta_h 0 kJ
-gamma 0 0
# Id: 207301
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 0.10 20.0
Fe+2 + 2HS - = Fe(HS)2
log k 8.95
delta_h 0 kJ
-gamma 0 0
# Id: 2807300
# log K source: MTQ3.11
# Delta H source: MTQ3.11
#T and ionic strength:
Fe+2 + 3HS- = Fe(HS)3-
log k 10.987
delta_h 0 kJ
-gamma 0 0
# Id: 2807301
# log K source: MTQ3.11
# Delta H source: MTQ3.11
#T and ionic strength:
HS- = S2-2 + H+
log_k -11.7828
delta_h 46.4 kJ
-gamma 0 0
-no check
```

# Id: 7317300 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: HS- = S3-2 + H+log k -10.7667 delta h 42.2 kJ -gamma 0 0 -no check # Id: 7317301 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: HS- = S4-2 + H+log_k -9.9608 delta_h 39.3 kJ -gamma 0 0 -no check # Id: 7317302 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: HS- = S5-2 + H+log k -9.3651 delta_h 37.6 kJ -gamma 0 0 -no_check # Id: 7317303 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: HS- = S6-2 + H+log_k -9.881 delta_h 0 kJ -gamma 0 0 -no check # Id: 7317304 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 2Sb(OH)3 + 4HS + 2H + = Sb2S4 - 2 + 6H2Olog k 49.3886 delta_h -321.78 kJ -gamma 0 0 # Id: 7407300 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Cu+ + 2HS- = Cu(S4)2-3 + 2H+log_k 3.39 delta_h 0 kJ -gamma 23 0 -no check # Id: 2307300

# log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cu+ + 2HS- = CuS4S5-3 + 2H+log k 2.66 delta h 0 kJ -gamma 25 0 -no check # Id: 2307301 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Ag + 2HS - Ag(S4)2 - 3 + 2H +log_k 0.991 delta_h 0 kJ -gamma 22 0 -no_check # Id: 207302 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Ag + 2HS - AgS4S5 - 3 + 2H +log_k 0.68 delta h 0 kJ -gamma 24 0 -no check # Id: 207303 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Ag + + 2HS - = Ag(HS)S4 - 2 + H +log_k 10.431 delta_h 0 kJ -gamma 15 0 -no check # Id: 207304 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: H+ + SO4-2 = HSO4log k 1.99 delta_h 22 kJ -gamma 4.5 0 # Id: 3307320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 NH4+ + SO4-2 = NH4SO4log_k 1.03 delta_h 0 kJ -gamma 50 # Id: 4907320 # log K source: NIST46.3 # Delta H source: MTQ3.11

#T and ionic strength: 0.00 25.0 Pb+2 + SO4-2 = PbSO4log k 2.69 delta_h 0 kJ -gamma 0 0 # Id: 6007320 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Pb+2 + 2SO4-2 = Pb(SO4)2-2log_k 3.47 delta_h 0 kJ -gamma 0 0 # Id: 6007321 # log K source: SCD3.02 (1960 RKa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 AI+3 + SO4-2 = AISO4+log k 3.89 delta h 28 kJ -gamma 4.5 0 # Id: 307320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 AI+3 + 2SO4-2 = AI(SO4)2log_k 4.92 delta_h 11.9 kJ -gamma 4.5 0 # Id: 307321 # log K source: Nord90 # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 TI+ + SO4-2 = TISO4log k 1.37 delta_h -0.8 kJ -gamma 0 0 # Id: 8707320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + SO4-2 = ZnSO4log_k 2.34 delta_h 6.2 kJ -gamma 0 0 # Id: 9507320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Zn+2 + 2SO4-2 = Zn(SO4)2-2log_k 3.28 delta_h 0 kJ -gamma 0 0 # Id: 9507321

# log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cd+2 + SO4-2 = CdSO4log k 2.37 delta h 8.7 kJ -gamma 0 0 # Id: 1607320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + 2SO4-2 = Cd(SO4)2-2log_k 3.5 delta_h 0 kJ -gamma 0 0 # Id: 1607321 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Hg(OH)2 + 2H + SO4 - 2 = HgSO4 + 2H2Olog_k 8.612 delta h 0 kJ -gamma 0 0 # Id: 3617320 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cu+2 + SO4-2 = CuSO4log_k 2.36 delta_h 8.7 kJ -gamma 0 0 # Id: 2317320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ag+ + SO4-2 = AgSO4log k 1.3 delta_h 6.2 kJ -gamma 0 0 # Id: 207320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + SO4-2 = NiSO4log_k 2.3 delta_h 5.8 kJ -gamma 0 0 # Id: 5407320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + 2SO4-2 = Ni(SO4)2-2log_k 0.82 delta h 0 kJ

-gamma 0 0 # Id: 5407321 # log K source: SCD3.02 (1978 BLa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + SO4-2 = CoSO4log k 2.3 delta_h 6.2 kJ -gamma 0 0 # Id: 2007320 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+2 + SO4-2 = FeSO4log_k 2.39 delta_h 8 kJ -gamma 0 0 # Id: 2807320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + SO4-2 = FeSO4+log_k 4.05 delta h 25 kJ -gamma 50 # Id: 2817320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Fe+3 + 2SO4-2 = Fe(SO4)2log_k 5.38 delta_h 19.2 kJ -gamma 0 0 # Id: 2817321 # log K source: Nord90 # Delta H source: Nord90 #T and ionic strength: 0.00 25.0 Mn+2 + SO4-2 = MnSO4log k 2.25 delta_h 8.7 kJ -gamma 0 0 # Id: 4707320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2H+ + SO4-2 = CrSO4+ + 2H2Olog_k 12.9371 delta_h -98.62 kJ -gamma 0 0 # Id: 2117320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 50.0 Cr(OH)2+ + H+ + SO4-2 = CrOHSO4 + H2O

log k 8.2871 delta_h 0 kJ -gamma 0 0 # Id: 2117321 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 2Cr(OH)2+ + SO4-2 + 2H+ = Cr2(OH)2SO4+2 + 2H2Olog k 16.155 delta_h 0 kJ -gamma 0 0 # Id: 2117323 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 2Cr(OH)2+ + 2SO4-2 + 2H+ = Cr2(OH)2(SO4)2 + 2H2Olog_k 17.9288 delta h 0 kJ -gamma 0 0 # Id: 2117324 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + SO4-2 = USO4+2log k 6.6 delta h 8 kJ -gamma 0 0 # Id: 8917320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 U+4 + 2SO4-2 = U(SO4)2log_k 10.5 delta_h 33 kJ -gamma 0 0 # Id: 8917321 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + SO4-2 = UO2SO4log k 3.18 delta_h 20 kJ -gamma 0 0 # Id: 8937320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + 2SO4-2 = UO2(SO4)2-2log_k 4.3 delta_h 38 kJ -gamma 0 0 # Id: 8937321 # log K source: NIST46.3 # Delta H source: NIST46.3

#T and ionic strength: 0.00 25.0 V+3 + SO4-2 = VSO4+log k 2.674 delta_h 0 kJ -gamma 0 0 # Id: 9017320 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 VO+2 + SO4-2 = VOSO4log_k 2.44 delta_h 17 kJ -gamma 0 0 # Id: 9027320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 VO2+ + SO4-2 = VO2SO4log_k 1.378 delta h 0 kJ -gamma 0 0 # Id: 9037320 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Be+2 + SO4-2 = BeSO4log_k 2.19 delta_h 29 kJ -gamma 0 0 # Id: 1107321 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Be+2 + 2SO4-2 = Be(SO4)2-2log k 2.596 delta h 0 kJ -gamma 0 0 # Id: 1107322 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Mg+2 + SO4-2 = MgSO4log k 2.26 delta_h 5.8 kJ -gamma 0 0 # Id: 4607320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + SO4-2 = CaSO4log_k 2.36 delta_h 7.1 kJ -gamma 0 0 # Id: 1507320
# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + SO4-2 = SrSO4log k 2.3 delta h 8 kJ -gamma 0 0 # Id: 8007321 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Li + SO4-2 = LiSO4log_k 0.64 delta_h 0 kJ -gamma 50 # Id: 4407320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Na + + SO4 - 2 = NaSO4 log_k 0.73 delta h 1 kJ -gamma 5.4 0 # Id: 5007320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 K+ + SO4-2 = KSO4log_k 0.85 delta_h 4.1 kJ -gamma 5.4 0 # Id: 4107320 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 HSe- + H+ = H2Selog k 3.89 delta_h 3.3 kJ -gamma 0 0 # Id: 3307600 # log K source: NIST46.3 # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 2Ag+ + HSe- = Ag2Se + H+log_k 34.911 delta_h 0 kJ -gamma 0 0 # Id: 207600 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Ag + H2O + 2HSe - = AgOH(Se)2 - 4 + 3H +log k -20.509 delta_h 0 kJ

-gamma 0 0 # Id: 207601 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Mn+2 + HSe - = MnSe + H +log k -5.385 delta_h 0 kJ -gamma 0 0 # Id: 4707600 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 HSeO3- = SeO3-2 + H+log_k -8.4 delta_h 5.02 kJ -gamma 0 0 # Id: 3307611 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 HSeO3- + H+ = H2SeO3log_k 2.63 delta h 6.2 kJ -gamma 0 0 # Id: 3307610 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + 2HSeO3 - = Cd(SeO3)2 - 2 + 2H +log_k -10.884 delta_h 0 kJ -gamma 0 0 # Id: 1607610 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Ag+ + HSeO3- = AgSeO3- + H+log_k -5.592 delta_h 0 kJ -gamma 0 0 # Id: 207610 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Ag + + 2HSeO3 - = Ag(SeO3)2 - 3 + 2H +log_k -13.04 delta_h 0 kJ -gamma 0 0 # Id: 207611 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Fe+3 + HSeO3 - = FeHSeO3 + 2

log k 3.422 delta_h 25 kJ -gamma 0 0 # Id: 2817610 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 1.00 25.0 SeO4-2 + H + = HSeO4log_k 1.7 delta_h 23 kJ -gamma 0 0 # Id: 3307620 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Zn+2 + SeO4-2 = ZnSeO4log_k 2.19 delta h 0 kJ -gamma 0 0 # Id: 9507620 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + 2SeO4-2 = Zn(SeO4)2-2log k 2.196 delta h 0 kJ -gamma 0 0 # Id: 9507621 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Cd+2 + SeO4-2 = CdSeO4log_k 2.27 delta_h 0 kJ -gamma 0 0 # Id: 1607620 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + SeO4-2 = NiSeO4log k 2.67 delta h 14 kJ -gamma 0 0 # Id: 5407620 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + SeO4-2 = CoSeO4log_k 2.7 delta_h 12 kJ -gamma 0 0 # Id: 2007621 # log K source: NIST46.4 # Delta H source: NIST46.4

```
#T and ionic strength: 0.00 25.0
Mn+2 + SeO4-2 = MnSeO4
log k 2.43
delta_h 14 kJ
-gamma 0 0
# Id: 4707620
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
NH4+ = NH3 + H+
log_k -9.244
delta_h 52 kJ
-gamma 0 0
# Id: 3304900
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 0.00 25.0
Ag+ + NH4+ = AgNH3+ + H+
log k -5.934
delta h -72 kJ
-gamma 0 0
# Id: 204901
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
Ag + 2NH4 + Ag(NH3)2 + 2H +
log_k -11.268
delta_h -160 kJ
-gamma 0 0
# Id: 204902
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
Hg(OH)2 + H + NH4 + = HgNH3 + 2 + 2H2O
log k 5.75
delta_h 0 kJ
-gamma 0 0
# Id: 3614900
# log K source: NIST46.3
# Delta H source: MTQ3.11
#T and ionic strength: 2.00 22.0
Hg(OH)2 + 2NH4 + = Hg(NH3)2 + 2 + 2H2O
log k 5.506
delta_h -246.72 kJ
-gamma 0 0
# Id: 3614901
# log K source: NIST46.3
# Delta H source: NIST46.3
#T and ionic strength: 1.00 25.0
Hg(OH)2 + 3NH4 + = Hg(NH3)3 + 2 + 2H2O + H +
log_k -3.138
delta_h -312.72 kJ
-gamma 0 0
# Id: 3614902
```

# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 2.00 25.0 Hg(OH)2 + 4NH4 + = Hg(NH3)4 + 2 + 2H2O + 2H +log_k -11.482 delta h -379.72 kJ -gamma 0 0 # Id: 3614903 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.10 25.0 Cu+2 + NH4+ = CuNH3+2 + H+log_k -5.234 delta_h -72 kJ -gamma 0 0 # Id: 2314901 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + NH4+ = NiNH3+2 + H+log_k -6.514 delta h -67 kJ -gamma 0 0 # Id: 5404901 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Ni+2 + 2NH4 + = Ni(NH3)2 + 2 + 2H +log_k -13.598 delta_h -111.6 kJ -gamma 0 0 # Id: 5404902 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + NH4+ = Co(NH3)+2 + H+log k -7.164 delta_h -65 kJ -gamma 0 0 # Id: 2004900 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + 2NH4 + = Co(NH3)2 + 2 + 2H +log_k -14.778 delta_h 0 kJ -gamma 0 0 # Id: 2004901 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 Co+2 + 3NH4 + = Co(NH3)3 + 2 + 3H +log k -22.922 delta_h 0 kJ

-gamma 0 0 # Id: 2004902 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 2.00 25.0 Co+2 + 4NH4+ = Co(NH3)4+2 + 4H+log k -31.446 delta_h 0 kJ -gamma 0 0 # Id: 2004903 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 2.00 30.0 Co+2 + 5NH4 + = Co(NH3)5+2 + 5H+log_k -40.47 delta_h 0 kJ -gamma 0 0 # Id: 2004904 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 2.00 30.0 Co+3 + 6NH4+ + H2O = Co(NH3)6OH+2 + 7H+log_k -43.7148 delta h 0 kJ -gamma 0 0 # Id: 2014901 # log K source: NIST2.1.1 # Delta H source: MTQ3.11 **#**T and ionic strength: Co+3 + 5NH4+ + CI- = Co(NH3)5CI+2 + 5H+log_k -17.9584 delta_h 113.38 kJ -gamma 0 0 # Id: 2014902 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 #T and ionic strength: Co+3 + 6NH4+ + CI- = Co(NH3)6CI+2 + 6H+log_k -33.9179 delta_h 104.34 kJ -gamma 0 0 # Id: 2014903 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Co+3 + 6NH4+ + Br- = Co(NH3)6Br+2 + 6H+log_k -33.8884 delta_h 110.57 kJ -gamma 0 0 # Id: 2014904 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Co+3 + 6NH4+ + I - = Co(NH3)6I+2 + 6H+

log k -33.4808 delta_h 115.44 kJ -gamma 0 0 # Id: 2014905 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Co+3 + 6NH4+ + SO4-2 = Co(NH3)6SO4+ + 6H+log_k -28.9926 delta_h 124.5 kJ -gamma 0 0 # Id: 2014906 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Cr(OH)2+ + 6NH4+ = Cr(NH3)6+3 + 2H2O + 4H+log_k -32.8952 delta h 0 kJ -gamma 0 0 # Id: 2114900 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 4.50 25.0 Cr(OH)2+ + 5NH4+ = Cr(NH3)5OH+2 + 4H+ + H2Olog k -30.2759 delta h 0 kJ -gamma 0 0 # Id: 2114901 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cr(OH)2+ + 6NH4+ + CI- = Cr(NH3)6CI+2 + 2H2O + 4H+log_k -31.7932 delta_h 0 kJ -gamma 0 0 # Id: 2114904 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cr(OH)2+ + 6NH4+ + Br- = Cr(NH3)6Br+2 + 4H+ + 2H2Olog k -31.887 delta_h 0 kJ -gamma 0 0 # Id: 2114905 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cr(OH)2+ + 6NH4+ + I - = Cr(NH3)6I+2 + 4H+ + 2H2Olog_k -32.008 delta_h 0 kJ -gamma 0 0 # Id: 2114906 # log K source: MTQ3.11 # Delta H source: MTQ3.11

```
#T and ionic strength:
#Cr(OH)2+ + 4NH4+ = cis+ + 4H+
# log k -29.8574
# delta_h 0 kJ
# -gamma 0 0
# # Id: 4902113
# # log K source: MTQ3.11
# # Delta H source: MTQ3.11
# #T and ionic strength:
#Cr(OH)2+ + 4NH4+ = trans+ + 4H+
# log_k -30.5537
# delta_h 0 kJ
# -gamma 0 0
# # Id: 4902114
# # log K source: MTQ3.11
# # Delta H source: MTQ3.11
# #T and ionic strength:
Ca+2 + NH4+ = CaNH3+2 + H+
log k -9.144
delta h 0 kJ
-gamma 0 0
# Id: 1504901
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.50 25.0
Ca+2 + 2NH4 + = Ca(NH3)2 + 2 + 2H +
log_k -18.788
delta_h 0 kJ
-gamma 0 0
# Id: 1504902
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.50 25.0
Sr+2 + NH4+ = SrNH3+2 + H+
log k -9.344
delta_h 0 kJ
-gamma 0 0
# Id: 8004901
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.50 25.0
Ba+2 + NH4+ = BaNH3+2 + H+
log k -9.444
delta_h 0 kJ
-gamma 0 0
# Id: 1004901
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.50 25.0
TI + NO2 - TINO2
log_k 0.83
delta_h 0 kJ
-gamma 0 0
# Id: 8704910
```

# log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag + + NO2 - = AgNO2log k 2.32 delta h -29 kJ -gamma 0 0 # Id: 204911 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag + + 2NO2 - = Ag(NO2)2 log_k 2.51 delta_h -46 kJ -gamma 0 0 # Id: 204910 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cu+2 + NO2 - = CuNO2 +log_k 2.02 delta h 0 kJ -gamma 0 0 # Id: 2314911 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + 2NO2 - = Cu(NO2)2log_k 3.03 delta_h 0 kJ -gamma 0 0 # Id: 2314912 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + NO2 - = CoNO2 +log k 0.848 delta_h 0 kJ -gamma 0 0 # Id: 2004911 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Sn(OH)2 + 2H + NO3 - SnNO3 + 2H2Olog_k 7.942 delta_h 0 kJ -gamma 0 0 # Id: 7904921 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 25.0 Pb+2 + NO3 - = PbNO3 +log k 1.17 delta_h 2 kJ

-gamma 0 0 # Id: 6004920 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Pb+2 + 2NO3 - Pb(NO3)2log k 1.4 delta_h -6.6 kJ -gamma 0 0 # Id: 6004921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 TI + NO3 - TINO3log_k 0.33 delta_h -2 kJ -gamma 0 0 # Id: 8704920 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 TI(OH)3 + NO3 + 3H + = TINO3 + 2 + 3H2Olog_k 7.0073 delta h 0 kJ -gamma 0 0 # Id: 8714920 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Cd+2 + NO3- = CdNO3+log_k 0.5 delta_h -21 kJ -gamma 0 0 # Id: 1604920 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Cd+2 + 2NO3 - Cd(NO3)2log_k 0.2 delta_h 0 kJ -gamma 0 0 # Id: 1604921 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H + NO3 - HgNO3 + 2H2Olog_k 5.7613 delta_h 0 kJ -gamma 0 0 # Id: 3614920 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Hg(OH)2 + 2H + 2NO3 - Hg(NO3)2 + 2H2O log k 5.38 delta_h 0 kJ -gamma 0 0 # Id: 3614921 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Cu+2 + NO3- = CuNO3+log k 0.5 delta_h -4.1 kJ -gamma 0 0 # Id: 2314921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cu+2 + 2NO3 - = Cu(NO3)2log_k -0.4 delta h 0 kJ -gamma 0 0 # Id: 2314922 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + NO3 - = ZnNO3 +log k 0.4 delta h -4.6 kJ -gamma 0 0 # Id: 9504921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Zn+2 + 2NO3 - Zn(NO3)2log_k -0.3 delta_h 0 kJ -gamma 0 0 # Id: 9504922 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ag + + NO3 - = AgNO3log k -0.1 delta h 22.6 kJ -gamma 0 0 # Id: 204920 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ni+2 + NO3 - = NiNO3 +log_k 0.4 delta_h 0 kJ -gamma 0 0 # Id: 5404921 # log K source: NIST46.4 # Delta H source: MTQ3.11

#T and ionic strength: 0.00 25.0 Co+2 + NO3- = CoNO3+log k 0.2 delta_h 0 kJ -gamma 0 0 # Id: 2004921 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Co+2 + 2NO3 - Co(NO3)2log_k 0.5085 delta_h 0 kJ -gamma 0 0 # Id: 2004922 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Fe+3 + NO3- = FeNO3+2log k 1 delta h -37 kJ -gamma 0 0 # Id: 2814921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mn+2 + NO3 - = MnNO3 +log_k 0.2 delta_h 0 kJ -gamma 0 0 # Id: 4704921 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + 2NO3 - = Mn(NO3)2log k 0.6 delta_h -1.6569 kJ -gamma 0 0 # Id: 4704920 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + NO3- + 2H+ = CrNO3+2 + 2H2Olog k 8.2094 delta_h -65.4378 kJ -gamma 0 0 # Id: 2114920 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + NO3- = UO2NO3+log_k 0.3 delta_h -12 kJ -gamma 0 0 # Id: 8934921

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 VO2+ + NO3- = VO2NO3log k -0.296 delta h 0 kJ -gamma 0 0 # Id: 9034920 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 1.00 20.0 Ca+2 + NO3 - = CaNO3 +log_k 0.5 delta_h -5.4 kJ -gamma 0 0 # Id: 1504921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + NO3 - = SrNO3 +log_k 0.6 delta h -10 kJ -gamma 0 0 # Id: 8004921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + NO3 - = BaNO3 +log_k 0.7 delta_h -13 kJ -gamma 0 0 # Id: 1004921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H+ + Cyanide- = HCyanidelog k 9.21 delta_h -43.63 kJ -gamma 0 0 # Id: 3301431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + Cyanide - = CdCyanide +log_k 6.01 delta_h -30 kJ -gamma 0 0 # Id: 1601431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + 2Cyanide - = Cd(Cyanide)2log k 11.12 delta_h -54.3 kJ

-gamma 0 0 # Id: 1601432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + 3Cyanide - = Cd(Cyanide)3 loa k 15.65 delta h -90.3 kJ -gamma 0 0 # Id: 1601433 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + 4Cyanide - = Cd(Cyanide)4-2log_k 17.92 delta_h -112 kJ -gamma 0 0 # Id: 1601434 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H + Cyanide - = HgCyanide + 2H2Olog_k 23.194 delta h -136.72 kJ -gamma 0 0 # Id: 3611431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H+ + 2Cyanide = Hg(Cyanide)2 + 2H2Olog_k 38.944 delta_h 154.28 kJ -gamma 0 0 # Id: 3611432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H + 3Cyanide - = Hg(Cyanide)3 - + 2H2Olog k 42.504 delta_h -262.72 kJ -gamma 0 0 # Id: 3611433 # loa K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H+ + 4Cyanide = Hg(Cyanide)4-2 + 2H2Olog k 45.164 delta_h -288.72 kJ -gamma 0 0 # Id: 3611434 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cu + 2Cyanide - Cu(Cyanide)2 -

log k 21.9145 delta_h -121 kJ -gamma 0 0 # Id: 2301432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Cu + 3Cyanide - Cu(Cyanide)3-2log k 27.2145 delta_h -167.4 kJ -gamma 0 0 # Id: 2301433 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cu + 4Cyanide - Cu(Cyanide)4-3log_k 28.7145 delta h -214.2 kJ -gamma 0 0 # Id: 2301431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag + + 2Cyanide - = Ag(Cyanide)2 log k 20.48 delta h -137 kJ -gamma 0 0 # Id: 201432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag + + 3Cyanide - = Ag(Cyanide)3-2log_k 21.7 delta_h -140 kJ -gamma 0 0 # Id: 201433 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag + H2O + Cyanide - = Ag(Cyanide)OH + H +log k -0.777 delta h 0 kJ -gamma 0 0 # Id: 201431 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + 4Cyanide = Ni(Cyanide)4-2log k 30.2 delta_h -180 kJ -gamma 0 0 # Id: 5401431 # log K source: NIST46.4 # Delta H source: NIST46.4

```
#T and ionic strength: 0.00 25.0
Ni+2 + 4Cyanide + H + = NiH(Cyanide)4-
log k 36.0289
delta_h 0 kJ
-gamma 0 0
# Id: 5401432
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.10 25.0
Ni+2 + 4Cyanide + 2H + = NiH2Cyanide4
log_k 40.7434
delta_h 0 kJ
-gamma 0 0
# Id: 5401433
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.10 25.0
Ni+2 + 4Cyanide + 3H + = NiH3(Cyanide)4 +
log k 43.3434
delta h 0 kJ
-gamma 0 0
# Id: 5401434
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 0.10 25.0
Co+2 + 3Cyanide - = Co(Cyanide)3 -
log_k 14.312
delta_h 0 kJ
-gamma 0 0
# Id: 2001431
# log K source: NIST46.4
# Delta H source: MTQ3.11
#T and ionic strength: 1.00 25.0
Co+2 + 5Cyanide - = Co(Cyanide)5-3
log k 23
delta_h -257 kJ
-gamma 0 0
# Id: 2001432
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 1.00 25.0
Fe+2 + 6Cyanide - = Fe(Cyanide)6-4
log k 35.4
delta_h -358 kJ
-gamma 0 0
# Id: 2801431
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
H+ + Fe+2 + 6Cyanide - = HFe(Cyanide)6-3
log_k 39.71
delta_h -356 kJ
-gamma 0 0
# Id: 2801432
```

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 2H+ + Fe+2 + 6Cyanide- = H2Fe(Cyanide)6-2 log k 42.11 delta h -352 kJ -gamma 0 0 # Id: 2801433 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Fe+3 + 6Cyanide - = Fe(Cyanide)6-3log k 43.6 delta_h -293 kJ -gamma 0 0 # Id: 2811431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 2Fe+3 + 6Cyanide - = Fe2(Cyanide)6log_k 47.6355 delta h -218 kJ -gamma 0 0 # Id: 2811432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Sn(OH)2 + Fe+3 + 6Cyanide + 2H + = SnFe(Cyanide)6 + 2H2Olog_k 53.54 delta_h 0 kJ -gamma 0 0 # Id: 7901431 # log K source: Ba1987 # Delta H source: #T and ionic strength: 0.00 25.0 NH4+ + Fe+2 + 6Cyanide- = NH4Fe(Cyanide)6-3log k 37.7 delta_h -354 kJ -gamma 0 0 # Id: 4901431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 TI + Fe + 2 + 6Cyanide - = TIFe(Cyanide)6-3log k 38.4 delta_h -365.5 kJ -gamma 0 0 # Id: 8701432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mg+2 + Fe+3 + 6Cyanide - = MgFe(Cyanide)6log k 46.39 delta h -290 kJ

-gamma 0 0 # Id: 4601431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Mg+2 + Fe+2 + 6Cyanide - = MgFe(Cyanide)6-2loa k 39.21 delta h -346 kJ -gamma 0 0 # Id: 4601432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ca+2 + Fe+3 + 6Cyanide - = CaFe(Cyanide)6log_k 46.43 delta_h -291 kJ -gamma 0 0 # Id: 1501431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ca+2 + Fe+2 + 6Cyanide - = CaFe(Cyanide)6-2log_k 39.1 delta h -347 kJ -gamma 0 0 # Id: 1501432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 2Ca+2 + Fe+2 + 6Cyanide - = Ca2Fe(Cyanide)6log_k 40.6 delta_h -350.201 kJ -gamma 0 0 # Id: 1501433 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Sr+2 + Fe+3 + 6Cyanide - = SrFe(Cyanide)6log k 46.45 delta_h -292 kJ -gamma 0 0 # Id: 8001431 # loa K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + Fe+2 + 6Cyanide - = SrFe(Cyanide)6-2log k 39.1 delta_h -350 kJ -gamma 0 0 # Id: 8001432 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + Fe+2 + 6Cyanide = BaFe(Cyanide)6-2

log k 39.19 delta_h -342 kJ -gamma 0 0 # Id: 1001430 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + Fe+3 + 6Cyanide - = BaFe(Cyanide)6log k 46.48 delta_h -292 kJ -gamma 0 0 # Id: 1001431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + Fe+2 + 6Cyanide- = NaFe(Cyanide)6-3 log_k 37.6 delta h -354 kJ -gamma 0 0 # Id: 5001431 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 K+ + Fe+2 + 6Cyanide- = KFe(Cyanide)6-3 log k 37.75 delta h -353.9 kJ -gamma 0 0 # Id: 4101433 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 K + Fe + 3 + 6Cyanide - = KFe(Cyanide)6-2log_k 45.04 delta_h -291 kJ -gamma 0 0 # Id: 4101430 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H+ + PO4-3 = HPO4-2log k 12.375 delta h -15 kJ -gamma 5 0 # Id: 3305800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 2H+ + PO4-3 = H2PO4log_k 19.573 delta_h -18 kJ -gamma 5.4 0 # Id: 3305801 # log K source: NIST46.3 # Delta H source: NIST46.3

#T and ionic strength: 0.00 25.0 3H + PO4 - 3 = H3PO4log k 21.721 delta_h -10.1 kJ -gamma 0 0 # Id: 3305802 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Co+2 + H+ + PO4-3 = CoHPO4log_k 15.4128 delta_h 0 kJ -gamma 0 0 # Id: 2005800 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Fe+2 + 2H+ + PO4-3 = FeH2PO4+log k 22.273 delta h 0 kJ -gamma 5.4 0 # Id: 2805800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Fe+2 + H+ + PO4-3 = FeHPO4log_k 15.975 delta_h 0 kJ -gamma 0 0 # Id: 2805801 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Fe+3 + 2H+ + PO4-3 = FeH2PO4+2 log k 23.8515 delta h 0 kJ -gamma 5.4 0 # Id: 2815801 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Fe+3 + H+ + PO4-3 = FeHPO4+log_k 22.292 delta_h -30.5432 kJ -gamma 5.4 0 # Id: 2815800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 4H+ + PO4-3 = CrH2PO4+2 + 2H2Olog_k 31.9068 delta_h 0 kJ -gamma 0 0 # Id: 2115800

# log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + PO4-3 + H+ = UHPO4+2log k 24.443 delta h 31.38 kJ -gamma 0 0 # Id: 8915800 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 2PO4-3 + 2H + = U(HPO4)2log k 46.833 delta_h 7.1128 kJ -gamma 0 0 # Id: 8915801 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 3PO4-3 + 3H + = U(HPO4)3-2log_k 67.564 delta h -32.6352 kJ -gamma 0 0 # Id: 8915802 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: U+4 + 4PO4-3 + 4H+ = U(HPO4)4-4log_k 88.483 delta_h -110.876 kJ -gamma 0 0 # Id: 8915803 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + H+ + PO4-3 = UO2HPO4log k 19.655 delta_h -8.7864 kJ -gamma 0 0 # Id: 8935800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 UO2+2 + 2PO4-3 + 2H+ = UO2(HPO4)2-2log k 42.988 delta_h -47.6934 kJ -gamma 0 0 # Id: 8935801 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + 2H+ + PO4-3 = UO2H2PO4+log k 22.833 delta h -15.4808 kJ

-gamma 0 0 # Id: 8935802 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 UO2+2 + 2PO4-3 + 4H + = UO2(H2PO4)2loa k 44.7 delta h -69.036 kJ -gamma 0 0 # Id: 8935803 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + 3PO4-3 + 6H + = UO2(H2PO4)3log_k 66.245 delta_h -119.662 kJ -gamma 0 0 # Id: 8935804 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: UO2+2 + PO4-3 = UO2PO4log_k 13.25 delta h 0 kJ -gamma 0 0 # Id: 8935805 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mg+2 + PO4-3 = MgPO4log_k 4.654 delta_h 12.9704 kJ -gamma 5.4 0 # Id: 4605800 # log K source: SCD3.02 (1993 GMa) # Delta H source: MTQ3.11 #T and ionic strength: 0.20 25.0 Mg+2 + 2H+ + PO4-3 = MgH2PO4+log k 21.2561 delta_h -4.6861 kJ -gamma 5.4 0 # Id: 4605801 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 37.0 Mg+2 + H+ + PO4-3 = MgHPO4log k 15.175 delta_h -3 kJ -gamma 0 0 # Id: 4605802 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H+ + PO4-3 = CaHPO4

log k 15.035 delta_h -3 kJ -gamma 0 0 # Id: 1505800 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + PO4-3 = CaPO4log k 6.46 delta_h 12.9704 kJ -gamma 5.4 0 # Id: 1505801 # log K source: SCD3.02 (1993 GMa) # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ca+2 + 2H+ + PO4-3 = CaH2PO4+log_k 20.923 delta h -6 kJ -gamma 5.4 0 # Id: 1505802 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + H+ + PO4-3 = SrHPO4log k 14.8728 delta h 0 kJ -gamma 0 0 # Id: 8005800 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Sr+2 + 2H+ + PO4-3 = SrH2PO4+log_k 20.4019 delta_h 0 kJ -gamma 0 0 # Id: 8005801 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 Na+ + H+ + PO4-3 = NaHPO4log k 13.445 delta h 0 kJ -gamma 5.4 0 # Id: 5005800 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 K + H + PO4-3 = KHPO4log_k 13.255 delta_h 0 kJ -gamma 5.4 0 # Id: 4105800 # log K source: NIST46.3 # Delta H source: MTQ3.11

#T and ionic strength: 0.00 25.0 H3AsO3 = AsO3-3 + 3H+log k -34.744 delta_h 84.726 kJ -gamma 0 0 # Id: 3300602 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: H3AsO3 = HAsO3-2 + 2H+log_k -21.33 delta_h 59.4086 kJ -gamma 0 0 # Id: 3300601 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: H3AsO3 = H2AsO3 + H +log k -9.29 delta h 27.41 kJ -gamma 0 0 # Id: 3300600 # log K source: NIST46.4 # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 H3AsO3 + H + = H4AsO3 +log_k -0.305 delta_h 0 kJ -gamma 0 0 # Id: 3300603 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: H3AsO4 = AsO4-3 + 3H+log k -20.7 delta_h 12.9 kJ -gamma 0 0 # Id: 3300613 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3AsO4 = HAsO4-2 + 2H+log k -9.2 delta_h -4.1 kJ -gamma 0 0 # Id: 3300612 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H3AsO4 = H2AsO4 + H +log_k -2.24 delta_h -7.1 kJ -gamma 0 0 # Id: 3300611

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sb(OH)3 + H2O = Sb(OH)4 - + H +log k -12.0429 delta h 69.8519 kJ -gamma 0 0 # Id: 7400020 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: Sb(OH)3 + H + = Sb(OH)2 + + H2Olog_k 1.3853 delta_h 0 kJ -gamma 0 0 # Id: 7403302 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: Sb(OH)3 = HSbO2 + H2Olog_k -0.0105 delta h -0.13 kJ -gamma 0 0 # Id: 7400021 # log K source: NIST2.1.1 # Delta H source: NIST2.1.1 **#**T and ionic strength: Sb(OH)3 = SbO2 + H2O + H+log_k -11.8011 delta_h 70.1866 kJ -gamma 0 0 # Id: 7403301 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: Sb(OH)3 + H + = SbO + + 2H2Olog k 0.9228 delta_h 8.2425 kJ -gamma 0 0 # Id: 7403300 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: Sb(OH)6- = SbO3- + 3H2Olog_k 2.9319 delta_h 0 kJ -gamma 0 0 # Id: 7410021 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: Sb(OH)6- + 2H+ = SbO2+ + 4H2Olog k 2.3895 delta h 0 kJ

-gamma 0 0 # Id: 7413300 # log K source: PNL89 # Delta H source: PNL89 **#**T and ionic strength: H+ + CO3-2 = HCO3log k 10.329 delta_h -14.6 kJ -gamma 5.4 0 # Id: 3301400 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 2H + CO3 - 2 = H2CO3log_k 16.681 delta_h -23.76 kJ -gamma 0 0 # Id: 3301401 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + 2CO3-2 = Pb(CO3)2-2log_k 9.938 delta h 0 kJ -gamma 0 0 # Id: 6001400 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 = PbCO3log_k 6.478 delta_h 0 kJ -gamma 0 0 # Id: 6001401 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Pb+2 + CO3-2 + H+ = PbHCO3+log k 13.2 delta_h 0 kJ -gamma 0 0 # Id: 6001402 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: Zn+2 + CO3-2 = ZnCO3log_k 4.76 delta_h 0 kJ -gamma 0 0 # Id: 9501401 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Zn+2 + H+ + CO3-2 = ZnHCO3+ log k 11.829 delta_h 0 kJ -gamma 0 0 # Id: 9501400 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Hg(OH)2 + 2H + CO3 - 2 = HgCO3 + 2H2Olog k 18.272 delta_h 0 kJ -gamma 0 0 # Id: 3611401 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Hg(OH)2 + 2H + 2CO3 - 2 = Hg(CO3)2 - 2 + 2H2Olog_k 21.772 delta h 0 kJ -gamma 0 0 # Id: 3611402 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Hg(OH)2 + 3H + CO3 - 2 = HgHCO3 + 2H2Olog k 22.542 delta h 0 kJ -gamma 0 0 # Id: 3611403 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Cd+2 + CO3-2 = CdCO3log_k 4.3578 delta_h 0 kJ -gamma 0 0 # Id: 1601401 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 Cd+2 + H+ + CO3-2 = CdHCO3+log k 10.6863 delta h 0 kJ -gamma 0 0 # Id: 1601400 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Cd+2 + 2CO3-2 = Cd(CO3)2-2log_k 7.2278 delta_h 0 kJ -gamma 0 0 # Id: 1601403 # log K source: NIST46.4 # Delta H source: MTQ3.11

#T and ionic strength: 0.10 20.0 Cu+2 + CO3-2 = CuCO3log k 6.77 delta_h 0 kJ -gamma 0 0 # Id: 2311400 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + H+ + CO3-2 = CuHCO3+log_k 12.129 delta_h 0 kJ -gamma 0 0 # Id: 2311402 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Cu+2 + 2CO3-2 = Cu(CO3)2-2log_k 10.2 delta h 0 kJ -gamma 0 0 # Id: 2311401 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Ni+2 + CO3-2 = NiCO3log_k 4.5718 delta_h 0 kJ -gamma 0 0 # Id: 5401401 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Ni+2 + H+ + CO3-2 = NiHCO3+log k 12.4199 delta h 0 kJ -gamma 0 0 # Id: 5401400 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Co+2 + CO3-2 = CoCO3log k 4.228 delta_h 0 kJ -gamma 0 0 # Id: 2001400 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 Co+2 + H+ + CO3-2 = CoHCO3+log_k 12.2199 delta_h 0 kJ -gamma 0 0 # Id: 2001401

# log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.70 25.0 Fe+2 + H+ + CO3-2 = FeHCO3+log k 11.429 delta h 0 kJ -gamma 6 0 # Id: 2801400 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mn+2 + H+ + CO3-2 = MnHCO3+log k 11.629 delta_h -10.6 kJ -gamma 50 # Id: 4701400 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 UO2+2 + CO3-2 = UO2CO3log_k 9.6 delta h 4 kJ -gamma 0 0 # Id: 8931400 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + 2CO3-2 = UO2(CO3)2-2log_k 16.9 delta_h 16 kJ -gamma 0 0 # Id: 8931401 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 UO2+2 + 3CO3-2 = UO2(CO3)3-4log k 21.6 delta_h -40 kJ -gamma 0 0 # Id: 8931402 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Be+2 + CO3-2 = BeCO3log_k 6.2546 delta_h 0 kJ -gamma 0 0 # Id: 1101401 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 3.00 25.0 Mg+2 + CO3-2 = MgCO3log k 2.92 delta h 12 kJ

-gamma 0 0 # Id: 4601400 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Mg+2 + H+ + CO3-2 = MgHCO3+log k 11.339 delta_h -10.6 kJ -gamma 4 0 # Id: 4601401 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Ca+2 + H+ + CO3-2 = CaHCO3+log_k 11.599 delta_h 5.4 kJ -gamma 6 0 # Id: 1501400 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 CO3-2 + Ca+2 = CaCO3log_k 3.2 delta h 16 kJ -gamma 0 0 # Id: 1501401 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 Sr+2 + CO3-2 = SrCO3log_k 2.81 delta_h 20 kJ -gamma 0 0 # Id: 8001401 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + H+ + CO3-2 = SrHCO3+log k 11.539 delta_h 10.4 kJ -gamma 6 0 # Id: 8001400 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + CO3-2 = BaCO3log_k 2.71 delta_h 16 kJ -gamma 0 0 # Id: 1001401 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + H+ + CO3-2 = BaHCO3+

log k 11.309 delta_h 10.4 kJ -gamma 6 0 # Id: 1001400 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + CO3-2 = NaCO3log k 1.27 delta_h -20.35 kJ -gamma 5.4 0 # Id: 5001400 # log K source: NIST46.3 # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 Na+ + H+ + CO3-2 = NaHCO3log_k 10.079 delta h -28.3301 kJ -gamma 0 0 # Id: 5001401 # log K source: NIST46.3 # Delta H source: NIST2.1.1 #T and ionic strength: 0.00 25.0 H4SiO4 = H2SiO4-2 + 2H+log k -23.04 delta h 61 kJ -gamma 5.4 0 # Id: 3307701 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 H4SiO4 = H3SiO4 + H +log_k -9.84 delta_h 20 kJ -gamma 4 0 # Id: 3307700 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 UO2+2 + H4SiO4 = UO2H3SiO4+ + H+log k -1.9111 delta h 0 kJ -gamma 0 0 # Id: 8937700 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 25.0 H3BO3 = H2BO3 + H +log_k -9.236 delta_h 13 kJ -gamma 2.5 0 # Id: 3300900 # log K source: NIST46.4 # Delta H source: NIST46.4

#T and ionic strength: 0.00 25.0 2H3BO3 = H5(BO3)2 + H +log k -9.306 delta_h 8.4 kJ -gamma 2.5 0 # Id: 3300901 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 3H3BO3 = H8(BO3)3 + H +log_k -7.306 delta_h 29.4 kJ -gamma 2.5 0 # Id: 3300902 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ag + H3BO3 = AgH2BO3 + H+log k -8.036 delta h 0 kJ -gamma 2.5 0 # Id: 200901 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Mg+2 + H3BO3 = MgH2BO3 + H +log_k -7.696 delta_h 13 kJ -gamma 2.5 0 # Id: 4600901 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0  $Ca+2 + H3BO3 = CaH2BO3 + H + H + H^{2}$ log k -7.476 delta_h 17 kJ -gamma 2.5 0 # Id: 1500901 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + H3BO3 = SrH2BO3 + H +log k -7.686 delta_h 17 kJ -gamma 2.5 0 # Id: 8000901 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + H3BO3 = BaH2BO3 + H +log_k -7.746 delta_h 17 kJ -gamma 2.5 0 # Id: 1000901

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Na+ + H3BO3 = NaH2BO3 + H+log_k -9.036 delta h 0 kJ -gamma 2.5 0 # Id: 5000901 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 CrO4-2 + H+ = HCrO4log_k 6.51 delta_h 2 kJ -gamma 0 0 # Id: 2123300 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 CrO4-2 + 2H + = H2CrO4log_k 6.4188 delta h 39 kJ -gamma 0 0 # Id: 2123301 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 2CrO4-2 + 2H + = Cr2O7-2 + H2Olog_k 14.56 delta_h -15 kJ -gamma 0 0 # Id: 2123302 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 CrO4-2 + Cl + 2H + = CrO3Cl + H2Olog k 7.3086 delta_h 0 kJ -gamma 0 0 # Id: 2121800 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: CrO4-2 + SO4-2 + 2H + = CrO3SO4-2 + H2Olog_k 8.9937 delta_h 0 kJ -gamma 0 0 # Id: 2127320 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: CrO4-2 + 4H+ + PO4-3 = CrO3H2PO4- + H2Olog k 29.3634 delta_h 0 kJ

-gamma 0 0 # Id: 2125800 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: CrO4-2 + 3H+ + PO4-3 = CrO3HPO4-2 + H2Olog k 26.6806 delta_h 0 kJ -gamma 0 0 # Id: 2125801 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: CrO4-2 + Na + = NaCrO4log_k 0.6963 delta_h 0 kJ -gamma 0 0 # Id: 5002120 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: K+ + CrO4-2 = KCrO4log_k 0.57 delta h 0 kJ -gamma 0 0 # Id: 4102120 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 18.0 MoO4-2 + H+ = HMoO4log_k 4.2988 delta_h 20 kJ -gamma 0 0 # Id: 3304801 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 MoO4-2 + 2H+ = H2MoO4log k 8.1636 delta_h -26 kJ -gamma 0 0 # Id: 3304802 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 20.0 7MoO4-2 + 8H + = Mo7O24-6 + 4H2Olog k 52.99 delta_h -228 kJ -gamma 0 0 # Id: 3304803 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 7MoO4-2 + 9H+ = HMo7O24-5 + 4H2O

log k 59.3768 delta_h -218 kJ -gamma 0 0 # Id: 3304804 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 7MoO4-2 + 10H + = H2Mo7O24-4 + 4H2Olog k 64.159 delta_h -215 kJ -gamma 0 0 # Id: 3304805 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 7MoO4-2 + 11H+ = H3Mo7O24-3 + 4H2O log_k 67.405 delta h -217 kJ -gamma 0 0 # Id: 3304806 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 6MoO4-2 + AI+3 + 6H+ = AIMo6O21-3 + 3H2Olog k 54.9925 delta h 0 kJ -gamma 0 0 # Id: 304801 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.50 25.0 MoO4-2 + 2Ag + = Ag2MoO4log_k -0.4219 delta_h -1.18 kJ -gamma 0 0 # Id: 204801 # log K source: Bard85 # Delta H source: Bard85 **#**T and ionic strength: VO2+ + 2H2O = VO4-3 + 4H+log k -30.2 delta h -25 kJ -gamma 0 0 # Id: 9033303 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 VO2+ + 2H2O = HVO4-2 + 3H+log_k -15.9 delta_h 0 kJ -gamma 0 0 # Id: 9033302 # log K source: NIST46.3 # Delta H source: NIST46.3

#T and ionic strength: 0.00 25.0 VO2+ + 2H2O = H2VO4- + 2H+log k -7.3 delta_h 0 kJ -gamma 0 0 # Id: 9033301 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 VO2+ + 2H2O = H3VO4 + H+log_k -3.3 delta_h 44.4759 kJ -gamma 0 0 # Id: 9033300 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 2VO2+ + 3H2O = V2O7-4 + 6H+log_k -31.24 delta h -28 kJ -gamma 0 0 # Id: 9030020 # log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 2VO2+ + 3H2O = HV2O7-3 + 5H+log_k -20.67 delta_h 0 kJ -gamma 0 0 # Id: 9030021 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 2VO2 + 3H2O = H3V2O7 + 3H +log k -3.79 delta_h 0 kJ -gamma 0 0 # Id: 9030022 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 3VO2+ + 3H2O = V3O9-3 + 6H+log k -15.88 delta_h 0 kJ -gamma 0 0 # Id: 9030023 # log K source: MTQ3.11 # Delta H source: MTQ3.11 **#**T and ionic strength: 4VO2+ + 4H2O = V4O12-4 + 8H+log_k -20.56 delta_h -87 kJ -gamma 0 0 # Id: 9030024
# log K source: NIST46.3 # Delta H source: NIST46.3 #T and ionic strength: 0.00 25.0 10VO2+ + 8H2O = V10O28-6 + 16H+log k -24.0943 delta h 0 kJ -gamma 0 0 # Id: 9030025 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 10VO2+ + 8H2O = HV10O28-5 + 15H+log k -15.9076 delta_h 90.0397 kJ -gamma 0 0 # Id: 9030026 # log K source: NIST46.4 # Delta H source: MTQ3.11 #T and ionic strength: 0.10 20.0 10VO2+ + 8H2O = H2V10O28-4 + 14H+log_k -10.7 delta h 0 kJ -gamma 0 0 # Id: 9030027 # log K source: NIST46.3 # Delta H source: MTQ3.11 #T and ionic strength: 0.00 25.0 Benzoate- + H+ = H(Benzoate) log_k 4.202 delta_h -0.4602 kJ -gamma 0 0 # Id: 3309171 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Benzoate - + Pb + 2 = Pb(Benzoate) +log k 2.4 delta_h 0 kJ -gamma 0 0 # Id: 6009171 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Benzoate + Al + 3 = Al(Benzoate) + 2log_k 2.05 delta_h 0 kJ -gamma 0 0 # Id: 309171 # log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: Benzoate + AI + 3 + H2O = AIOH(Benzoate) + H + Hlog k -0.56 delta_h 0 kJ

-gamma 0 0 # Id: 309172 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Benzoate - + Zn + 2 = Zn(Benzoate) +log k 1.7 delta_h 0 kJ -gamma 0 0 # Id: 9509171 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Benzoate - + Cd + 2 = Cd(Benzoate) +log_k 1.8 delta_h 0 kJ -gamma 0 0 # Id: 1609171 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2Benzoate + Cd + 2 = Cd(Benzoate)2log_k 1.82 delta h 0 kJ -gamma 0 0 # Id: 1609172 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Benzoate - + Cu + 2 = Cu(Benzoate) +log_k 2.19 delta_h 0 kJ -gamma 0 0 # Id: 2319171 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Benzoate - + Ag + = Ag(Benzoate)log_k 0.91 delta_h 0 kJ -gamma 0 0 # Id: 209171 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Benzoate - + Ni + 2 = Ni(Benzoate) +log_k 1.86 delta_h 0 kJ -gamma 0 0 # Id: 5409171 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Co+2 + Benzoate - = Co(Benzoate) +

log k 1.0537 delta_h 12 kJ -gamma 0 0 # Id: 2009171 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 30.0 Benzoate + Mn + 2 = Mn(Benzoate) +log k 2.06 delta_h 0 kJ -gamma 0 0 # Id: 4709171 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Benzoate - + Mg + 2 = Mg(Benzoate) +log_k 1.26 delta h 0 kJ -gamma 0 0 # Id: 4609171 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Benzoate - + Ca + 2 = Ca(Benzoate) +log k 1.55 delta h 0 kJ -gamma 0 0 # Id: 1509171 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Phenylacetate- + H+ = H(Phenylacetate) log_k 4.31 delta_h 2.1757 kJ -gamma 0 0 # Id: 3309181 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Phenylacetate- + Zn+2 = Zn(Phenylacetate)+ log k 1.57 delta h 0 kJ -gamma 0 0 # Id: 9509181 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Phenylacetate- + Cu+2 = Cu(Phenylacetate)+log_k 1.97 delta_h 0 kJ -gamma 0 0 # Id: 2319181 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength: Co+2 + Phenylacetate - = Co(Phenylacetate) +log k 0.591 delta_h 0 kJ -gamma 0 0 # Id: 2009181 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Co+2 + 2Phenylacetate - = Co(Phenylacetate)2log_k 0.4765 delta_h 0 kJ -gamma 0 0 # Id: 2009182 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Isophthalate-2 + H+ = H(Isophthalate)log k 4.5 delta h 1.6736 kJ -gamma 0 0 # Id: 3309201 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + 2H + = H2(Isophthalate) log_k 8 delta_h 1.6736 kJ -gamma 0 0 # Id: 3309202 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + Pb+2 = Pb(Isophthalate) log k 2.99 delta_h 0 kJ -gamma 0 0 # Id: 6009201 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2Isophthalate-2 + Pb+2 = Pb(Isophthalate)2-2log k 4.18 delta_h 0 kJ -gamma 0 0 # Id: 6009202 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + Pb+2 + H+ = PbH(Isophthalate)+log_k 6.69 delta_h 0 kJ -gamma 0 0 # Id: 6009203

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + Cd+2 = Cd(Isophthalate)log k 2.15 delta h 0 kJ -gamma 0 0 # Id: 1609201 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2Isophthalate-2 + Cd+2 = Cd(Isophthalate)2-2log k 2.99 delta_h 0 kJ -gamma 0 0 # Id: 1609202 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + Cd+2 + H+ = CdH(Isophthalate)+log_k 5.73 delta h 0 kJ -gamma 0 0 # Id: 1609203 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + Ca+2 = Ca(Isophthalate)log_k 2 delta_h 0 kJ -gamma 0 0 # Id: 1509200 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Isophthalate-2 + Ba+2 = Ba(Isophthalate)log k 1.55 delta_h 0 kJ -gamma 0 0 # Id: 1009201 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Diethylamine = H(Diethylamine)+log_k 10.933 delta_h -53.1368 kJ -gamma 0 0 # Id: 3309551 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Diethylamine = Zn(Diethylamine)+2log k 2.74 delta h 0 kJ

-gamma 0 0 # Id: 9509551 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 2Diethylamine = Zn(Diethylamine)2+2log k 5.27 delta h 0 kJ -gamma 0 0 # Id: 9509552 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 3Diethylamine = Zn(Diethylamine)3+2log_k 7.71 delta_h 0 kJ -gamma 0 0 # Id: 9509553 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 4Diethylamine = Zn(Diethylamine)4+2log_k 9.84 delta h 0 kJ -gamma 0 0 # Id: 9509554 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + Diethylamine = Cd(Diethylamine)+2log_k 2.73 delta_h 0 kJ -gamma 0 0 # Id: 1609551 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 2Diethylamine = Cd(Diethylamine)2+2log k 4.86 delta_h 0 kJ -gamma 0 0 # Id: 1609552 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 3Diethylamine = Cd(Diethylamine)3+2log k 6.37 delta_h 0 kJ -gamma 0 0 # Id: 1609553 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 4Diethylamine = Cd(Diethylamine)4+2 log k 7.32 delta_h 0 kJ -gamma 0 0 # Id: 1609554 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ag+ + Diethylamine = Ag(Diethylamine)+ log k 2.98 delta_h 0 kJ -gamma 0 0 # Id: 209551 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + 2Diethylamine = Ag(Diethylamine)2+ log_k 6.38 delta h -44.7688 kJ -gamma 0 0 # Id: 209552 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Diethylamine = Ni(Diethylamine)+2log k 2.78 delta h 0 kJ -gamma 0 0 # Id: 5409551 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 2Diethylamine = Ni(Diethylamine)2+2log_k 4.97 delta_h 0 kJ -gamma 0 0 # Id: 5409552 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 3Diethylamine = Ni(Diethylamine)3+2 log k 6.72 delta h 0 kJ -gamma 0 0 # Id: 5409553 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 4Diethylamine = Ni(Diethylamine)4+2log_k 7.93 delta_h 0 kJ -gamma 0 0 # Id: 5409554 # log K source: SCD2.62 # Delta H source: SCD2.62

**#**T and ionic strength: Ni+2 + 5Diethylamine = Ni(Diethylamine)5+2log k 8.87 delta_h 0 kJ -gamma 0 0 # Id: 5409555 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Butylamine = H(Butylamine)+ log_k 10.64 delta_h -58.2831 kJ -gamma 0 0 # Id: 3309561 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Butylamine + 2H + = Hg(Butylamine) + 2 + 2H2Olog k 14.84 delta h 0 kJ -gamma 0 0 # Id: 3619561 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 2Butylamine + 2H + = Hg(Butylamine)2 + 2 + 2H2Olog_k 24.24 delta_h 0 kJ -gamma 0 0 # Id: 3619562 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 3Butylamine + 2H + = Hg(Butylamine)3 + 2 + 2H2Olog k 25.1 delta h 0 kJ -gamma 0 0 # Id: 3619563 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 4Butylamine + 2H + = Hg(Butylamine)4 + 2 + 2H2Olog k 26.1 delta_h 0 kJ -gamma 0 0 # Id: 3619564 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + Butylamine = Ag(Butylamine) +log_k 3.42 delta h -16.736 kJ -gamma 0 0 # Id: 209561

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + 2Butylamine = Ag(Butylamine)2+ log k 7.47 delta h -52.7184 kJ -gamma 0 0 # Id: 209562 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Methylamine = H(Methylamine)+log k 10.64 delta_h -55.2288 kJ -gamma 0 0 # Id: 3309581 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Methylamine = Cd(Methylamine)+2log k 2.75 delta h 0 kJ -gamma 0 0 # Id: 1609581 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Methylamine = Cd(Methylamine)2+2log_k 4.81 delta_h -29.288 kJ -gamma 0 0 # Id: 1609582 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 3Methylamine = Cd(Methylamine)3+2log k 5.94 delta_h 0 kJ -gamma 0 0 # Id: 1609583 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 4Methylamine = Cd(Methylamine)4+2log k 6.55 delta_h -58.576 kJ -gamma 0 0 # Id: 1609584 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hq(OH)2 + Methylamine + 2H + = Hq(Methylamine) + 2 + 2H2Olog k 14.76 delta h 0 kJ

-gamma 0 0 # Id: 3619581 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 2Methylamine + 2H + = Hg(Methylamine)2 + 2 + 2H2Olog k 23.96 delta h 0 kJ -gamma 0 0 # Id: 3619582 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 3Methylamine + 2H + = Hg(Methylamine)3 + 2 + 2H2Olog_k 24.3 delta_h 0 kJ -gamma 0 0 # Id: 3619583 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 4Methylamine + 2H + = Hg(Methylamine)4 + 2 + 2H2Olog_k 24.6 delta h 0 kJ -gamma 0 0 # Id: 3619584 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Methylamine = Cu(Methylamine)+2log_k 4.11 delta_h 0 kJ -gamma 0 0 # Id: 2319581 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Methylamine = Cu(Methylamine)2+2log k 7.51 delta_h 0 kJ -gamma 0 0 # Id: 2319582 # loa K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 3Methylamine = Cu(Methylamine)3+2log k 10.21 delta_h 0 kJ -gamma 0 0 # Id: 2319583 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 4Methylamine = Cu(Methylamine)4+2

log k 12.08 delta_h 0 kJ -gamma 0 0 # Id: 2319584 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + Methylamine = Ag(Methylamine)+ log k 3.07 delta_h -12.552 kJ -gamma 0 0 # Id: 209581 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + 2Methylamine = Ag(Methylamine)2+ log_k 6.89 delta h -48.9528 kJ -gamma 0 0 # Id: 209582 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Methylamine = Ni(Methylamine)+2log k 2.23 delta h 0 kJ -gamma 0 0 # Id: 5409581 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Dimethylamine = H(Dimethylamine)+ log_k 10.774 delta_h -50.208 kJ -gamma 0 0 # Id: 3309591 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + 2Dimethylamine = Ag(Dimethylamine)2+log k 5.37 delta h -40.5848 kJ -gamma 0 0 # Id: 209591 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Dimethylamine = Ni(Dimethylamine)+2log_k 1.47 delta_h 0 kJ -gamma 0 0 # Id: 5409591 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength: H+ + Hexylamine = H(Hexylamine)+log k 10.63 delta_h -58.576 kJ -gamma 0 0 # Id: 3309611 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + Hexylamine = Ag(Hexylamine)+ log_k 3.54 delta_h -25.104 kJ -gamma 0 0 # Id: 209611 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + 2Hexylamine = Ag(Hexylamine)2+log k 7.55 delta h -53.1368 kJ -gamma 0 0 # Id: 209612 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Ethylenediamine = H(Ethylenediamine)+log_k 9.928 delta_h -49.7896 kJ -gamma 0 0 # Id: 3309631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H+ + Ethylenediamine = H2(Ethylenediamine)+2 log k 16.776 delta_h -95.3952 kJ -gamma 0 0 # Id: 3309632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Ethylenediamine = Pb(Ethylenediamine)+2 log k 5.04 delta_h 0 kJ -gamma 0 0 # Id: 6009631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + 2Ethylenediamine = Pb(Ethylenediamine)2+2log_k 8.5 delta_h 0 kJ -gamma 0 0 # Id: 6009632

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Ethylenediamine = Zn(Ethylenediamine)+2log k 5.66 delta h -29.288 kJ -gamma 0 0 # Id: 9509631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 2Ethylenediamine = Zn(Ethylenediamine)2+2log k 10.6 delta_h -48.116 kJ -gamma 0 0 # Id: 9509632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 3Ethylenediamine = Zn(Ethylenediamine)3+2log k 13.9 delta h -71.5464 kJ -gamma 0 0 # Id: 9509633 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Ethylenediamine = Cd(Ethylenediamine)+2log_k 5.41 delta h -28.4512 kJ -gamma 0 0 # Id: 1609631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Ethylenediamine = Cd(Ethylenediamine)2+2log k 9.9 delta_h -55.6472 kJ -gamma 0 0 # Id: 1609632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 3Ethylenediamine = Cd(Ethylenediamine)3+2log k 11.6 delta_h -82.4248 kJ -gamma 0 0 # Id: 1609633 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Ethylenediamine + 2H + = Hg(Ethylenediamine) + 2 + 2H2Olog k 20.4 delta h 0 kJ

-gamma 0 0 # Id: 3619631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 2Ethylenediamine + 2H + = Hg(Ethylenediamine)2+2 + 2H2Oloa k 29.3 delta h -173.218 kJ -gamma 0 0 # Id: 3619632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hq(OH)2 + 2Ethylenediamine + 3H + = HqH(Ethylenediamine)2+3 + 2H2Olog_k 34.7 delta_h 0 kJ -gamma 0 0 # Id: 3619633 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+ + 2Ethylenediamine = Cu(Ethylenediamine)2+log_k 11.2 delta h 0 kJ -gamma 0 0 # Id: 2309631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Ethylenediamine = Cu(Ethylenediamine)+2log_k 10.5 delta_h -52.7184 kJ -gamma 0 0 # Id: 2319631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Ethylenediamine = Cu(Ethylenediamine)2+2log k 19.6 delta_h -105.437 kJ -gamma 0 0 # Id: 2319632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + Ethylenediamine = Ag(Ethylenediamine) +log k 4.6 delta_h -48.9528 kJ -gamma 0 0 # Id: 209631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Aq + + 2Ethylenediamine = Aq(Ethylenediamine)2+

log k 7.5 delta h -52.3 kJ -gamma 0 0 # Id: 209632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + Ethylenediamine + H + = AgH(Ethylenediamine)+2log k 11.99 delta_h -75.312 kJ -gamma 0 0 # Id: 209633 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2Ag + + Ethylenediamine = Ag2(Ethylenediamine)+2log_k 6.5 delta h 0 kJ -gamma 0 0 # Id: 209634 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2Aq + 2Ethylenediamine = Aq2(Ethylenediamine)2+2log k 12.7 delta h -97.0688 kJ -gamma 0 0 # Id: 209635 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + 2Ethylenediamine + 2H + = Ag(HEthylenediamine)2+3log_k 24 delta_h -150.206 kJ -gamma 0 0 # Id: 209636 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + 2Ethylenediamine + H + = AgH(Ethylenediamine)2+2log k 8.4 delta h -47.6976 kJ -gamma 0 0 # Id: 209637 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Ethylenediamine = Ni(Ethylenediamine)+2log k 7.32 delta_h -37.656 kJ -gamma 0 0 # Id: 5409631 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength: Ni+2 + 2Ethylenediamine = Ni(Ethylenediamine)2+2log k 13.5 delta_h -76.5672 kJ -gamma 0 0 # Id: 5409632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 3Ethylenediamine = Ni(Ethylenediamine)3+2 log_k 17.6 delta_h -117.152 kJ -gamma 0 0 # Id: 5409633 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Ethylenediamine = Co(Ethylenediamine)+2log k 5.5 delta h -28 kJ -gamma 0 0 # Id: 2009631 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + 2Ethylenediamine = Co(Ethylenediamine)2+2 log_k 10.1 delta_h -58.5 kJ -gamma 0 0 # Id: 2009632 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + 3Ethylenediamine = Co(Ethylenediamine)3+2log k 13.2 delta_h -92.8 kJ -gamma 0 0 # Id: 2009633 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+3 + 2Ethylenediamine = Co(Ethylenediamine)2+3log_k 34.7 delta_h 0 kJ -gamma 0 0 # Id: 2019631 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Co+3 + 3Ethylenediamine = Co(Ethylenediamine)3+3log_k 48.69 delta_h 0 kJ -gamma 0 0 # Id: 2019632

# log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.50 30.0 Fe+2 + Ethylenediamine = Fe(Ethylenediamine)+2log k 4.26 delta h 0 kJ -gamma 0 0 # Id: 2809631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+2 + 2Ethylenediamine = Fe(Ethylenediamine)2+2 log k 7.73 delta_h 0 kJ -gamma 0 0 # Id: 2809632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+2 + 3Ethylenediamine = Fe(Ethylenediamine)3+2log k 10.17 delta h 0 kJ -gamma 0 0 # Id: 2809633 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Ethylenediamine = Mn(Ethylenediamine)+2log_k 2.74 delta h -11.7152 kJ -gamma 0 0 # Id: 4709631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + 2Ethylenediamine = Mn(Ethylenediamine)2+2log k 4.8 delta_h -25.104 kJ -gamma 0 0 # Id: 4709632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + 2Ethylenediamine + 2H+ = Cr(Ethylenediamine)2+3 + 2H2Olog k 22.57 delta_h 0 kJ -gamma 0 0 # Id: 2119631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + 3Ethylenediamine + 2H+ = Cr(Ethylenediamine)3+3 + 2H2Olog k 29 delta h 0 kJ

-gamma 0 0 # Id: 2119632 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mg+2 + Ethylenediamine = Mg(Ethylenediamine)+2loa k 0.37 delta h 0 kJ -gamma 0 0 # Id: 4609631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Ethylenediamine = Ca(Ethylenediamine)+2log_k 0.11 delta_h 0 kJ -gamma 0 0 # Id: 1509631 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Propylamine = H(Propylamine)+ log_k 10.566 delta h -57.53 kJ -gamma 0 0 # Id: 3309641 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Propylamine = Zn(Propylamine)+2log_k 2.42 delta_h 0 kJ -gamma 0 0 # Id: 9509641 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 2Propylamine = Zn(Propylamine)2+2log k 4.85 delta_h 0 kJ -gamma 0 0 # Id: 9509642 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 3Propylamine = Zn(Propylamine)3+2log k 7.38 delta_h 0 kJ -gamma 0 0 # Id: 9509643 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 4Propylamine = Zn(Propylamine)4+2

log k 9.49 delta h 0 kJ -gamma 0 0 # Id: 9509644 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + Propylamine = Cd(Propylamine)+2log k 2.62 delta_h 0 kJ -gamma 0 0 # Id: 1609641 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 2Propylamine = Cd(Propylamine)2+2 log_k 4.64 delta h 0 kJ -gamma 0 0 # Id: 1609642 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 3Propylamine = Cd(Propylamine)3+2log k 6.03 delta h 0 kJ -gamma 0 0 # Id: 1609643 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ag+ + Propylamine = Ag(Propylamine)+ log_k 3.45 delta_h -12.552 kJ -gamma 0 0 # Id: 209641 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + 2Propylamine = Ag(Propylamine)2+ log k 7.44 delta h -53.1368 kJ -gamma 0 0 # Id: 209642 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Propylamine = Ni(Propylamine)+2log_k 2.81 delta_h 0 kJ -gamma 0 0 # Id: 5409641 # log K source: SCD2.62 # Delta H source: SCD2.62

**#**T and ionic strength: Ni+2 + 2Propylamine = Ni(Propylamine)2+2 log k 5.02 delta_h 0 kJ -gamma 0 0 # Id: 5409642 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 3Propylamine = Ni(Propylamine)3+2log_k 6.79 delta_h 0 kJ -gamma 0 0 # Id: 5409643 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 4Propylamine = Ni(Propylamine)4+2 log k 8.31 delta h 0 kJ -gamma 0 0 # Id: 5409644 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Isopropylamine = H(Isopropylamine)+ log_k 10.67 delta_h -58.3668 kJ -gamma 0 0 # Id: 3309651 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Isopropylamine = Zn(Isopropylamine)+2log k 2.37 delta h 0 kJ -gamma 0 0 # Id: 9509651 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 2Isopropylamine = Zn(Isopropylamine)2+2log k 4.67 delta_h 0 kJ -gamma 0 0 # Id: 9509652 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 3Isopropylamine = Zn(Isopropylamine)3+2log_k 7.14 delta_h 0 kJ -gamma 0 0 # Id: 9509653

# log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 4Isopropylamine = Zn(Isopropylamine)4+2log k 9.44 delta h 0 kJ -gamma 0 0 # Id: 9509654 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + Isopropylamine = Cd(Isopropylamine)+2log k 2.55 delta_h 0 kJ -gamma 0 0 # Id: 1609651 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 2Isopropylamine = Cd(Isopropylamine)2+2 log k 4.57 delta h 0 kJ -gamma 0 0 # Id: 1609652 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 3Isopropylamine = Cd(Isopropylamine)3+2log_k 6.07 delta h 0 kJ -gamma 0 0 # Id: 1609653 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 4Isopropylamine = Cd(Isopropylamine)4+2log k 6.9 delta_h 0 kJ -gamma 0 0 # Id: 1609654 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Hg(OH)2 + Isopropylamine + 2H + = Hg(Isopropylamine) + 2 + 2H2Olog k 14.85 delta_h 0 kJ -gamma 0 0 # Id: 3619651 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + 2Isopropylamine + 2H + = Hg(Isopropylamine)2 + 2 + 2H2Olog k 24.37 delta h 0 kJ

-gamma 0 0 # Id: 3619652 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Aq + + Isopropylamine = Aq(Isopropylamine) +loa k 3.67 delta h -23.8488 kJ -gamma 0 0 # Id: 209651 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + 2Isopropylamine = Ag(Isopropylamine)2+log_k 7.77 delta_h -59.8312 kJ -gamma 0 0 # Id: 209652 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Isopropylamine = Ni(Isopropylamine)+2 log_k 2.71 delta h 0 kJ -gamma 0 0 # Id: 5409651 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 2Isopropylamine = Ni(Isopropylamine)2+2 log_k 4.86 delta_h 0 kJ -gamma 0 0 # Id: 5409652 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 3Isopropylamine = Ni(Isopropylamine)3+2 log k 6.57 delta_h 0 kJ -gamma 0 0 # Id: 5409653 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 4Isopropylamine = Ni(Isopropylamine)4+2log k 7.83 delta_h 0 kJ -gamma 0 0 # Id: 5409654 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + 5Isopropylamine = Ni(Isopropylamine)5+2 log k 8.43 delta h 0 kJ -gamma 0 0 # Id: 5409655 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Trimethylamine = H(Trimethylamine)+ log_k 9.8 delta_h -36.8192 kJ -gamma 0 0 # Id: 3309661 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + Trimethylamine = Ag(Trimethylamine)+ log_k 1.701 delta h 0 kJ -gamma 0 0 # Id: 209661 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Citrate-3 = H(Citrate)-2log k 6.396 delta h 3.3472 kJ -gamma 0 0 # Id: 3309671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H+ + Citrate-3 = H2(Citrate)log_k 11.157 delta_h 1.297 kJ -gamma 0 0 # Id: 3309672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 3H+ + Citrate-3 = H3(Citrate) log k 14.285 delta h -2.7614 kJ -gamma 0 0 # Id: 3309673 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Citrate-3 = Pb(Citrate)log_k 7.27 delta_h 0 kJ -gamma 0 0 # Id: 6009671 # log K source: SCD2.62 # Delta H source: SCD2.62

```
#T and ionic strength:
Pb+2 + 2Citrate-3 = Pb(Citrate)2-4
log k 6.53
delta_h 0 kJ
-gamma 0 0
# Id: 6009672
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
AI+3 + Citrate-3 = AI(Citrate)
log_k 9.97
delta_h 0 kJ
-gamma 0 0
# Id: 309671
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
AI+3 + 2Citrate-3 = AI(Citrate)2-3
log_k 14.8
delta h 0 kJ
-gamma 0 0
# Id: 309672
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
AI+3 + Citrate-3 + H+ = AIH(Citrate)+
log_k 12.85
delta_h 0 kJ
-gamma 0 0
# Id: 309673
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
TI + Citrate - 3 = TI(Citrate) - 2
log k 1.48
delta_h 0 kJ
-gamma 0 0
# Id: 8709671
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Zn+2 + Citrate-3 = Zn(Citrate)-
log k 6.21
delta_h 8.368 kJ
-gamma 0 0
# Id: 9509671
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Zn+2 + 2Citrate-3 = Zn(Citrate)2-4
log_k 7.4
delta_h 25.104 kJ
-gamma 0 0
# Id: 9509672
```

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Citrate-3 + H+ = ZnH(Citrate)log k 10.2 delta h 3.3472 kJ -gamma 0 0 # Id: 9509673 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Citrate-3 + 2H + = ZnH2(Citrate) +log k 12.84 delta_h 0 kJ -gamma 0 0 # Id: 9509674 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + Citrate-3 = Cd(Citrate)log_k 4.98 delta h 8.368 kJ -gamma 0 0 # Id: 1609671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Citrate-3 + H+ = CdH(Citrate)log_k 9.44 delta_h 3.3472 kJ -gamma 0 0 # Id: 1609672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Citrate-3 + 2H + = CdH2(Citrate) +log k 12.9 delta_h 0 kJ -gamma 0 0 # Id: 1609673 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Citrate-3 = Cd(Citrate)2-4log_k 5.9 delta_h 20.92 kJ -gamma 0 0 # Id: 1609674 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Citrate-3 + 2H+ = Hg(Citrate)- + 2H2Olog k 18.3 delta_h 0 kJ

-gamma 0 0 # Id: 3619671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Citrate-3 = Cu(Citrate)log k 7.57 delta_h 0 kJ -gamma 0 0 # Id: 2319671 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cu+2 + 2Citrate-3 = Cu(Citrate)2-4log_k 8.9 delta_h 0 kJ -gamma 0 0 # Id: 2319672 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cu+2 + Citrate-3 + H+ = CuH(Citrate)log_k 10.87 delta h 11.7152 kJ -gamma 0 0 # Id: 2319673 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Citrate-3 + 2H+ = CuH2(Citrate)+log_k 13.23 delta_h 0 kJ -gamma 0 0 # Id: 2319674 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: 2Cu+2 + 2Citrate-3 = Cu2(Citrate)2-2log k 16.9 delta_h 41.84 kJ -gamma 0 0 # Id: 2319675 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Citrate-3 = Ni(Citrate)log k 6.59 delta_h 16.736 kJ -gamma 0 0 # Id: 5409671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Citrate-3 + H + = NiH(Citrate)

log k 10.5 delta h 15.8992 kJ -gamma 0 0 # Id: 5409672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Citrate-3 + 2H + = NiH2(Citrate) +log k 13.3 delta_h 0 kJ -gamma 0 0 # Id: 5409673 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Citrate-3 = Ni(Citrate)2-4 log_k 8.77 delta h 12.552 kJ -gamma 0 0 # Id: 5409674 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Citrate-3 + H + = NiH(Citrate)2-3log k 14.9 delta h 32.6352 kJ -gamma 0 0 # Id: 5409675 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Citrate-3 = Co(Citrate)log_k 6.1867 delta_h 0 kJ -gamma 0 0 # Id: 2009671 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+2 + H+ + Citrate-3 = CoHCitratelog k 10.4438 delta h 0 kJ -gamma 0 0 # Id: 2009672 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+2 + 2H+ + Citrate-3 = CoH2Citrate+log_k 12.7859 delta_h 0 kJ -gamma 0 0 # Id: 2009673 # log K source: NIST46.4 # Delta H source: NIST46.2

#T and ionic strength: 0.10 20.0 Fe+2 + Citrate-3 = Fe(Citrate)log k 6.1 delta_h 0 kJ -gamma 0 0 # Id: 2809671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+2 + Citrate-3 + H+ = FeH(Citrate)log_k 10.2 delta_h 0 kJ -gamma 0 0 # Id: 2809672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Citrate-3 = Fe(Citrate)log_k 13.1 delta h 0 kJ -gamma 0 0 # Id: 2819671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Citrate-3 + H+ = FeH(Citrate)+log_k 14.4 delta_h 0 kJ -gamma 0 0 # Id: 2819672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Citrate-3 = Mn(Citrate)log k 4.28 delta_h 0 kJ -gamma 0 0 # Id: 4709671 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Mn+2 + Citrate-3 + H+ = MnH(Citrate)log k 9.6 delta_h 0 kJ -gamma 0 0 # Id: 4709672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Be+2 + Citrate-3 = Be(Citrate)log_k 5.534 delta_h 0 kJ -gamma 0 0 # Id: 1109671

# log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Be+2 + H+ + Citrate-3 = BeH(Citrate)log k 9.442 delta h 0 kJ -gamma 0 0 # Id: 1109672 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Ca+2 + Citrate-3 = Ca(Citrate)log_k 4.87 delta_h -8.368 kJ -gamma 0 0 # Id: 1509671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Citrate-3 + H+ = CaH(Citrate)log_k 9.26 delta h -0.8368 kJ -gamma 0 0 # Id: 1509672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Citrate-3 + 2H + = CaH2(Citrate) +log_k 12.257 delta_h 0 kJ -gamma 0 0 # Id: 1509673 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Mg+2 + Citrate-3 = Mg(Citrate)log k 4.89 delta_h 8.368 kJ -gamma 0 0 # Id: 4609671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mg+2 + Citrate-3 + H + = MgH(Citrate)log_k 8.91 delta_h 3.3472 kJ -gamma 0 0 # Id: 4609672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mg+2 + Citrate-3 + 2H + = MgH2(Citrate) +log k 12.2 delta_h 0 kJ

-gamma 0 0 # Id: 4609673 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Sr+2 + Citrate-3 = Sr(Citrate)log k 4.3367 delta_h 0 kJ -gamma 0 0 # Id: 8009671 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Sr+2 + H+ + Citrate-3 = SrH(Citrate)log_k 8.9738 delta_h 0 kJ -gamma 0 0 # Id: 8009672 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Sr+2 + 2H+ + Citrate-3 = SrH2(Citrate)+log_k 12.4859 delta h 0 kJ -gamma 0 0 # Id: 8009673 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Citrate-3 = Ba(Citrate)log_k 4.1 delta_h 0 kJ -gamma 0 0 # Id: 1009671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ba+2 + Citrate-3 + H + = BaH(Citrate)log k 8.74 delta_h 0 kJ -gamma 0 0 # Id: 1009672 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ba+2 + Citrate-3 + 2H + = BaH2(Citrate) +log k 12.3 delta_h 0 kJ -gamma 0 0 # Id: 1009673 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Na + + Citrate - 3 = Na(Citrate) - 2

log k 1.03 delta_h -2.8033 kJ -gamma 0 0 # Id: 5009671 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: 2Na+ + Citrate-3 = Na2(Citrate)log k 1.5 delta_h -5.1045 kJ -gamma 0 0 # Id: 5009672 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Na+ + Citrate-3 + H+ = NaH(Citrate)log_k 6.45 delta h -3.5982 kJ -gamma 0 0 # Id: 5009673 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: K+ + Citrate-3 = K(Citrate)-2 log k 1.1 delta h 5.4392 kJ -gamma 0 0 # Id: 4109671 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Nta-3 = H(Nta)-2 log_k 10.278 delta_h -18.828 kJ -gamma 0 0 # Id: 3309681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H + Nta - 3 = H2(Nta) log k 13.22 delta h -17.9912 kJ -gamma 0 0 # Id: 3309682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 3H + + Nta - 3 = H3(Nta)log_k 15.22 delta_h -16.3176 kJ -gamma 0 0 # Id: 3309683 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength: 4H + Nta - 3 = H4(Nta) +log k 16.22 delta_h -16.3176 kJ -gamma 0 0 # Id: 3309684 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Nta-3 = Pb(Nta)log_k 12.7 delta_h -15.8992 kJ -gamma 0 0 # Id: 6009681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Nta-3 + H+ = PbH(Nta)log_k 15.3 delta h 0 kJ -gamma 0 0 # Id: 6009682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Nta-3 = AI(Nta)log_k 13.3 delta_h 0 kJ -gamma 0 0 # Id: 309681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Nta-3 + H+ = AIH(Nta)+log k 15.2 delta_h 0 kJ -gamma 0 0 # Id: 309682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Nta-3 + H2O = AIOH(Nta)- + H+log k 8 delta_h 0 kJ -gamma 0 0 # Id: 309683 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: TI + Nta - 3 = TI(Nta) - 2log_k 5.39 delta_h 0 kJ -gamma 0 0 # Id: 8709681

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Nta-3 = Zn(Nta)log k 11.95 delta h -3.7656 kJ -gamma 0 0 # Id: 9509681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 2Nta-3 = Zn(Nta)2-4log_k 14.88 delta_h -15.0624 kJ -gamma 0 0 # Id: 9509682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Nta-3 + H2O = ZnOH(Nta)-2 + H+log_k 1.46 delta h 46.4424 kJ -gamma 0 0 # Id: 9509683 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Nta-3 = Cd(Nta)log_k 11.07 delta_h -16.736 kJ -gamma 0 0 # Id: 1609681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Nta-3 = Cd(Nta)2-4log k 15.03 delta_h -38.0744 kJ -gamma 0 0 # Id: 1609682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Nta-3 + H2O = CdOH(Nta)-2 + H+log_k -0.61 delta_h 29.288 kJ -gamma 0 0 # Id: 1609683 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Nta-3 + 2H + = Hg(Nta) - + 2H2Olog k 21.7 delta_h 0 kJ

-gamma 0 0 # Id: 3619681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Nta-3 = Cu(Nta)log k 14.4 delta h -7.9496 kJ -gamma 0 0 # Id: 2319681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Nta-3 = Cu(Nta)2-4log_k 18.1 delta_h -37.2376 kJ -gamma 0 0 # Id: 2319682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Nta-3 + H+ = CuH(Nta)log_k 16.2 delta h 0 kJ -gamma 0 0 # Id: 2319683 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Nta-3 + H2O = CuOH(Nta)-2 + H+log_k 4.8 delta_h 25.5224 kJ -gamma 0 0 # Id: 2319684 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + Nta - 3 = Ag(Nta) - 2log_k 6 delta_h -26.3592 kJ -gamma 0 0 # Id: 209681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Nta-3 = Ni(Nta)log k 12.79 delta_h -10.0416 kJ -gamma 0 0 # Id: 5409681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Nta-3 = Ni(Nta)2-4

log k 16.96 delta h -32.6352 kJ -gamma 0 0 # Id: 5409682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Nta-3 + H2O = NiOH(Nta)-2 + H+log k 1.5 delta_h 15.0624 kJ -gamma 0 0 # Id: 5409683 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Nta-3 = Co(Nta)log_k 11.6667 delta h -0.4 kJ -gamma 0 0 # Id: 2009681 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + 2Nta-3 = Co(Nta)2-4log k 14.9734 delta h -20 kJ -gamma 0 0 # Id: 2009682 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Nta-3 + H2O = CoOH(Nta)-2 + H+log_k 0.4378 delta_h 45.6 kJ -gamma 0 0 # Id: 2009683 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Fe+2 + Nta-3 = Fe(Nta)log k 10.19 delta h 0 kJ -gamma 0 0 # Id: 2809681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+2 + 2Nta-3 = Fe(Nta)2-4log_k 12.62 delta_h 0 kJ -gamma 0 0 # Id: 2809682 # log K source: NIST46.2 # Delta H source: NIST46.2

```
#T and ionic strength:
Fe+2 + Nta-3 + H+ = FeH(Nta)
log k 12.29
delta_h 0 kJ
-gamma 0 0
# Id: 2809683
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+2 + Nta-3 + H2O = FeOH(Nta)-2 + H+
log_k -1.06
delta_h 0 kJ
-gamma 0 0
# Id: 2809684
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+3 + Nta-3 = Fe(Nta)
log_k 17.8
delta h 13.3888 kJ
-gamma 0 0
# Id: 2819681
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+3 + 2Nta-3 = Fe(Nta)2-3
log_k 25.9
delta_h 0 kJ
-gamma 0 0
# Id: 2819682
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+3 + Nta-3 + H2O = FeOH(Nta)- + H+
log k 13.23
delta_h 0 kJ
-gamma 0 0
# Id: 2819683
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Mn+2 + Nta-3 = Mn(Nta)-
log k 8.573
delta_h 5.8576 kJ
-gamma 0 0
# Id: 4709681
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Mn+2 + 2Nta-3 = Mn(Nta)2-4
log_k 11.58
delta_h -17.1544 kJ
-gamma 0 0
# Id: 4709682
```
# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + Nta-3 + 2H+ = Cr(Nta) + 2H2Olog k 21.2 delta h 0 kJ -gamma 0 0 # Id: 2119681 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + 2Nta-3 + 2H+ = Cr(Nta)2-3 + 2H2Olog_k 29.5 delta_h 0 kJ -gamma 0 0 # Id: 2119682 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: MoO4-2 + 2H+ + Nta-3 = MoO3(Nta)-3 + H2Olog_k 19.5434 delta h -69 kJ -gamma 0 0 # Id: 4809681 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 MoO4-2 + 3H+ + Nta-3 = MoO3H(Nta)-2 + H2Olog_k 23.3954 delta_h -71 kJ -gamma 0 0 # Id: 4809682 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 MoO4-2 + 4H+ + Nta-3 = MoO3H2(Nta)- + H2Olog k 25.3534 delta_h -71 kJ -gamma 0 0 # Id: 4809683 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 1.00 25.0 Be+2 + Nta-3 = Be(Nta)log_k 9.0767 delta_h 25 kJ -gamma 0 0 # Id: 1109681 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Mg+2 + Nta-3 = Mg(Nta)log k 6.5 delta_h 17.9912 kJ

-gamma 0 0 # Id: 4609681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Nta-3 = Ca(Nta)log k 7.608 delta_h -5.6902 kJ -gamma 0 0 # Id: 1509681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + 2Nta-3 = Ca(Nta)2-4log_k 8.81 delta_h -32.6352 kJ -gamma 0 0 # Id: 1509682 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Sr+2 + Nta-3 = Sr(Nta)log_k 6.2767 delta h -2.2 kJ -gamma 0 0 # Id: 8009681 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Ba+2 + Nta-3 = Ba(Nta)log_k 5.875 delta_h -6.025 kJ -gamma 0 0 # Id: 1009681 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Edta-4 = H(Edta)-3log_k 10.948 delta_h -23.4304 kJ -gamma 0 0 # Id: 3309691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H + Edta - 4 = H2(Edta) - 2log_k 17.221 delta_h -41.0032 kJ -gamma 0 0 # Id: 3309692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 3H+ + Edta-4 = H3(Edta)-

log k 20.34 delta h -35.564 kJ -gamma 0 0 # Id: 3309693 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 4H+ + Edta-4 = H4(Edta) log_k 22.5 delta_h -34.3088 kJ -gamma 0 0 # Id: 3309694 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 5H+ + Edta-4 = H5(Edta)+ log_k 24 delta h -32.2168 kJ -gamma 0 0 # Id: 3309695 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Sn(OH)2 + 2H + Edta - 4 = Sn(Edta) - 2 + 2H2Olog k 27.026 delta h 0 kJ -gamma 0 0 # Id: 7909691 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Sn(OH)2 + 3H + Edta - 4 = SnH(Edta) - + 2H2Olog_k 29.934 delta_h 0 kJ -gamma 0 0 # Id: 7909692 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Sn(OH)2 + 4H + Edta - 4 = SnH2(Edta) + 2H2Olog k 31.638 delta h 0 kJ -gamma 0 0 # Id: 7909693 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Pb+2 + Edta-4 = Pb(Edta)-2log_k 19.8 delta_h -54.8104 kJ -gamma 0 0 # Id: 6009691 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength: Pb+2 + Edta-4 + H+ = PbH(Edta)log k 23 delta_h 0 kJ -gamma 0 0 # Id: 6009692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Edta-4 + 2H + = PbH2(Edta)log_k 24.9 delta_h 0 kJ -gamma 0 0 # Id: 6009693 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Edta-4 = AI(Edta)log k 19.1 delta h 52.7184 kJ -gamma 0 0 # Id: 309690 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Edta-4 + H+ = AIH(Edta)log_k 21.8 delta_h 36.4008 kJ -gamma 0 0 # Id: 309691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Edta-4 + H2O = AIOH(Edta)-2 + H+log k 12.8 delta_h 73.6384 kJ -gamma 0 0 # Id: 309692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: TI+ + Edta-4 = TI(Edta)-3log k 7.27 delta_h -43.5136 kJ -gamma 0 0 # Id: 8709691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: TI+ + Edta-4 + H+ = TIH(Edta)-2log_k 13.68 delta_h 0 kJ -gamma 0 0 # Id: 8709692

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Edta-4 = Zn(Edta)-2log k 18 delta h -19.2464 kJ -gamma 0 0 # Id: 9509691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Edta-4 + H+ = ZnH(Edta)log k 21.4 delta_h -28.4512 kJ -gamma 0 0 # Id: 9509692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Edta-4 + H2O = ZnOH(Edta)-3 + H+log_k 5.8 delta h 0 kJ -gamma 0 0 # Id: 9509693 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Edta-4 = Cd(Edta)-2log_k 18.2 delta_h -38.0744 kJ -gamma 0 0 # Id: 1609691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Edta-4 + H+ = CdH(Edta)log k 21.5 delta_h -39.748 kJ -gamma 0 0 # Id: 1609692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Edta-4 + 2H + = Hg(Edta)-2 + 2H2Olog_k 29.3 delta_h -125.102 kJ -gamma 0 0 # Id: 3619691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Edta-4 + 3H + = HgH(Edta) - + 2H2Olog k 32.9 delta_h -128.449 kJ

-gamma 0 0 # Id: 3619692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Edta-4 = Cu(Edta)-2log k 20.5 delta_h -34.7272 kJ -gamma 0 0 # Id: 2319691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Edta-4 + H+ = CuH(Edta)log_k 24 delta_h -43.0952 kJ -gamma 0 0 # Id: 2319692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Edta-4 + 2H+ = CuH2(Edta)log_k 26.2 delta h 0 kJ -gamma 0 0 # Id: 2319693 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Edta-4 + H2O = CuOH(Edta)-3 + H+log_k 8.5 delta_h 0 kJ -gamma 0 0 # Id: 2319694 # log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: Ag + + Edta - 4 = Ag(Edta) - 3log_k 8.08 delta_h -31.38 kJ -gamma 0 0 # Id: 209691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + Edta - 4 + H + = AgH(Edta) - 2log_k 15.21 delta_h 0 kJ -gamma 0 0 # Id: 209693 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ni+2 + Edta-4 = Ni(Edta)-2

log k 20.1 delta_h -30.9616 kJ -gamma 0 0 # Id: 5409691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Edta-4 + H+ = NiH(Edta)log k 23.6 delta_h -38.4928 kJ -gamma 0 0 # Id: 5409692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Edta-4 + H2O = NiOH(Edta)-3 + H+log_k 7.6 delta h 0 kJ -gamma 0 0 # Id: 5409693 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Edta-4 = Co(Edta)-2log k 18.1657 delta h -15 kJ -gamma 0 0 # Id: 2009691 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + H+ = CoH(Edta)log_k 21.5946 delta_h -22.9 kJ -gamma 0 0 # Id: 2009692 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Co+2 + Edta-4 + 2H + = CoH2(Edta)log k 23.4986 delta h 0 kJ -gamma 0 0 # Id: 2009693 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 25.0 Co+3 + Edta-4 = Co(Edta)log_k 43.9735 delta_h 0 kJ -gamma 0 0 # Id: 2019691 # log K source: NIST46.4 # Delta H source: NIST46.2

```
#T and ionic strength: 0.10 25.0
Co+3 + Edta-4 + H+ = CoH(Edta)
log k 47.168
delta_h 0 kJ
-gamma 0 0
# Id: 2019692
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.10 20.0
Fe+2 + Edta-4 = Fe(Edta)-2
log_k 16
delta_h -16.736 kJ
-gamma 0 0
# Id: 2809690
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+2 + Edta-4 + H+ = FeH(Edta)-
log_k 19.06
delta h -27.6144 kJ
-gamma 0 0
# Id: 2809691
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+2 + Edta-4 + H2O = FeOH(Edta)-3 + H+
log_k 6.5
delta_h 0 kJ
-gamma 0 0
# Id: 2809692
# log K source: SCD2.62
# Delta H source: SCD2.62
#T and ionic strength:
Fe+2 + Edta-4 + 2H2O = Fe(OH)2(Edta)-4 + 2H+
log k-4
delta_h 0 kJ
-gamma 0 0
# Id: 2809693
# log K source: SCD2.62
# Delta H source: SCD2.62
#T and ionic strength:
Fe+3 + Edta-4 = Fe(Edta)-
log k 27.7
delta_h -11.2968 kJ
-gamma 0 0
# Id: 2819690
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Fe+3 + Edta-4 + H+ = FeH(Edta)
log_k 29.2
delta_h -11.7152 kJ
-gamma 0 0
# Id: 2819691
```

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Edta-4 + H2O = FeOH(Edta)-2 + H+log k 19.9 delta h 0 kJ -gamma 0 0 # Id: 2819692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Edta-4 + 2H2O = Fe(OH)2(Edta)-3 + 2H+log_k 9.85 delta_h 0 kJ -gamma 0 0 # Id: 2819693 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Mn+2 + Edta-4 = Mn(Edta)-2log_k 15.6 delta_h -19.2464 kJ -gamma 0 0 # Id: 4709691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Edta-4 + H+ = MnH(Edta)log_k 19.1 delta_h -24.2672 kJ -gamma 0 0 # Id: 4709692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr+2 + Edta-4 = Cr(Edta)-2log k 15.3 delta_h 0 kJ -gamma 0 0 # Id: 2109691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr+2 + Edta-4 + H+ = CrH(Edta)log_k 19.1 delta_h 0 kJ -gamma 0 0 # Id: 2109692 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + Edta-4 + 2H+ = Cr(Edta)- + 2H2Olog k 35.5 delta_h 0 kJ

-gamma 0 0 # Id: 2119691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + Edta-4 + 3H+ = CrH(Edta) + 2H2Olog k 37.4 delta_h 0 kJ -gamma 0 0 # Id: 2119692 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + Edta-4 + H+ = CrOH(Edta)-2 + H2Olog_k 27.7 delta_h 0 kJ -gamma 0 0 # Id: 2119693 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Be+2 + Edta-4 = Be(Edta)-2log_k 11.4157 delta h 41 kJ -gamma 0 0 # Id: 1109691 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Mg+2 + Edta-4 = Mg(Edta)-2log_k 10.57 delta_h 13.8072 kJ -gamma 0 0 # Id: 4609690 # log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: Mg+2 + Edta-4 + H+ = MgH(Edta)log_k 14.97 delta_h 0 kJ -gamma 0 0 # Id: 4609691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Edta-4 = Ca(Edta)-2log k 12.42 delta_h -25.5224 kJ -gamma 0 0 # Id: 1509690 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Edta-4 + H+ = CaH(Edta)-

log k 15.9 delta_h 0 kJ -gamma 0 0 # Id: 1509691 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Sr+2 + Edta-4 = Sr(Edta)-2log k 10.4357 delta_h -17 kJ -gamma 0 0 # Id: 8009691 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Sr+2 + Edta-4 + H+ = SrH(Edta)log_k 14.7946 delta h 0 kJ -gamma 0 0 # Id: 8009692 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Ba+2 + Edta-4 = Ba(Edta)-2log k 7.72 delta_h -20.5016 kJ -gamma 0 0 # Id: 1009691 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Na + Edta - 4 = Na(Edta) - 3log_k 2.7 delta_h -5.8576 kJ -gamma 0 0 # Id: 5009690 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: K+ + Edta-4 = K(Edta)-3 log k 1.7 delta h 0 kJ -gamma 0 0 # Id: 4109690 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Propionate- = H(Propionate) log_k 4.874 delta_h 0.66 kJ -gamma 0 0 # Id: 3309711 # log K source: NIST46.4 # Delta H source: NIST46.4

```
#T and ionic strength: 0.00 25.0
Pb+2 + Propionate - = Pb(Propionate) +
log k 2.64
delta_h 0 kJ
-gamma 0 0
# Id: 6009711
# log K source: NIST46.4
# Delta H source: SCD2.62
#T and ionic strength: 0.00 35.0
Pb+2 + 2Propionate- = Pb(Propionate)2
log_k 3.1765
delta_h 0 kJ
-gamma 0 0
# Id: 6009712
# log K source: NIST46.4
# Delta H source: SCD2.62
#T and ionic strength: 2.00 25.0
Zn+2 + Propionate - = Zn(Propionate) +
log k 1.4389
delta h 0 kJ
-gamma 0 0
# Id: 9509711
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.10 25.0
Zn+2 + 2Propionate - = Zn(Propionate)2
log_k 1.842
delta_h 0 kJ
-gamma 0 0
# Id: 9509712
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 1.00 25.0
Cd+2 + Propionate - = Cd(Propionate) +
log k 1.598
delta h 0 kJ
-gamma 0 0
# Id: 1609711
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 1.00 25.0
Cd+2 + 2Propionate - = Cd(Propionate)2
log k 2.472
delta_h 0 kJ
-gamma 0 0
# Id: 1609712
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 1.00 25.0
Hg(OH)2 + 2H + Propionate - = Hg(Propionate) + 2H2O
log_k 10.594
delta_h 0 kJ
-gamma 0 0
# Id: 3619711
```

# log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cu+2 + Propionate - = Cu(Propionate) +log k 2.22 delta h 4.1 kJ -gamma 0 0 # Id: 2319711 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cu+2 + 2Propionate - = Cu(Propionate)2log k 3.5 delta_h 0 kJ -gamma 0 0 # Id: 2319712 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ni+2 + Propionate - = Ni(Propionate) +log k 0.908 delta h 0 kJ -gamma 0 0 # Id: 5409711 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 1.00 25.0 Co+2 + Propionate - = Co(Propionate) +log_k 0.671 delta_h 4.6 kJ -gamma 0 0 # Id: 2009711 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Co+2 + 2Propionate - = Co(Propionate)2log k 0.5565 delta_h 16 kJ -gamma 0 0 # Id: 2009712 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 2.00 25.0 Fe+3 + Propionate - = Fe(Propionate)+2log_k 4.012 delta_h 0 kJ -gamma 0 0 # Id: 2819711 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Cr(OH)2+ + 2H+ + Propionate- = Cr(Propionate)+2 + 2H2Olog k 15.0773 delta h 0 kJ

-gamma 0 0 # Id: 2119711 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2H+ + 2Propionate- = Cr(Propionate)2+ + 2H2Olog k 17.9563 delta_h 0 kJ -gamma 0 0 # Id: 2119712 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2H+ + 3Propionate- = Cr(Propionate)3 + 2H2Olog k 20.8858 delta_h 0 kJ -gamma 0 0 # Id: 2119713 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.50 25.0 Mg+2 + Propionate - = Mg(Propionate) +log_k 0.9689 delta h 4.2677 kJ -gamma 0 0 # Id: 4609710 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Ca+2 + Propionate - = Ca(Propionate) +log_k 0.9289 delta_h 3.3472 kJ -gamma 0 0 # Id: 1509710 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Sr+2 + Propionate - = Sr(Propionate) +log k 0.8589 delta_h 0 kJ -gamma 0 0 # Id: 8009711 # loa K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Propionate - = Ba(Propionate) +log k 0.7689 delta_h 0 kJ -gamma 0 0 # Id: 1009711 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 Ba+2 + 2Propionate- = Ba(Propionate)2

log k 0.9834 delta_h 0 kJ -gamma 0 0 # Id: 1009712 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 0.10 25.0 H+ + Butyrate- = H(Butyrate) log_k 4.819 delta_h 2.8 kJ -gamma 0 0 # Id: 3309721 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + Butyrate- = Pb(Butyrate)+ log_k 2.101 delta h 0 kJ -gamma 0 0 # Id: 6009721 # log K source: NIST46.4 # Delta H source: SCD2.62 #T and ionic strength: 2.00 25.0 Zn+2 + Butyrate - = Zn(Butyrate) +log k 1.4289 delta h 0 kJ -gamma 0 0 # Id: 9509721 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Hg(OH)2 + 2H + Butyrate - = Hg(Butyrate) + 2H2Olog_k 10.3529 delta_h 0 kJ -gamma 0 0 # Id: 3619721 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Cu+2 + Butyrate - = Cu(Butyrate) +log k 2.14 delta h 0 kJ -gamma 0 0 # Id: 2319721 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ni+2 + Butyrate - = Ni(Butyrate) +log_k 0.691 delta_h 0 kJ -gamma 0 0 # Id: 5409721 # log K source: NIST46.4 # Delta H source: SCD2.62

```
#T and ionic strength: 2.00 25.0
Co+2 + Butyrate - = Co(Butyrate) +
log k 0.591
delta_h 0 kJ
-gamma 0 0
# Id: 2009721
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 2.00 25.0
Co+2 + 2Butyrate - = Co(Butyrate)2
log_k 0.7765
delta_h 0 kJ
-gamma 0 0
# Id: 2009722
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 2.00 25.0
Mg+2 + Butyrate - = Mg(Butyrate) +
log k 0.9589
delta h 0 kJ
-gamma 0 0
# Id: 4609720
# log K source: NIST46.4
# Delta H source: SCD2.62
#T and ionic strength: 0.10 25.0
Ca+2 + Butyrate - = Ca(Butyrate) +
log_k 0.9389
delta_h 3.3472 kJ
-gamma 0 0
# Id: 1509720
# log K source: NIST46.4
# Delta H source: SCD2.62
#T and ionic strength: 0.10 25.0
Sr+2 + Butyrate- = Sr(Butyrate)+
log k 0.7889
delta h 0 kJ
-gamma 0 0
# Id: 8009721
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.10 25.0
Ba+2 + Butyrate - = Ba(Butyrate) +
log k 0.7389
delta_h 0 kJ
-gamma 0 0
# Id: 1009721
# log K source: NIST46.4
# Delta H source: SCD2.62
#T and ionic strength: 0.10 25.0
Ba+2 + 2Butyrate- = Ba(Butyrate)2
log_k 0.88
delta_h 0 kJ
-gamma 0 0
# Id: 1009722
```

# log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Isobutyrate- = H(Isobutyrate) log k 4.849 delta h 3.2217 kJ -gamma 0 0 # Id: 3309731 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Isobutyrate - = Zn(Isobutyrate) +log k 1.44 delta_h 0 kJ -gamma 0 0 # Id: 9509731 # log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: Cu+2 + Isobutyrate- = Cu(Isobutyrate)+ log_k 2.17 delta h 0 kJ -gamma 0 0 # Id: 2319731 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Isobutyrate - = Cu(Isobutyrate)2log_k 3.3 delta_h 0 kJ -gamma 0 0 # Id: 2319732 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Isobutyrate - = Fe(Isobutyrate)+2log k 4.2 delta_h 0 kJ -gamma 0 0 # Id: 2819731 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Isobutyrate - = Ca(Isobutyrate) +log_k 0.51 delta_h 0 kJ -gamma 0 0 # Id: 1509731 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Two picoline = H(Two picoline)+ log k 5.95 delta_h -25.5224 kJ

-gamma 0 0 # Id: 3309801 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Two picoline = Cu(Two picoline)+2log k 1.3 delta h 0 kJ -gamma 0 0 # Id: 2319801 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + 2Two_picoline = Cu(Two_picoline)2+2$ log_k 2.8 delta_h 0 kJ -gamma 0 0 # Id: 2319802 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+ + Two_picoline = Cu(Two_picoline)+ log_k 5.4 delta h 0 kJ -gamma 0 0 # Id: 2309801 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu + 2Two_picoline = Cu(Two_picoline)2+$ log_k 7.65 delta_h 0 kJ -gamma 0 0 # Id: 2309802 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+ + 3Two_picoline = Cu(Two_picoline)3+ log k 8.5 delta_h 0 kJ -gamma 0 0 # Id: 2309803 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Ag + + Two_picoline = Ag(Two_picoline) +$ log k 2.32 delta_h -24.2672 kJ -gamma 0 0 # Id: 209801 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + 2Two_picoline = Ag(Two_picoline)2+

log k 4.68 delta h -42.6768 kJ -gamma 0 0 # Id: 209802 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Two_picoline = Ni(Two_picoline)+2 log k 0.4 delta_h 0 kJ -gamma 0 0 # Id: 5409801 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Three_picoline = H(Three_picoline)+ log_k 5.7 delta h -23.8488 kJ -gamma 0 0 # Id: 3309811 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Zn+2 + Three_picoline = Zn(Three_picoline)+2$ log k 1 delta h 0 kJ -gamma 0 0 # Id: 9509811 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Zn+2 + 2Three_picoline = Zn(Three_picoline)2+2$ log_k 2.1 delta_h 0 kJ -gamma 0 0 # Id: 9509812 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Zn+2 + 3Three_picoline = Zn(Three_picoline)3+2$ log k 2.6 delta h 0 kJ -gamma 0 0 # Id: 9509813 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Zn+2 + 4Three_picoline = Zn(Three_picoline)4+2$ log_k 3.7 delta_h 0 kJ -gamma 0 0 # Id: 9509814 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength:  $Cd+2 + Three_picoline = Cd(Three_picoline)+2$ log k 1.42 delta_h 0 kJ -gamma 0 0 # Id: 1609811 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength:  $Cd+2 + 2Three_picoline = Cd(Three_picoline)2+2$ log_k 2.27 delta_h 0 kJ -gamma 0 0 # Id: 1609812 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength:  $Cd+2 + 3Three_picoline = Cd(Three_picoline)3+2$ log k 3.6 delta h 0 kJ -gamma 0 0 # Id: 1609813 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cd+2 + 4Three_picoline = Cd(Three_picoline)4+2$ log_k 4 delta_h 0 kJ -gamma 0 0 # Id: 1609814 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+ + Three_picoline = Cu(Three_picoline)+ log k 5.6 delta h 0 kJ -gamma 0 0 # Id: 2309811 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+ + 2Three_picoline = Cu(Three_picoline)2+$ log k 7.78 delta_h 0 kJ -gamma 0 0 # Id: 2309812 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu + + 3Three_picoline = Cu(Three_picoline)3+$ log_k 8.6 delta h 0 kJ -gamma 0 0 # Id: 2309813

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+ + 4Three_picoline = Cu(Three_picoline)4+$ log k 9 delta_h 0 kJ -gamma 0 0 # Id: 2309814 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + Three_picoline = Cu(Three_picoline)+2$ log k 2.77 delta_h 0 kJ -gamma 0 0 # Id: 2319811 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + 2Three_picoline = Cu(Three_picoline)2+2$ log_k 4.8 delta h 0 kJ -gamma 0 0 # Id: 2319812 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + 3Three_picoline = Cu(Three_picoline)3+2$ log_k 6.3 delta_h 0 kJ -gamma 0 0 # Id: 2319813 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + 4Three_picoline = Cu(Three_picoline)4+2$ log k 7.2 delta_h 0 kJ -gamma 0 0 # Id: 2319814 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + Three_picoline = Ag(Three_picoline)+ log_k 2.2 delta_h -21.7568 kJ -gamma 0 0 # Id: 209811 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Aq + + 2Three picoline = Aq(Three picoline)2+log k 4.46 delta h -49.7896 kJ

-gamma 0 0 # Id: 209812 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Three picoline = Ni(Three picoline)+2loa k 1.87 delta h 0 kJ -gamma 0 0 # Id: 5409811 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Ni+2 + 2Three_picoline = Ni(Three_picoline)2+2$ log_k 3.3 delta_h 0 kJ -gamma 0 0 # Id: 5409812 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Ni+2 + 3Three_picoline = Ni(Three_picoline)3+2$ log_k 4.1 delta h 0 kJ -gamma 0 0 # Id: 5409813 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Ni+2 + 4Three_picoline = Ni(Three_picoline)4+2$ log_k 4.6 delta_h 0 kJ -gamma 0 0 # Id: 5409814 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Co+2 + Three_picoline = Co(Three_picoline)+2$ log k 1.4 delta_h 0 kJ -gamma 0 0 # Id: 2009811 # loa K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0  $Co+2 + 2Three_picoline = Co(Three_picoline)2+2$ log k 2.2 delta_h 0 kJ -gamma 0 0 # Id: 2009812 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0  $Co+2 + 3Three_picoline = Co(Three_picoline)3+2$  log k 2.5 delta h 0 kJ -gamma 0 0 # Id: 2009813 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 H+ + Four_picoline = H(Four_picoline)+ log k 6.03 delta_h -25.3132 kJ -gamma 0 0 # Id: 3309821 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Four_picoline = Zn(Four_picoline)+2 log_k 1.4 delta h 0 kJ -gamma 0 0 # Id: 9509821 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 2Four picoline = Zn(Four picoline)2+2log k 2.11 delta h 0 kJ -gamma 0 0 # Id: 9509822 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Zn+2 + 3Four_picoline = Zn(Four_picoline)3+2$ log_k 2.85 delta_h 0 kJ -gamma 0 0 # Id: 9509823 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Four_picoline = Cd(Four_picoline)+2 log k 1.59 delta h 0 kJ -gamma 0 0 # Id: 1609821 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 2Four_picoline = Cd(Four_picoline)2+2 log_k 2.4 delta_h 0 kJ -gamma 0 0 # Id: 1609822 # log K source: SCD2.62 # Delta H source: SCD2.62

**#**T and ionic strength:  $Cd+2 + 3Four_picoline = Cd(Four_picoline)3+2$ log k 3.18 delta_h 0 kJ -gamma 0 0 # Id: 1609823 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + 4Four_picoline = Cd(Four_picoline)4+2 log_k 4 delta_h 0 kJ -gamma 0 0 # Id: 1609824 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu + Four_picoline = Cu(Four_picoline) +$ log k 5.65 delta h 0 kJ -gamma 0 0 # Id: 2309821 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu + 2Four_picoline = Cu(Four_picoline)2+$ log_k 8.2 delta_h 0 kJ -gamma 0 0 # Id: 2309822 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+ + 3Four_picoline = Cu(Four_picoline)3+ log k 8.8 delta h 0 kJ -gamma 0 0 # Id: 2309823 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu + 4Four_picoline = Cu(Four_picoline)4+$ log k 9.2 delta_h 0 kJ -gamma 0 0 # Id: 2309824 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Four_picoline = Cu(Four_picoline)+2 log_k 2.88 delta h 0 kJ -gamma 0 0 # Id: 2319821

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + 2Four_picoline = Cu(Four_picoline)2+2$ log k 5.16 delta h 0 kJ -gamma 0 0 # Id: 2319822 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Cu+2 + 3Four_picoline = Cu(Four_picoline)3+2$ log k 6.77 delta_h 0 kJ -gamma 0 0 # Id: 2319823 # log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: Cu+2 + 4Four_picoline = Cu(Four_picoline)4+2 log k 8.08 delta h 0 kJ -gamma 0 0 # Id: 2319824 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 5Four_picoline = Cu(Four_picoline)5+2 log_k 8.3 delta_h 0 kJ -gamma 0 0 # Id: 2319825 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + Four_picoline = Ag(Four_picoline)+ log k 2.03 delta_h -25.5224 kJ -gamma 0 0 # Id: 209821 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag+ + 2Four_picoline = Ag(Four_picoline)2+ log k 4.39 delta_h -53.5552 kJ -gamma 0 0 # Id: 209822 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Four_picoline = Ni(Four_picoline)+2 log k 2.11 delta h 0 kJ

-gamma 0 0 # Id: 5409821 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Four picoline = Ni(Four picoline)2+2loa k 3.59 delta h 0 kJ -gamma 0 0 # Id: 5409822 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Ni+2 + 3Four_picoline = Ni(Four_picoline)3+2$ log k 4.34 delta_h 0 kJ -gamma 0 0 # Id: 5409823 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 4Four_picoline = Ni(Four_picoline)4+2 log_k 4.7 delta h 0 kJ -gamma 0 0 # Id: 5409824 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength:  $Co+2 + Four_picoline = Co(Four_picoline)+2$ log_k 1.56 delta_h 0 kJ -gamma 0 0 # Id: 2009821 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0  $Co+2 + 2Four_picoline = Co(Four_picoline)2+2$ log k 2.51 delta_h 0 kJ -gamma 0 0 # Id: 2009822 # loa K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0  $Co+2 + 3Four_picoline = Co(Four_picoline)3+2$ log k 2.94 delta_h 0 kJ -gamma 0 0 # Id: 2009823 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0  $Co+2 + 4Four_picoline = Co(Four_picoline)4+2$  log k 3.17 delta_h 0 kJ -gamma 0 0 # Id: 2009824 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 H+ + Formate- = H(Formate) log_k 3.745 delta_h 0.1674 kJ -gamma 0 0 # Id: 3309831 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Formate- = Pb(Formate)+ log_k 2.2 delta h 0 kJ -gamma 0 0 # Id: 6009831 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + Formate - = Zn(Formate) +log k 1.44 delta h 0 kJ -gamma 0 0 # Id: 9509831 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Formate - = Cd(Formate) +log_k 1.7 delta_h 0 kJ -gamma 0 0 # Id: 1609831 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Hg(OH)2 + Formate + 2H + = Hg(Formate) + + 2H2Olog k 9.6 delta_h 0 kJ -gamma 0 0 # Id: 3619831 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Formate - = Cu(Formate) +log_k 2 delta_h 0 kJ -gamma 0 0 # Id: 2319831 # log K source: NIST46.2 # Delta H source: NIST46.2

```
#T and ionic strength:
Ni+2 + Formate - = Ni(Formate) +
log k 1.22
delta_h 0 kJ
-gamma 0 0
# Id: 5409831
# log K source: SCD2.62
# Delta H source: SCD2.62
#T and ionic strength:
Co+2 + Formate - = Co(Formate) +
log_k 1.209
delta_h 0 kJ
-gamma 0 0
# Id: 2009831
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.50 30.0
Co+2 + 2Formate - = Co(Formate)2
log_k 1.1365
delta h 0 kJ
-gamma 0 0
# Id: 2009832
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 2.00 25.0
Cr+2 + Formate - = Cr(Formate) +
log_k 1.07
delta_h 0 kJ
-gamma 0 0
# Id: 2109831
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Mg+2 + Formate - = Mg(Formate) +
log k 1.43
delta_h 0 kJ
-gamma 0 0
# Id: 4609831
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Ca+2 + Formate - = Ca(Formate) +
log k 1.43
delta_h 4.184 kJ
-gamma 0 0
# Id: 1509831
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Sr+2 + Formate - = Sr(Formate) +
log_k 1.39
delta_h 4 kJ
-gamma 0 0
# Id: 8009831
```

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ba+2 + Formate - = Ba(Formate) +log k 1.38 delta h 0 kJ -gamma 0 0 # Id: 1009831 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Isovalerate- = H(Isovalerate)log_k 4.781 delta_h 4.5606 kJ -gamma 0 0 # Id: 3309841 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Isovalerate - = Zn(Isovalerate) +log_k 1.39 delta h 0 kJ -gamma 0 0 # Id: 9509841 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Isovalerate - = Cu(Isovalerate) +log_k 2.08 delta_h 0 kJ -gamma 0 0 # Id: 2319841 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Isovalerate - = Ca(Isovalerate) +log k 0.2 delta_h 0 kJ -gamma 0 0 # Id: 1509841 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Valerate - = H(Valerate)log_k 4.843 delta_h 2.887 kJ -gamma 0 0 # Id: 3309851 # log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: Cu+2 + Valerate - = Cu(Valerate) +log_k 2.12 delta_h 0 kJ

-gamma 0 0 # Id: 2319851 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Valerate - = Ca(Valerate) +log k 0.3 delta_h 0 kJ -gamma 0 0 # Id: 1509851 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ba+2 + Valerate - = Ba(Valerate) +log_k -0.2 delta_h 0 kJ -gamma 0 0 # Id: 1009851 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Acetate- = H(Acetate) log_k 4.757 delta h 0.41 kJ -gamma 0 0 # Id: 3309921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sn(OH)2 + 2H + Acetate - Sn(Acetate) + 2H2Olog_k 10.0213 delta_h 0 kJ -gamma 0 0 # Id: 7909921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 Sn(OH)2 + 2H + 2Acetate = Sn(Acetate)2 + 2H2Olog_k 12.32 delta_h 0 kJ -gamma 0 0 # Id: 7909922 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 Sn(OH)2 + 2H+ + 3Acetate = Sn(Acetate)3 + 2H2Olog_k 13.55 delta_h 0 kJ -gamma 0 0 # Id: 7909923 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 3.00 25.0 Pb+2 + Acetate - = Pb(Acetate) +

log k 2.68 delta_h -0.4 kJ -gamma 0 0 # Id: 6009921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Pb+2 + 2Acetate - = Pb(Acetate)2log k 4.08 delta_h -0.8 kJ -gamma 0 0 # Id: 6009922 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 TI + + Acetate - = TI(Acetate)log_k -0.11 delta h 0 kJ -gamma 0 0 # Id: 8709921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Zn+2 + Acetate - = Zn(Acetate) +log k 1.58 delta h 8.3 kJ -gamma 0 0 # Id: 9509921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Zn+2 + 2Acetate - = Zn(Acetate)2log_k 2.6434 delta_h 22 kJ -gamma 0 0 # Id: 9509922 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Cd+2 + Acetate - = Cd(Acetate) +log k 1.93 delta h 9.6 kJ -gamma 0 0 # Id: 1609921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Cd+2 + 2Acetate - = Cd(Acetate)2log_k 2.86 delta_h 15 kJ -gamma 0 0 # Id: 1609922 # log K source: NIST46.4 # Delta H source: NIST46.4

```
#T and ionic strength: 0.00 25.0
Hg(OH)2 + 2H+ + Acetate- = Hg(Acetate)+ + 2H2O
log k 10.494
delta_h 0 kJ
-gamma 0 0
# Id: 3619920
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.00 25.0
Hg(OH)2 + 2H+ + 2Acetate = Hg(Acetate)2 + 2H2O
log_k 13.83
delta_h 0 kJ
-gamma 0 0
# Id: 3619921
# log K source: NIST46.4
# Delta H source: SCD2.62
#T and ionic strength: 3.00 25.0
Cu+2 + Acetate - = Cu(Acetate) +
log k 2.21
delta h 7.1 kJ
-gamma 0 0
# Id: 2319921
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
Cu+2 + 2Acetate - = Cu(Acetate)2
log_k 3.4
delta_h 12 kJ
-gamma 0 0
# Id: 2319922
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
Cu+2 + 3Acetate - = Cu(Acetate)3 -
log k 3.9434
delta_h 6.2 kJ
-gamma 0 0
# Id: 2319923
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.10 25.0
Ag + + Acetate - = Ag(Acetate)
log k 0.73
delta_h 3 kJ
-gamma 0 0
# Id: 209921
# log K source: NIST46.4
# Delta H source: NIST46.4
#T and ionic strength: 0.00 25.0
Ag + + 2Acetate - = Ag(Acetate)2 -
log_k 0.64
delta_h 3 kJ
-gamma 0 0
# Id: 209922
```

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + Acetate - = Ni(Acetate) +log k 1.37 delta h 8.7 kJ -gamma 0 0 # Id: 5409921 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Ni+2 + 2Acetate - = Ni(Acetate)2log k 2.1 delta_h 10 kJ -gamma 0 0 # Id: 5409922 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + Acetate - = Co(Acetate) +log_k 1.38 delta h 0 kJ -gamma 0 0 # Id: 2009921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Co+2 + 2Acetate - = Co(Acetate)2log_k 0.7565 delta_h 0 kJ -gamma 0 0 # Id: 2009922 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 2.00 25.0 Fe+2 + Acetate - = Fe(Acetate) +log k 1.4 delta_h 0 kJ -gamma 0 0 # Id: 2809920 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Fe+3 + Acetate - = Fe(Acetate)+2log_k 4.0234 delta_h 0 kJ -gamma 0 0 # Id: 2819920 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+3 + 2Acetate - = Fe(Acetate)2 +log k 7.5723 delta h 0 kJ

-gamma 0 0 # Id: 2819921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+3 + 3Acetate - = Fe(Acetate)3log k 9.5867 delta h 0 kJ -gamma 0 0 # Id: 2819922 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Mn+2 + Acetate - = Mn(Acetate) +log_k 1.4 delta_h 0 kJ -gamma 0 0 # Id: 4709920 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cr+2 + Acetate - = Cr(Acetate) +log_k 1.8 delta h 0 kJ -gamma 0 0 # Id: 2109921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cr+2 + 2Acetate - = Cr(Acetate)2log_k 2.92 delta_h 0 kJ -gamma 0 0 # Id: 2109922 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Cr(OH)2+ + 2H+ + Acetate- = Cr(Acetate)+2 + 2H2Olog k 15.0073 delta_h -125.62 kJ -gamma 0 0 # Id: 2119921 # loa K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2H+ + 2Acetate- = Cr(Acetate)2+ + 2H2Olog k 17.9963 delta_h -117.62 kJ -gamma 0 0 # Id: 2119922 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Cr(OH)2+ + 2H+ + 3Acetate - = Cr(Acetate)3 + 2H2O

log k 20.7858 delta_h -96.62 kJ -gamma 0 0 # Id: 2119923 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.50 25.0 Be+2 + Acetate - = Be(Acetate) +log k 2.0489 delta_h 0 kJ -gamma 0 0 # Id: 1109921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Be+2 + 2Acetate - = Be(Acetate)2log_k 3.0034 delta h 0 kJ -gamma 0 0 # Id: 1109922 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mq+2 + Acetate - = Mq(Acetate) +log k 1.27 delta h 0 kJ -gamma 0 0 # Id: 4609920 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ca+2 + Acetate - = Ca(Acetate) +log_k 1.18 delta_h 4 kJ -gamma 0 0 # Id: 1509920 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Sr+2 + Acetate - = Sr(Acetate) +log k 1.14 delta h 0 kJ -gamma 0 0 # Id: 8009921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ba+2 + Acetate - = Ba(Acetate) +log_k 1.07 delta_h 0 kJ -gamma 0 0 # Id: 1009921 # log K source: NIST46.4 # Delta H source: NIST46.2

#T and ionic strength: 0.00 25.0 Na + + Acetate - = Na(Acetate)log k -0.18 delta_h 12 kJ -gamma 0 0 # Id: 5009920 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 K+ + Acetate- = K(Acetate) log_k -0.1955 delta_h 4.184 kJ -gamma 0 0 # Id: 4109921 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 H+ + Tartarate-2 = H(Tartarate)log k 4.366 delta h -0.7531 kJ -gamma 0 0 # Id: 3309931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H+ + Tartarate-2 = H2(Tartarate) log_k 7.402 delta_h -3.6819 kJ -gamma 0 0 # Id: 3309932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Sn(OH)2 + 2H + Tartarate - 2 = Sn(Tartarate) + 2H2Olog k 13.1518 delta_h 0 kJ -gamma 0 0 # Id: 7909931 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Pb+2 + Tartarate-2 = Pb(Tartarate)log k 3.98 delta_h 0 kJ -gamma 0 0 # Id: 6009931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Al+3 + 2Tartarate-2 = Al(Tartarate)2log_k 9.37 delta_h 0 kJ -gamma 0 0 # Id: 309931
# log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: TI+ + Tartarate-2 = TI(Tartarate)log k 1.4 delta h 0 kJ -gamma 0 0 # Id: 8709931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: TI + Tartarate - 2 + H + = TIH(Tartarate)log_k 4.8 delta_h 0 kJ -gamma 0 0 # Id: 8709932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Tartarate-2 = Zn(Tartarate)log_k 3.43 delta h 0 kJ -gamma 0 0 # Id: 9509931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 2Tartarate-2 = Zn(Tartarate)2-2log_k 5.5 delta_h 0 kJ -gamma 0 0 # Id: 9509932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Tartarate-2 + H+ = ZnH(Tartarate)+log k 5.9 delta_h 0 kJ -gamma 0 0 # Id: 9509933 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Tartarate-2 = Cd(Tartarate)log_k 2.7 delta_h 0 kJ -gamma 0 0 # Id: 1609931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Tartarate-2 = Cd(Tartarate)2-2log k 4.1 delta_h 0 kJ

-gamma 0 0 # Id: 1609932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Tartarate-2 + 2H + = Hg(Tartarate) + 2H2Oloa k 14 delta_h 0 kJ -gamma 0 0 # Id: 3619931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Tartarate-2 = Cu(Tartarate)log_k 3.97 delta_h 0 kJ -gamma 0 0 # Id: 2319931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Tartarate-2 + H+ = CuH(Tartarate)+log_k 6.7 delta h 0 kJ -gamma 0 0 # Id: 2319932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Tartarate-2 = Ni(Tartarate)log_k 3.46 delta_h 0 kJ -gamma 0 0 # Id: 5409931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Tartarate-2 + H + = NiH(Tartarate) +log k 5.89 delta_h 0 kJ -gamma 0 0 # Id: 5409932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Tartarate-2 = Co(Tartarate)log k 3.05 delta_h 0 kJ -gamma 0 0 # Id: 2009931 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Co+2 + 2Tartarate-2 = Co(Tartarate)2-2

log k 4 delta h 0 kJ -gamma 0 0 # Id: 2009932 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Co+2 + H+ + Tartarate-2 = CoH(Tartarate)+log k 5.754 delta_h 0 kJ -gamma 0 0 # Id: 2009933 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 1.00 20.0 Fe+2 + Tartarate-2 = Fe(Tartarate)log_k 3.1 delta h 0 kJ -gamma 0 0 # Id: 2809931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Tartarate-2 = Fe(Tartarate)+log k 7.78 delta h 0 kJ -gamma 0 0 # Id: 2819931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Tartarate-2 = Mn(Tartarate)log_k 3.38 delta_h 0 kJ -gamma 0 0 # Id: 4709931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Tartarate-2 + H+ = MnH(Tartarate)+log k 6 delta h 0 kJ -gamma 0 0 # Id: 4709932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mg+2 + Tartarate-2 = Mg(Tartarate)log_k 2.3 delta_h 0 kJ -gamma 0 0 # Id: 4609931 # log K source: NIST46.2 # Delta H source: NIST46.2

```
#T and ionic strength:
Mg+2 + Tartarate-2 + H + = MgH(Tartarate) +
log k 5.75
delta_h 0 kJ
-gamma 0 0
# Id: 4609932
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Be+2 + Tartarate-2 = Be(Tartarate)
log_k 2.768
delta_h 0 kJ
-gamma 0 0
# Id: 1109931
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.50 25.0
Be+2 + 2Tartarate-2 = Be(Tartarate)2-2
log k 4.008
delta h 0 kJ
-gamma 0 0
# Id: 1109932
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.50 25.0
Ca+2 + Tartarate-2 = Ca(Tartarate)
log_k 2.8
delta_h -8.368 kJ
-gamma 0 0
# Id: 1509931
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Ca+2 + Tartarate-2 + H+ = CaH(Tartarate)+
log k 5.86
delta_h -9.1211 kJ
-gamma 0 0
# Id: 1509932
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Sr+2 + Tartarate-2 = Sr(Tartarate)
log k 2.55
delta_h 0 kJ
-gamma 0 0
# Id: 8009931
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.00 20.0
Sr+2 + H+ + Tartarate-2 = SrH(Tartarate)+
log_k 5.8949
delta h 0 kJ
-gamma 0 0
# Id: 8009932
```

# log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Ba+2 + Tartarate-2 = Ba(Tartarate)log k 2.54 delta h 0 kJ -gamma 0 0 # Id: 1009931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ba+2 + Tartarate-2 + H+ = BaH(Tartarate)+log k 5.77 delta_h 0 kJ -gamma 0 0 # Id: 1009932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Na+ + Tartarate-2 = Na(Tartarate)log_k 0.9 delta h -0.8368 kJ -gamma 0 0 # Id: 5009931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Na + + Tartarate - 2 + H + = NaH(Tartarate)log_k 4.58 delta_h -2.8451 kJ -gamma 0 0 # Id: 5009932 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: K+ + Tartarate-2 = K(Tartarate)log k 0.8 delta_h 0 kJ -gamma 0 0 # Id: 4109931 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Glycine- = H(Glycine)log_k 9.778 delta_h -44.3504 kJ -gamma 0 0 # Id: 3309941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H+ + Glycine- = H2(Glycine)+log k 12.128 delta_h -48.4507 kJ

-gamma 0 0 # Id: 3309942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Glycine - = Pb(Glycine) +log k 5.47 delta h 0 kJ -gamma 0 0 # Id: 6009941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + 2Glycine - = Pb(Glycine)2log_k 8.86 delta_h 0 kJ -gamma 0 0 # Id: 6009942 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: TI + Glycine - TI(Glycine)log_k 1.72 delta h 0 kJ -gamma 0 0 # Id: 8709941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Glycine - = Zn(Glycine) +log_k 5.38 delta_h -11.7152 kJ -gamma 0 0 # Id: 9509941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 2Glycine - = Zn(Glycine)2log_k 9.81 delta_h -24.2672 kJ -gamma 0 0 # Id: 9509942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 3Glycine - = Zn(Glycine)3 log k 12.3 delta_h -39.748 kJ -gamma 0 0 # Id: 9509943 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Glycine - = Cd(Glycine) +

log k 4.69 delta_h -8.7864 kJ -gamma 0 0 # Id: 1609941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Glycine - = Cd(Glycine)2log k 8.4 delta_h -22.5936 kJ -gamma 0 0 # Id: 1609942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 3Glycine - = Cd(Glycine)3 log_k 10.7 delta h -35.9824 kJ -gamma 0 0 # Id: 1609943 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Glycine + 2H + = Hg(Glycine) + + 2H2Olog k 17 delta h 0 kJ -gamma 0 0 # Id: 3619941 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Hg(OH)2 + 2Glycine + 2H + = Hg(Glycine)2 + 2H2Olog_k 25.8 delta_h 0 kJ -gamma 0 0 # Id: 3619942 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cu + 2Glycine - Cu(Glycine)2 log_k 10.3 delta h 0 kJ -gamma 0 0 # Id: 2309941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Glycine - = Cu(Glycine) +log_k 8.57 delta_h -25.104 kJ -gamma 0 0 # Id: 2319941 # log K source: NIST46.2 # Delta H source: NIST46.2

**#**T and ionic strength: Cu+2 + 2Glycine - = Cu(Glycine)2log k 15.7 delta_h -54.8104 kJ -gamma 0 0 # Id: 2319942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + Glycine - = Ag(Glycine)log_k 3.51 delta_h -19.2464 kJ -gamma 0 0 # Id: 209941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + 2Glycine - = Ag(Glycine)2 log k 6.89 delta h -48.116 kJ -gamma 0 0 # Id: 209942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Glycine - = Ni(Glycine) +log_k 6.15 delta_h -18.828 kJ -gamma 0 0 # Id: 5409941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Glycine - = Ni(Glycine)2log k 11.12 delta_h -38.0744 kJ -gamma 0 0 # Id: 5409942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 3Glycine - = Ni(Glycine)3 log k 14.63 delta_h -62.3416 kJ -gamma 0 0 # Id: 5409943 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Co+2 + Glycine - = Co(Glycine) +log_k 5.07 delta_h -12 kJ -gamma 0 0 # Id: 2009941

# log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + 2Glycine - = Co(Glycine)2log k 9.07 delta h -26 kJ -gamma 0 0 # Id: 2009942 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + 3Glycine - = Co(Glycine)3 log k 11.6 delta_h -41 kJ -gamma 0 0 # Id: 2009943 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + Glycine + H2O = CoOH(Glycine) + H+log_k -5.02 delta h 0 kJ -gamma 0 0 # Id: 2009944 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Fe+2 + Glycine - = Fe(Glycine) +log_k 4.31 delta_h -15.0624 kJ -gamma 0 0 # Id: 2809941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+2 + 2Glycine - = Fe(Glycine)2log k 8.29 delta_h 0 kJ -gamma 0 0 # Id: 2809942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Glycine - = Fe(Glycine)+2log_k 9.38 delta_h 0 kJ -gamma 0 0 # Id: 2819941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Glycine + H + = FeH(Glycine) + 3log k 11.55 delta_h 0 kJ

-gamma 0 0 # Id: 2819942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Glycine - = Mn(Glycine) +loa k 3.19 delta h -1.2552 kJ -gamma 0 0 # Id: 4709941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + 2Glycine - = Mn(Glycine)2log_k 5.4 delta_h 0 kJ -gamma 0 0 # Id: 4709942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + Glycine- + 2H+ = Cr(Glycine)+2 + 2H2Olog_k 18.7 delta h 0 kJ -gamma 0 0 # Id: 2119941 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + 2Glycine- + 2H+ = Cr(Glycine)2+ + 2H2Olog_k 25.6 delta_h 0 kJ -gamma 0 0 # Id: 2119942 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + 3Glycine- + 2H+ = Cr(Glycine)3 + 2H2Olog_k 31.6 delta_h 0 kJ -gamma 0 0 # Id: 2119943 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Mg+2 + Glycine - = Mg(Glycine) +log k 2.08 delta_h 4.184 kJ -gamma 0 0 # Id: 4609941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Glycine - = Ca(Glycine) +

log k 1.39 delta_h -4.184 kJ -gamma 0 0 # Id: 1509941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Glycine + H + = CaH(Glycine)+2log k 10.1 delta_h -35.9824 kJ -gamma 0 0 # Id: 1509942 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Sr+2 + Glycine - = Sr(Glycine) +log_k 0.91 delta h 0 kJ -gamma 0 0 # Id: 8009941 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.00 25.0 Ba+2 + Glycine - = Ba(Glycine) +log k 0.77 delta h 0 kJ -gamma 0 0 # Id: 1009941 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: H+ + Salicylate-2 = H(Salicylate)log_k 13.7 delta_h -35.7732 kJ -gamma 0 0 # Id: 3309951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H+ + Salicylate-2 = H2(Salicylate) log k 16.8 delta h -38.7857 kJ -gamma 0 0 # Id: 3309952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Salicylate-2 = Zn(Salicylate)log_k 7.71 delta_h 0 kJ -gamma 0 0 # Id: 9509951 # log K source: SCD2.62 # Delta H source: SCD2.62

**#**T and ionic strength: Zn+2 + Salicylate-2 + H+ = ZnH(Salicylate)+log k 15.5 delta_h 0 kJ -gamma 0 0 # Id: 9509952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Salicylate-2 = Cd(Salicylate)log_k 6.2 delta_h 0 kJ -gamma 0 0 # Id: 1609951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Salicylate-2 + H+ = CdH(Salicylate)+log k 16 delta h 0 kJ -gamma 0 0 # Id: 1609952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Salicylate-2 = Cu(Salicylate)log_k 11.3 delta_h -17.9912 kJ -gamma 0 0 # Id: 2319951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Salicylate-2 = Cu(Salicylate)2-2log k 19.3 delta h 0 kJ -gamma 0 0 # Id: 2319952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Salicylate-2 + H+ = CuH(Salicylate)+log_k 14.8 delta_h 0 kJ -gamma 0 0 # Id: 2319953 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Salicylate-2 = Ni(Salicylate)log_k 8.2 delta h 0 kJ -gamma 0 0 # Id: 5409951

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Salicylate-2 = Ni(Salicylate)2-2log k 12.64 delta h 0 kJ -gamma 0 0 # Id: 5409952 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Co+2 + Salicylate-2 = Co(Salicylate)log_k 7.4289 delta_h 0 kJ -gamma 0 0 # Id: 2009951 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Co+2 + 2Salicylate-2 = Co(Salicylate)2-2log_k 11.8 delta h 0 kJ -gamma 0 0 # Id: 2009952 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 20.0 Fe+2 + Salicylate-2 = Fe(Salicylate)log_k 7.2 delta_h 0 kJ -gamma 0 0 # Id: 2809951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+2 + 2Salicylate-2 = Fe(Salicylate)2-2log k 11.6 delta_h 0 kJ -gamma 0 0 # Id: 2809952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + Salicylate-2 = Fe(Salicylate)+log_k 17.6 delta_h 0 kJ -gamma 0 0 # Id: 2819951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Fe+3 + 2Salicylate-2 = Fe(Salicylate)2log k 29.3 delta h 0 kJ

-gamma 0 0 # Id: 2819952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + Salicylate-2 = Mn(Salicylate)log k 6.5 delta h 0 kJ -gamma 0 0 # Id: 4709951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mn+2 + 2Salicylate-2 = Mn(Salicylate)2-2log_k 10.1 delta_h 0 kJ -gamma 0 0 # Id: 4709952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Be+2 + Salicylate-2 = Be(Salicylate)log_k 13.3889 delta h -31.7732 kJ -gamma 0 0 # Id: 1109951 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.10 25.0 Be+2 + 2Salicylate-2 = Be(Salicylate)2-2log_k 23.25 delta_h 0 kJ -gamma 0 0 # Id: 1109952 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Salicylate-2 = Mg(Salicylate)log k 5.76 delta_h 0 kJ -gamma 0 0 # Id: 4609951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Mg+2 + Salicylate-2 + H+ = MgH(Salicylate)+log k 15.3 delta_h 0 kJ -gamma 0 0 # Id: 4609952 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ca+2 + Salicylate-2 = Ca(Salicylate)

log k 4.05 delta_h 0 kJ -gamma 0 0 # Id: 1509951 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Salicylate-2 + H+ = CaH(Salicylate)+log k 14.3 delta_h 0 kJ -gamma 0 0 # Id: 1509952 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ba+2 + Salicylate-2 + H + = BaH(Salicylate) +log_k 13.9 delta h 0 kJ -gamma 0 0 # Id: 1009951 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: H+ + Glutamate-2 = H(Glutamate)log k 9.96 delta h -41.0032 kJ -gamma 0 0 # Id: 3309961 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 2H+ + Glutamate-2 = H2(Glutamate) log_k 14.26 delta_h -43.5136 kJ -gamma 0 0 # Id: 3309962 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: 3H+ + Glutamate-2 = H3(Glutamate)+log k 16.42 delta_h -46.8608 kJ -gamma 0 0 # Id: 3309963 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Glutamate-2 = Pb(Glutamate)log_k 6.43 delta_h 0 kJ -gamma 0 0 # Id: 6009961 # log K source: SCD2.62 # Delta H source: SCD2.62

**#**T and ionic strength: Pb+2 + 2Glutamate-2 = Pb(Glutamate)2-2 log k 8.61 delta_h 0 kJ -gamma 0 0 # Id: 6009962 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Pb+2 + Glutamate-2 + H+ = PbH(Glutamate)+log_k 14.08 delta_h 0 kJ -gamma 0 0 # Id: 6009963 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: AI+3 + Glutamate-2 + H+ = AIH(Glutamate)+2log k 13.07 delta h 0 kJ -gamma 0 0 # Id: 309961 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Glutamate-2 = Zn(Glutamate)log_k 6.2 delta_h 0 kJ -gamma 0 0 # Id: 9509961 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 2Glutamate-2 = Zn(Glutamate)2-2log k 9.13 delta h 0 kJ -gamma 0 0 # Id: 9509962 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Zn+2 + 3Glutamate-2 = Zn(Glutamate)3-4 log_k 9.8 delta_h 0 kJ -gamma 0 0 # Id: 9509963 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cd+2 + Glutamate-2 = Cd(Glutamate)log_k 4.7 delta_h 0 kJ -gamma 0 0 # Id: 1609961

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Glutamate-2 = Cd(Glutamate)2-2log k 7.59 delta h 0 kJ -gamma 0 0 # Id: 1609962 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Hg(OH)2 + Glutamate-2 + 2H + = Hg(Glutamate) + 2H2Olog k 19.8 delta_h 0 kJ -gamma 0 0 # Id: 3619961 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Hg(OH)2 + 2Glutamate-2 + 2H+ = Hg(Glutamate)2-2 + 2H2Olog_k 26.2 delta h 0 kJ -gamma 0 0 # Id: 3619962 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cu+2 + Glutamate-2 = Cu(Glutamate)log_k 9.17 delta_h -20.92 kJ -gamma 0 0 # Id: 2319961 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Glutamate-2 = Cu(Glutamate)2-2log k 15.78 delta_h -48.116 kJ -gamma 0 0 # Id: 2319962 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Glutamate-2 + H+ = CuH(Glutamate)+log k 13.3 delta_h -28.0328 kJ -gamma 0 0 # Id: 2319963 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ag + + Glutamate - 2 = Ag(Glutamate) log k 4.22 delta_h 0 kJ

-gamma 0 0 # Id: 209961 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Aq + 2Glutamate - 2 = Aq(Glutamate) 2 - 3log_k 7.36 delta h 0 kJ -gamma 0 0 # Id: 209962 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: 2Ag + + Glutamate - 2 = Ag2(Glutamate)log_k 3.4 delta_h 0 kJ -gamma 0 0 # Id: 209963 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Glutamate-2 = Ni(Glutamate)log_k 6.47 delta h 0 kJ -gamma 0 0 # Id: 5409961 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + 2Glutamate-2 = Ni(Glutamate)2-2log_k 10.7 delta_h -30.9616 kJ -gamma 0 0 # Id: 5409962 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Glutamate-2 = Co(Glutamate)log k 5.4178 delta_h 0 kJ -gamma 0 0 # Id: 2009961 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Co+2 + 2Glutamate-2 = Co(Glutamate)2-2log k 8.7178 delta_h 0 kJ -gamma 0 0 # Id: 2009962 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mn+2 + Glutamate-2 = Mn(Glutamate)

log k 4.95 delta_h 0 kJ -gamma 0 0 # Id: 4709961 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Mn+2 + 2Glutamate-2 = Mn(Glutamate)2-2 log k 8.48 delta_h 0 kJ -gamma 0 0 # Id: 4709962 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + Glutamate-2 + 2H+ = Cr(Glutamate)+ + 2H2Olog_k 22.6 delta h 0 kJ -gamma 0 0 # Id: 2119961 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + 2Glutamate-2 + 2H+ = Cr(Glutamate)2- + 2H2Olog k 30.7 delta h 0 kJ -gamma 0 0 # Id: 2119962 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + Glutamate-2 + 3H+ = CrH(Glutamate)+2 + 2H2Olog_k 25.2 delta_h 0 kJ -gamma 0 0 # Id: 2119963 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Mg+2 + Glutamate-2 = Mg(Glutamate)log k 2.8 delta h 0 kJ -gamma 0 0 # Id: 4609961 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Glutamate-2 = Ca(Glutamate)log_k 2.06 delta_h 0 kJ -gamma 0 0 # Id: 1509961 # log K source: NIST46.2 # Delta H source: NIST46.2

```
#T and ionic strength:
Ca+2 + Glutamate-2 + H+ = CaH(Glutamate)+
log k 11.13
delta_h 0 kJ
-gamma 0 0
# Id: 1509962
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Sr+2 + Glutamate-2 = Sr(Glutamate)
log_k 2.2278
delta_h 0 kJ
-gamma 0 0
# Id: 8009961
# log K source: NIST46.4
# Delta H source: NIST46.2
#T and ionic strength: 0.10 25.0
Ba+2 + Glutamate-2 = Ba(Glutamate)
log k 2.14
delta h 0 kJ
-gamma 0 0
# Id: 1009961
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
H+ + Phthalate-2 = H(Phthalate)-
log_k 5.408
delta_h 2.1757 kJ
-gamma 0 0
# Id: 3309971
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
2H+ + Phthalate-2 = H2(Phthalate)
log k 8.358
delta_h 4.8534 kJ
-gamma 0 0
# Id: 3309972
# log K source: NIST46.2
# Delta H source: NIST46.2
#T and ionic strength:
Pb+2 + Phthalate-2 = Pb(Phthalate)
log k 4.26
delta_h 0 kJ
-gamma 0 0
# Id: 6009971
# log K source: SCD2.62
# Delta H source: SCD2.62
#T and ionic strength:
Pb+2 + 2Phthalate-2 = Pb(Phthalate)2-2
log_k 4.83
delta_h 0 kJ
-gamma 0 0
# Id: 6009972
```

# log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Pb+2 + Phthalate-2 + H+ = PbH(Phthalate)+log k 6.98 delta h 0 kJ -gamma 0 0 # Id: 6009973 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + Phthalate-2 = AI(Phthalate)+log k 4.56 delta_h 0 kJ -gamma 0 0 # Id: 309971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: AI+3 + 2Phthalate-2 = AI(Phthalate)2log_k 7.2 delta h 0 kJ -gamma 0 0 # Id: 309972 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + Phthalate-2 = Zn(Phthalate)log_k 2.91 delta_h 13.3888 kJ -gamma 0 0 # Id: 9509971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Zn+2 + 2Phthalate-2 = Zn(Phthalate)2-2log k 4.2 delta_h 0 kJ -gamma 0 0 # Id: 9509972 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Phthalate-2 = Cd(Phthalate)log_k 3.43 delta_h 0 kJ -gamma 0 0 # Id: 1609971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + Phthalate-2 + H+ = CdH(Phthalate)+log k 6.3 delta_h 0 kJ

-gamma 0 0 # Id: 1609973 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cd+2 + 2Phthalate-2 = Cd(Phthalate)2-2log k 3.7 delta_h 0 kJ -gamma 0 0 # Id: 1609972 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Phthalate-2 = Cu(Phthalate)log_k 4.02 delta_h 8.368 kJ -gamma 0 0 # Id: 2319971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + Phthalate-2 + H+ = CuH(Phthalate)+log_k 7.1 delta h 3.8493 kJ -gamma 0 0 # Id: 2319970 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cu+2 + 2Phthalate-2 = Cu(Phthalate)2-2log_k 5.3 delta_h 15.8992 kJ -gamma 0 0 # Id: 2319972 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Phthalate-2 = Ni(Phthalate)log k 2.95 delta_h 7.5312 kJ -gamma 0 0 # Id: 5409971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ni+2 + Phthalate-2 + H+ = NiH(Phthalate)+log k 6.6 delta_h 0 kJ -gamma 0 0 # Id: 5409972 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Co+2 + Phthalate-2 = Co(Phthalate)

log k 2.83 delta_h 7.9 kJ -gamma 0 0 # Id: 2009971 # log K source: NIST46.4 # Delta H source: NIST46.4 #T and ionic strength: 0.00 25.0 Co+2 + H+ + Phthalate-2 = CoH(Phthalate)+log k 7.227 delta_h 0 kJ -gamma 0 0 # Id: 2009972 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.50 25.0 Mn+2 + Phthalate-2 = Mn(Phthalate)log_k 2.74 delta h 10.0416 kJ -gamma 0 0 # Id: 4709971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Cr(OH)2+ + Phthalate-2 + 2H+ = Cr(Phthalate)+ + 2H2Olog k 16.3 delta h 0 kJ -gamma 0 0 # Id: 2119971 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + 2Phthalate-2 + 2H+ = Cr(Phthalate)2- + 2H2Olog_k 21.2 delta_h 0 kJ -gamma 0 0 # Id: 2119972 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Cr(OH)2+ + 3Phthalate-2 + 2H+ = Cr(Phthalate)3-3 + 2H2Olog k 23.3 delta_h 0 kJ -gamma 0 0 # Id: 2119973 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Be+2 + Phthalate-2 = Be(Phthalate)log_k 4.8278 delta_h 0 kJ -gamma 0 0 # Id: 1109971 # log K source: NIST46.4 # Delta H source: NIST46.2

#T and ionic strength: 0.10 25.0 Be+2 + 2Phthalate-2 = Be(Phthalate)2-2log k 6.5478 delta_h 0 kJ -gamma 0 0 # Id: 1109972 # log K source: NIST46.4 # Delta H source: NIST46.2 #T and ionic strength: 0.10 25.0 Mg+2 + Phthalate-2 = Mg(Phthalate)log_k 2.49 delta_h 0 kJ -gamma 0 0 # Id: 4609971 # log K source: SCD2.62 # Delta H source: SCD2.62 **#**T and ionic strength: Ca+2 + Phthalate-2 = Ca(Phthalate)log k 2.45 delta h 0 kJ -gamma 0 0 # Id: 1509970 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ca+2 + Phthalate-2 + H+ = CaH(Phthalate)+log_k 6.43 delta_h 0 kJ -gamma 0 0 # Id: 1509971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Ba+2 + Phthalate-2 = Ba(Phthalate)log k 2.33 delta_h 0 kJ -gamma 0 0 # Id: 1009971 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: Na + + Phthalate - 2 = Na(Phthalate) log k 0.8 delta_h 4.184 kJ -gamma 0 0 # Id: 5009970 # log K source: NIST46.2 # Delta H source: NIST46.2 **#**T and ionic strength: K+ + Phthalate-2 = K(Phthalate)log_k 0.7 delta_h 3.7656 kJ -gamma 0 0 # Id: 4109971

# log K source: NIST46.2 # Delta H source: NIST46.2 #T and ionic strength: PHASES Sulfur S + H + + 2e - = HS log k -2.1449 delta_h -16.3 kJ Semetal(hex Se + H + + 2e - = HSelog_k -7.7084 delta_h 15.9 kJ Semetal(am) Se + H + + 2e - = HSe log_k -7.1099 delta_h 10.8784 kJ Sbmetal Sb + 3H2O = Sb(OH)3 + 3H + 3elog_k -11.6889 delta_h 83.89 kJ Snmetal(wht) Sn + 2H2O = Sn(OH)2 + 2H + 2elog_k -2.3266 delta h -0 kJ Pbmetal Pb = Pb+2 + 2elog_k 4.2462 delta_h 0.92 kJ Tlmetal TI = TI + + elog_k 5.6762 delta_h 5.36 kJ Znmetal Zn = Zn + 2 + 2elog k 25.7886 delta_h -153.39 kJ Cdmetal(alpha) Cd = Cd + 2 + 2elog_k 13.5147 delta_h -75.33 kJ Cdmetal(gamma) Cd = Cd + 2 + 2elog k 13.618 delta_h -75.92 kJ Hgmetal(I) Hg = 0.5Hg2+2 + elog_k -13.4517 delta_h 83.435 kJ Cumetal Cu = Cu + + elog_k -8.756 delta_h 71.67 kJ Agmetal Ag = Ag + + elog k -13.5065 delta h 105.79 kJ Crmetal Cr = Cr + 2 + 2elog_k 30.4831 delta h -172 kJ Vmetal V = V + 3 + 3elog k 44.0253 delta_h -259 kJ Stibnite Sb2S3 + 6H2O = 2Sb(OH)3 + 3H + 3HSlog_k -50.46 delta_h 293.78 kJ Orpiment As2S3 + 6H2O = 2H3AsO3 + 3HS + 3H +log_k -61.0663 delta h 350.68 kJ Realgar AsS + 3H2O = H3AsO3 + HS + 2H + elog_k -19.747 delta_h 127.8 kJ SnS SnS + 2H2O = Sn(OH)2 + H + HSlog_k -19.114 delta_h -0 kJ SnS2 SnS2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSlog_k -57.4538 delta_h -0 kJ Galena PbS + H + = Pb + 2 + HSlog_k -13.97 delta_h 80 kJ TI2S TI2S + H + = 2TI + HSlog k -7.19 delta_h 91.52 kJ ZnS(am) ZnS + H + = Zn + 2 + HSlog_k -9.052 delta_h 15.3553 kJ Sphalerite ZnS + H + = Zn + 2 + HSlog_k -11.45 delta_h 30 kJ Wurtzite ZnS + H + = Zn + 2 + HSlog_k -8.95 delta_h 21.171 kJ Greenockite CdS + H + = Cd + 2 + HSlog k -14.36 delta_h 55 kJ

Hq2S Hg2S + H + = Hg2 + 2 + HSlog k -11.6765 delta_h 69.7473 kJ Cinnabar HgS + 2H2O = Hg(OH)2 + H + HSlog k -45.694 delta h 253.76 kJ Metacinnabar HgS + 2H2O = Hg(OH)2 + H + HSlog_k -45.094 delta_h 253.72 kJ Chalcocite Cu2S + H+ = 2Cu+ + HSlog_k -34.92 delta_h 168 kJ Djurleite Cu0.066Cu1.868S + H + = 0.066Cu + 2 + 1.868Cu + + HSlog_k -33.92 delta h 200.334 kJ Anilite Cu0.25Cu1.5S + H + = 0.25Cu + 2 + 1.5Cu + + HSlog_k -31.878 delta h 182.15 kJ BlaubleiII Cu0.6Cu0.8S + H + = 0.6Cu + 2 + 0.8Cu + HSlog_k -27.279 delta_h -0 kJ BlaubleiI Cu0.9Cu0.2S + H + = 0.9Cu + 2 + 0.2Cu + HSlog_k -24.162 delta_h -0 kJ Covellite CuS + H + = Cu + 2 + HSlog k -22.3 delta_h 97 kJ Chalcopyrite CuFeS2 + 2H + = Cu + 2 + Fe + 2 + 2HSlog k -35.27 delta_h 148.448 kJ Acanthite Ag2S + H + = 2Ag + + HSlog_k -36.22 delta_h 227 kJ NiS(alpha) NiS + H + = Ni + 2 + HSlog_k -5.6 delta_h -0 kJ NiS(beta) NiS + H + = Ni + 2 + HSlog_k -11.1 delta_h -0 kJ NiS(gamma) NiS + H + = Ni + 2 + HS-

log_k -12.8 delta_h -0 kJ CoS(alpha) CoS + H + = Co + 2 + HSlog_k -7.44 delta h -0 kJ CoS(beta) CoS + H + = Co + 2 + HSlog k -11.07 delta_h -0 kJ FeS(ppt) FeS + H+ = Fe+2 + HSlog_k -2.95 delta_h -11 kJ Greigite Fe3S4 + 4H + = 2Fe + 3 + Fe + 2 + 4HSlog_k -45.035 delta h -0 kJ Mackinawite FeS + H+ = Fe+2 + HSlog_k -3.6 delta_h -0 kJ Pyrite FeS2 + 2H+ + 2e- = Fe+2 + 2HSlog k -18.5082 delta_h 49.844 kJ MnS(grn) MnS + H + = Mn + 2 + HSlog_k 0.17 delta_h -32 kJ MnS(pnk) MnS + H + = Mn + 2 + HSlog_k 3.34 delta_h -0 kJ MoS2 MoS2 + 4H2O = MoO4-2 + 6H+ + 2HS- + 2elog k -70.2596 delta_h 389.02 kJ BeS BeS + H + = Be + 2 + HSlog_k 19.38 delta_h -0 kJ BaS BaS + H + = Ba + 2 + HSlog_k 16.18 delta_h -0 kJ Hg2(Cyanide)2 Hg2(Cyanide)2 = Hg2+2 + 2Cyanidelog_k -39.3 delta_h -0 kJ CuCyanide CuCyanide = Cu+ + Cyanidelog_k -19.5 delta_h -19 kJ

AqCyanide AgCyanide = Ag+ + Cyanidelog k -15.74 delta_h 110.395 kJ Aq2(Cyanide)2 Ag2(Cyanide)2 = 2Ag + + 2Cyanidelog k -11.3289 delta_h -0 kJ NaCyanide(cubic) NaCyanide = Cyanide- + Na+ log_k 1.6012 delta_h 0.969 kJ KCyanide(cubic) KCyanide = Cyanide + K +log_k 1.4188 delta_h 11.93 kJ Pb2Fe(Cyanide)6 Pb2Fe(Cyanide)6 = 2Pb+2 + Fe+2 + 6Cyanidelog k -53.42 delta h -0 kJ Zn2Fe(Cyanide)6 Zn2Fe(Cyanide)6 = 2Zn+2 + Fe+2 + 6Cyanidelog_k -51.08 delta h -0 kJ Cd2Fe(Cyanide)6 Cd2Fe(Cyanide)6 = 2Cd+2 + Fe+2 + 6Cyanidelog_k -52.78 delta_h -0 kJ Ag4Fe(Cyanide)6 Ag4Fe(Cyanide)6 = 4Ag+ + Fe+2 + 6Cyanidelog_k -79.47 delta_h -0 kJ Ag3Fe(Cyanide)6 Ag3Fe(Cyanide)6 = 3Ag + Fe + 3 + 6Cyanidelog k -72.7867 delta h -0 kJ Mn3(Fe(Cyanide)6)2 Mn3(Fe(Cyanide)6)2 = 3Mn+2 + 2Fe+3 + 12Cyanidelog k -105.4 delta_h -0 kJ Sb2Se3 Sb2Se3 + 6H2O = 2Sb(OH)3 + 3HSe + 3H +log k -67.7571 delta_h 343.046 kJ SnSe SnSe + 2H2O = Sn(OH)2 + H+ + HSelog_k -30.494 delta_h -0 kJ SnSe2 SnSe2 + 6H2O = Sn(OH)6-2 + 4H+ + 2HSelog_k -65.1189 delta_h -0 kJ Clausthalite PbSe + H + = Pb + 2 + HSelog_k -27.1 delta_h 119.72 kJ TI2Se TI2Se + H+ = 2TI+ + HSelog_k -18.1 delta h 85.62 kJ ZnSe ZnSe + H + = Zn + 2 + HSelog_k -14.4 delta_h 25.51 kJ CdSe CdSe + H+ = Cd+2 + HSelog_k -20.2 delta_h 75.9814 kJ HgSe HgSe + 2H2O = Hg(OH)2 + H+ + HSelog_k -55.694 delta h -0 kJ Cu2Se(alpha) Cu2Se + H+ = 2Cu+ + HSelog_k -45.8 delta h 214.263 kJ Cu3Se2 Cu3Se2 + 2H+ = 2HSe- + 2Cu+ + Cu+2log_k -63.4911 delta_h 340.327 kJ CuSe CuSe + H + = Cu + 2 + HSelog_k -33.1 delta_h 121.127 kJ CuSe2 CuSe2 + 2H+ + 2e- = 2HSe- + Cu+2log_k -33.3655 delta_h 140.582 kJ Aq2Se Ag2Se + H+ = 2Ag+ + HSelog k -48.7 delta_h 265.48 kJ NiSe NiSe + H + = Ni + 2 + HSelog_k -17.7 delta_h -0 kJ CoSe CoSe + H + = Co + 2 + HSelog_k -16.2 delta_h -0 kJ FeSe FeSe + H + = Fe + 2 + HSelog_k -11 delta_h 2.092 kJ Ferroselite FeSe2 + 2H+ + 2e- = 2HSe- + Fe+2log_k -18.5959 delta_h 47.2792 kJ

MnSe MnSe + H + = Mn + 2 + HSelog k 3.5 delta_h -98.15 kJ AISb AISb + 3H2O = Sb(OH)3 + 6e + AI + 3H + 3H + 3Hlog k 65.6241 delta_h -0 kJ ZnSb ZnSb + 3H2O = Sb(OH)3 + 5e + Zn+2 + 3H +log_k 11.0138 delta_h -54.8773 kJ CdSb CdSb + 3H2O = Sb(OH)3 + 5e + 3H + Cd + 2log_k -0.3501 delta_h 22.36 kJ Cu2Sb:3H2O Cu2Sb: 3H2O = Sb(OH)3 + 6e + 3H + Cu + Cu + 2log_k -34.8827 delta h 233.237 kJ Cu3Sb Cu3Sb + 3H2O = Sb(OH)3 + 6e + 3H + 3Cu +log_k -42.5937 delta h 308.131 kJ #Aq4Sb # log_k -56.1818 # delta_h -0 kJ Breithauptite NiSb + 3H2O = Sb(OH)3 + 5e + 3H + Ni + 2log_k -18.5225 delta_h 96.0019 kJ MnSb MnSb + 3H2O = Mn+3 + Sb(OH)3 + 6e + 3H+log k -2.9099 delta_h 21.1083 kJ Mn2Sb Mn2Sb + 3H2O = 2Mn+2 + Sb(OH)3 + 7e + 3H +log k 61.0796 delta_h -0 kJ USb2 USb2 + 8H2O = UO2+2 + 2Sb(OH)3 + 12e + 10H +log k 29.5771 delta_h -103.56 kJ U3Sb4 U3Sb4 + 12H2O = 3U+4 + 4Sb(OH)3 + 24e + 12H +log k 152.383 delta_h -986.04 kJ Mg2Sb3 Mg2Sb3 + 9H2O = 2Mg+2 + 3Sb(OH)3 + 9H+ + 13elog_k 74.6838 delta_h -0 kJ Ca3Sb2 Ca3Sb2 + 6H2O = 3Ca+2 + 2Sb(OH)3 + 6H+ + 12elog k 142.974 delta_h -732.744 kJ NaSb NaSb + 3H2O = Na + Sb(OH)3 + 3H + 4elog k 23.1658 delta h -93.45 kJ Na3Sb Na3Sb + 3H2O = 3Na + Sb(OH)3 + 3H + 6elog k 94.4517 delta_h -432.13 kJ SeO2 SeO2 + H2O = HSeO3 - + H +log_k 0.1246 delta_h 1.4016 kJ SeO3 SeO3 + H2O = SeO4-2 + 2H+log_k 21.044 delta_h -146.377 kJ Sb205 Sb205 + 7H20 = 2Sb(OH)6- + 2H+log_k -9.6674 delta h -0 kJ SbO2 SbO2 + 4H2O = Sb(OH)6- + e- + 2H+log_k -27.8241 delta h -0 kJ Sb204 Sb2O4 + 2H2O + 2H + 2e = 2Sb(OH)3log_k 3.4021 delta_h -68.04 kJ Sb4O6(cubic) Sb406 + 6H20 = 4Sb(OH)3log_k -18.2612 delta_h 61.1801 kJ Sb406(orth) Sb406 + 6H20 = 4Sb(OH)3log k -17.9012 delta_h 37.6801 kJ Sb(OH)3 Sb(OH)3 = Sb(OH)3log k -7.1099 delta_h 30.1248 kJ Senarmontite Sb2O3 + 3H2O = 2Sb(OH)3log_k -12.3654 delta_h 30.6478 kJ Valentinite Sb2O3 + 3H2O = 2Sb(OH)3log_k -8.4806 delta_h 19.0163 kJ Chalcedony SiO2 + 2H2O = H4SiO4log_k -3.55 delta_h 19.7 kJ

Cristobalite SiO2 + 2H2O = H4SiO4log k -3.35 delta_h 20.006 kJ Quartz SiO2 + 2H2O = H4SiO4log k-4 delta_h 22.36 kJ SiO2(am-gel) SiO2 + 2H2O = H4SiO4log_k -2.71 delta_h 14 kJ SiO2(am-ppt) SiO2 + 2H2O = H4SiO4log_k -2.74 delta_h 15.15 kJ SnO SnO + H2O = Sn(OH)2log_k -4.9141 delta_h -0 kJ SnO2 SnO2 + 4H2O = Sn(OH)6-2 + 2H+log_k -28.9749 delta h -0 kJ Sn(OH)2 Sn(OH)2 = Sn(OH)2log_k -5.4309 delta_h -0 kJ Sn(OH)4 Sn(OH)4 + 2H2O = Sn(OH)6-2 + 2H+log_k -22.2808 delta_h -0 kJ H2Sn(OH)6 H2Sn(OH)6 = Sn(OH)6-2 + 2H+log k -23.5281 delta h -0 kJ Massicot PbO + 2H + = Pb + 2 + H2Olog_k 12.894 delta_h -66.848 kJ Litharge PbO + 2H + = Pb + 2 + H2Olog k 12.694 delta_h -65.501 kJ PbO:0.3H2O PbO:0.33H2O + 2H + = Pb + 2 + 1.33H2Olog k 12.98 delta_h -0 kJ Plattnerite PbO2 + 4H+ + 2e- = Pb+2 + 2H2Olog_k 49.6001 delta_h -296.27 kJ Pb(OH)2 Pb(OH)2 + 2H + = Pb + 2 + 2H2O

log_k 8.15 delta_h -58.5342 kJ Pb2O(OH)2 Pb2O(OH)2 + 4H + = 2Pb + 2 + 3H2Olog_k 26.188 delta h -0 kJ Al(OH)3(am) AI(OH)3 + 3H + = AI + 3 + 3H2Olog k 10.8 delta_h -111 kJ Boehmite AIOOH + 3H + = AI + 3 + 2H2Olog k 8.578 delta_h -117.696 kJ Diaspore AIOOH + 3H + = AI + 3 + 2H2Olog_k 6.873 delta_h -103.052 kJ Gibbsite AI(OH)3 + 3H + = AI + 3 + 3H2Olog_k 8.291 delta h -95.3952 kJ TI2O TI2O + 2H + = 2TI + H2Olog_k 27.0915 delta_h -96.41 kJ TIOH TIOH + H+ = TI+ + H2Olog_k 12.9186 delta_h -41.57 kJ Avicennite TI2O3 + 3H2O = 2TI(OH)3log_k -13 delta_h -0 kJ TI(OH)3 TI(OH)3 = TI(OH)3log k -5.441 delta_h -0 kJ Zn(OH)2(am) Zn(OH)2 + 2H + = Zn + 2 + 2H2Olog k 12.474 delta_h -80.62 kJ Zn(OH)2 Zn(OH)2 + 2H + = Zn + 2 + 2H2Olog_k 12.2 delta_h -0 kJ Zn(OH)2(beta) Zn(OH)2 + 2H + = Zn + 2 + 2H2Olog_k 11.754 delta_h -83.14 kJ Zn(OH)2(gamma) Zn(OH)2 + 2H + = Zn + 2 + 2H2Olog k 11.734 delta h -0 kJ

Zn(OH)2(epsilon) Zn(OH)2 + 2H + = Zn + 2 + 2H2Olog k 11.534 delta_h -81.8 kJ ZnO(active) ZnO + 2H + = Zn + 2 + H2Olog k 11.1884 delta_h -88.76 kJ Zincite ZnO + 2H + = Zn + 2 + H2Olog_k 11.334 delta_h -89.62 kJ Cd(OH)2(am) Cd(OH)2 + 2H + = Cd + 2 + 2H2Olog_k 13.73 delta_h -86.9017 kJ Cd(OH)2 Cd(OH)2 + 2H + = Cd + 2 + 2H2Olog_k 13.644 delta h -94.62 kJ Monteponite CdO + 2H + = Cd + 2 + H2Olog_k 15.1034 delta h -103.4 kJ Hg2(OH)2 Hg2(OH)2 + 2H + = Hg2 + 2 + 2H2Olog_k 5.2603 delta_h -0 kJ Montroydite HgO + H2O = Hg(OH)2log_k -3.64 delta_h -38.9 kJ Hg(OH)2 Hg(OH)2 = Hg(OH)2log k -3.4963 delta_h -0 kJ Cuprite Cu2O + 2H + = 2Cu + + H2Olog_k -1.406 delta_h -124.02 kJ Cu(OH)2 Cu(OH)2 + 2H + = Cu + 2 + 2H2Olog k 8.674 delta_h -56.42 kJ Tenorite CuO + 2H + = Cu + 2 + H2Olog_k 7.644 delta_h -64.867 kJ Ag2O Ag2O + 2H + = 2Ag + + H2Olog_k 12.574 delta_h -45.62 kJ Ni(OH)2 Ni(OH)2 + 2H + = Ni + 2 + 2H2O

log k 12.794 delta h -95.96 kJ Bunsenite NiO + 2H + = Ni + 2 + H2Olog k 12.4456 delta h -100.13 kJ CoO CoO + 2H + = Co + 2 + H2Olog k 13.5864 delta_h -106.295 kJ Co(OH)2 Co(OH)2 + 2H + = Co + 2 + 2H2Olog_k 13.094 delta_h -0 kJ Co(OH)3 Co(OH)3 + 3H + = Co + 3 + 3H2Olog_k -2.309 delta h -92.43 kJ #Wustite-0.11 # WUSTITE-0.11 + 2H+ = 0.947Fe+2 + H2O # log_k 11.6879 # delta_h -103.938 kJ Fe(OH)2 Fe(OH)2 + 2H + = Fe + 2 + 2H2Olog k 13.564 delta h -0 kJ Ferrihydrite Fe(OH)3 + 3H + = Fe + 3 + 3H2Olog_k 3.191 delta_h -73.374 kJ Fe3(OH)8 Fe3(OH)8 + 8H + = 2Fe + 3 + Fe + 2 + 8H2Olog_k 20.222 delta_h -0 kJ Goethite FeOOH + 3H + = Fe + 3 + 2H2Olog k 0.491 delta_h -60.5843 kJ **Pyrolusite** MnO2 + 4H + 2e - = Mn + 2 + 2H2Olog k 41.38 delta h -272 kJ Birnessite MnO2 + 4H+ + e- = Mn+3 + 2H2Olog_k 18.091 delta_h -0 kJ Nsutite MnO2 + 4H+ + e- = Mn+3 + 2H2Olog_k 17.504 delta_h -0 kJ Pyrochroite Mn(OH)2 + 2H + = Mn + 2 + 2H2Olog k 15.194 delta_h -97.0099 kJ
Manganite MnOOH + 3H + e = Mn + 2 + 2H2Olog k 25.34 delta_h -0 kJ Cr(OH)2 Cr(OH)2 + 2H + = Cr + 2 + 2H2Olog k 10.8189 delta_h -35.6058 kJ Cr(OH)3(am) Cr(OH)3 + H + = Cr(OH)2 + H2Olog_k -0.75 delta h -0 kJ Cr(OH)3 Cr(OH)3 + H + = Cr(OH)2 + H2Olog_k 1.3355 delta_h -29.7692 kJ CrO3 CrO3 + H2O = CrO4-2 + 2H+log_k -3.2105 delta_h -5.2091 kJ MoO3 MoO3 + H2O = MoO4-2 + 2H+log_k -8 delta_h -0 kJ VO VO + 2H + = V + 3 + H2O + elog_k 14.7563 delta_h -113.041 kJ V(OH)3 V(OH)3 + 3H + = V + 3 + 3H2Olog_k 7.591 delta_h -0 kJ VO(OH)2 VO(OH)2 + 2H + = VO + 2 + 2H2Olog k 5.1506 delta h -0 kJ Uraninite UO2 + 4H + = U + 4 + 2H2Olog_k -4.6693 delta_h -77.86 kJ UO2(am) UO2 + 4H+ = U+4 + 2H2Olog_k 0.934 delta_h -109.746 kJ UO3 UO3 + 2H+ = UO2+2 + H2Olog_k 7.7 delta_h -81.0299 kJ Gummite UO3 + 2H+ = UO2+2 + H2Olog_k 7.6718 delta_h -81.0299 kJ UO2(OH)2(beta) UO2(OH)2 + 2H + = UO2 + 2 + 2H2O

log k 5.6116 delta_h -56.7599 kJ Schoepite UO2(OH)2:H2O + 2H + = UO2 + 2 + 3H2Olog k 5.994 delta h -49.79 kJ Be(OH)2(am) Be(OH)2 + 2H + = Be + 2 + 2H2Olog_k 7.194 delta_h -0 kJ Be(OH)2(alpha) Be(OH)2 + 2H + = Be + 2 + 2H2Olog k 6.894 delta_h -0 kJ Be(OH)2(beta) Be(OH)2 + 2H + = Be + 2 + 2H2Olog_k 6.494 delta h -0 kJ Brucite Mg(OH)2 + 2H + = Mg + 2 + 2H2Olog_k 16.844 delta_h -113.996 kJ Periclase MgO + 2H + = Mg + 2 + H2Olog_k 21.5841 delta h -151.23 kJ Mg(OH)2(active) Mg(OH)2 + 2H + = Mg + 2 + 2H2Olog_k 18.794 delta_h -0 kJ Lime CaO + 2H + = Ca + 2 + H2Olog_k 32.6993 delta_h -193.91 kJ Portlandite Ca(OH)2 + 2H + = Ca + 2 + 2H2Olog k 22.804 delta_h -128.62 kJ Ba(OH)2:8H2O Ba(OH)2:8H2O + 2H + = Ba + 2 + 10H2Olog k 24.394 delta_h -54.32 kJ Cu(SbO3)2 Cu(SbO3)2 + 6H + 4e - = 2Sb(OH)3 + Cu + 2log_k 45.2105 delta_h -0 kJ Arsenolite As406 + 6H20 = 4H3As03log_k -2.76 delta_h 59.9567 kJ Claudetite As406 + 6H20 = 4H3As03log k -3.065 delta h 55.6054 kJ

As205 As205 + 3H20 = 2H3As04log k 6.7061 delta_h -22.64 kJ Pb2O3 Pb2O3 + 6H+ + 2e- = 2Pb+2 + 3H2Olog k 61.04 delta_h -0 kJ Minium Pb3O4 + 8H+ + 2e- = 3Pb+2 + 4H2Olog_k 73.5219 delta_h -421.874 kJ AI203 AI2O3 + 6H + = 2AI + 3 + 3H2Olog_k 19.6524 delta_h -258.59 kJ Co304 Co3O4 + 8H + = Co + 2 + 2Co + 3 + 4H2Olog k -10.4956 delta h -107.5 kJ CoFe2O4 CoFe2O4 + 8H + = Co + 2 + 2Fe + 3 + 4H2Olog_k -3.5281 delta h -158.82 kJ Magnetite Fe3O4 + 8H+ = 2Fe+3 + Fe+2 + 4H2Olog_k 3.4028 delta_h -208.526 kJ Hercynite FeAI2O4 + 8H + = Fe + 2 + 2AI + 3 + 4H2Olog_k 22.893 delta_h -313.92 kJ Hematite Fe2O3 + 6H + = 2Fe + 3 + 3H2Olog k -1.418 delta_h -128.987 kJ Maghemite Fe2O3 + 6H + = 2Fe + 3 + 3H2Olog k 6.386 delta_h -0 kJ Lepidocrocite FeOOH + 3H + = Fe + 3 + 2H2Olog k 1.371 delta_h -0 kJ Hausmannite Mn3O4 + 8H+ + 2e- = 3Mn+2 + 4H2Olog_k 61.03 delta_h -421 kJ Bixbyite Mn2O3 + 6H + = 2Mn + 3 + 3H2Olog_k -0.6445 delta_h -124.49 kJ Cr203 Cr2O3 + H2O + 2H + = 2Cr(OH)2 +

log k -2.3576 delta_h -50.731 kJ #V2O3 # V2O3 + 3H+ = V+3 + 1.5H2O # log_k 4.9 # delta h -82.5085 kJ V305 V305 + 4H + = 3V0 + 2 + 2H20 + 2elog k 1.8361 delta_h -98.46 kJ #V204 # V2O4 + 2H+ = VO+2 + H2O # log_k 4.27 # delta_h -58.8689 kJ V407 V407 + 6H + = 4V0 + 2 + 3H20 + 2elog_k 7.1865 delta h -163.89 kJ V6013 V6013 + 2H + = 6V02 + H20 + 4elog_k -60.86 delta h 271.5 kJ V205 V205 + 2H + = 2V02 + + H20log k -1.36 delta_h 34 kJ U409 U409 + 18H+ + 2e- = 4U+4 + 9H20log_k -3.0198 delta_h -426.87 kJ U308 U308 + 16H + 4e - = 3U + 4 + 8H20log_k 21.0834 delta_h -485.44 kJ Spinel MgAI2O4 + 8H + = Mg + 2 + 2AI + 3 + 4H2Olog k 36.8476 delta_h -388.012 kJ Magnesioferrite Fe2MgO4 + 8H + = Mg + 2 + 2Fe + 3 + 4H2Olog k 16.8597 delta_h -278.92 kJ Natron Na2CO3:10H2O = 2Na + CO3 - 2 + 10H2Olog_k -1.311 delta_h 65.8771 kJ Cuprousferrite CuFeO2 + 4H + = Cu + Fe + 3 + 2H2Olog_k -8.9171 delta_h -15.89 kJ Cupricferrite CuFe2O4 + 8H + = Cu + 2 + 2Fe + 3 + 4H2Olog k 5.9882 delta h -210.21 kJ

FeCr2O4 FeCr2O4 + 4H + = 2Cr(OH)2 + Fe + 2log k 7.2003 delta_h -140.4 kJ MqCr2O4 MgCr2O4 + 4H + = 2Cr(OH)2 + + Mg + 2log k 16.2007 delta_h -179.4 kJ SbF3 SbF3 + 3H2O = Sb(OH)3 + 3H + 3Flog_k -10.2251 delta_h -6.7279 kJ PbF2 PbF2 = Pb+2 + 2Flog_k -7.44 delta_h 20 kJ ZnF2 ZnF2 = Zn+2 + 2Flog_k -0.5343 delta_h -59.69 kJ CdF2 CdF2 = Cd+2 + 2Flog_k -1.2124 delta_h -46.22 kJ Hq2F2 Hg2F2 = Hg2+2 + 2Flog_k -10.3623 delta_h -18.486 kJ CuF CuF = Cu + F log_k -4.9056 delta_h 16.648 kJ CuF2 CuF2 = Cu+2 + 2Flog k 1.115 delta_h -66.901 kJ CuF2:2H2O CuF2:2H2O = Cu+2 + 2F- + 2H2Olog_k -4.55 delta_h -15.2716 kJ AgF:4H2O AgF:4H2O = Ag+ + F- + 4H2Olog k 1.0491 delta_h 15.4202 kJ CoF2 CoF2 = Co+2 + 2Flog_k -1.5969 delta_h -57.368 kJ CoF3 CoF3 = Co+3 + 3Flog_k -1.4581 delta_h -123.692 kJ CrF3 CrF3 + 2H2O = Cr(OH)2 + 3F + 2H + log_k -11.3367 delta_h -23.3901 kJ VF4 VF4 + H2O = VO+2 + 4F- + 2H+log k 14.93 delta_h -199.117 kJ UF4 UF4 = U+4 + 4Flog k -29.5371 delta_h -79.0776 kJ UF4:2.5H2O UF4:2.5H2O = U+4 + 4F- + 2.5H2Olog_k -32.7179 delta_h 24.325 kJ MgF2 MgF2 = Mg+2 + 2Flog_k -8.13 delta h -8 kJ Fluorite CaF2 = Ca+2 + 2Flog_k -10.5 delta h 8 kJ SrF2 SrF2 = Sr+2 + 2Flog_k -8.58 delta_h 4 kJ BaF2 BaF2 = Ba+2 + 2Flog_k -5.82 delta_h 4 kJ Cryolite Na3AIF6 = 3Na + AI + 3 + 6Flog_k -33.84 delta_h 38 kJ SbCl3 SbCl3 + 3H2O = Sb(OH)3 + 3Cl + 3H +log k 0.5719 delta_h -35.18 kJ SnCl2 SnCl2 + 2H2O = Sn(OH)2 + 2H+ + 2Cllog k -9.2752 delta_h -0 kJ Cotunnite PbCl2 = Pb+2 + 2Cllog_k -4.78 delta_h 26.166 kJ Matlockite PbCIF = Pb+2 + CI- + Flog_k -8.9733 delta_h 33.19 kJ Phosgenite PbCl2:PbCO3 = 2Pb+2 + 2Cl- + CO3-2log k -19.81 delta_h -0 kJ

Laurionite PbOHCl + H+ = Pb+2 + Cl- + H2Olog k 0.623 delta_h -0 kJ Pb2(OH)3Cl Pb2(OH)3CI + 3H + = 2Pb + 2 + 3H2O + CIlog k 8.793 delta_h -0 kJ TICI T|C| = T|+ + C|log_k -3.74 delta_h 41 kJ ZnCl2 ZnCl2 = Zn+2 + 2Cllog_k 7.05 delta_h -72.5 kJ Zn2(OH)3Cl Zn2(OH)3CI + 3H + = 2Zn + 2 + 3H2O + CIlog_k 15.191 delta h -0 kJ Zn5(OH)8Cl2 Zn5(OH)8Cl2 + 8H + = 5Zn + 2 + 8H2O + 2Cllog_k 38.5 delta h -0 kJ CdCl2 CdCl2 = Cd+2 + 2Cllog_k -0.6588 delta_h -18.58 kJ CdCl2:1H2O CdCl2:1H2O = Cd+2 + 2Cl- + H2Olog_k -1.6932 delta_h -7.47 kJ CdCl2:2.5H2O CdCl2:2.5H2O = Cd+2 + 2Cl- + 2.5H2Olog k -1.913 delta h 7.2849 kJ CdOHCI CdOHCI + H+ = Cd+2 + H2O + CIlog_k 3.5373 delta_h -30.93 kJ Calomel Hg2Cl2 = Hg2+2 + 2Cllog_k -17.91 delta_h 92 kJ HgCl2 HgCl2 + 2H2O = Hg(OH)2 + 2Cl + 2H +log_k -21.2621 delta_h 107.82 kJ Nantokite CuCl = Cu+ + Cllog_k -6.73 delta_h 42.662 kJ Melanothallite CuCl2 = Cu+2 + 2Cllog_k 6.2572 delta_h -63.407 kJ Atacamite Cu2(OH)3CI + 3H + = 2Cu + 2 + 3H2O + CIlog k 7.391 delta h -93.43 kJ Cerargyrite AgCl = Ag+ + Cllog_k -9.75 delta_h 65.2 kJ CoCl2 CoCl2 = Co+2 + 2Cllog_k 8.2672 delta_h -79.815 kJ CoCl2:6H2O CoCl2:6H2O = Co+2 + 2Cl- + 6H2Olog_k 2.5365 delta h 8.0598 kJ (Co(NH3)6)Cl3 (Co(NH3)6)Cl3 + 6H+ = Co+3 + 6NH4+ + 3Cllog_k 20.0317 delta h -33.1 kJ (Co(NH3)50H2)Cl3 (Co(NH3)5OH2)CI3 + 5H+ = Co+3 + 5NH4+ + 3CI- + H2Olog k 11.7351 delta h -25.37 kJ (Co(NH3)5CI)Cl2 (Co(NH3)5CI)CI2 + 5H + = Co + 3 + 5NH4 + 3CI log_k 4.5102 delta_h -10.74 kJ Fe(OH)2.7CI.3 Fe(OH)2.7CI.3 + 2.7H + = Fe+3 + 2.7H2O + 0.3CIlog_k -3.04 delta_h -0 kJ MnCl2:4H2O MnCl2:4H2O = Mn+2 + 2Cl- + 4H2Olog k 2.7151 delta_h -10.83 kJ CrCl2 CrCl2 = Cr+2 + 2Cllog k 14.0917 delta_h -110.76 kJ CrCl3 CrCl3 + 2H2O = Cr(OH)2+ + 3Cl- + 2H+log_k 15.1145 delta_h -121.08 kJ VCI2 VCI2 = V+3 + 2CI- + elog_k 18.8744 delta_h -141.16 kJ VCI3 VCI3 = V+3 + 3CIlog k 23.4326 delta_h -179.54 kJ

VOCI VOCI + 2H + = V + 3 + CI - + H2Olog k 11.1524 delta_h -104.91 kJ VOCI2 VOCI2 = VO+2 + 2CIlog k 12.7603 delta_h -117.76 kJ VO2CI VO2CI = VO2+ + CIlog_k 2.8413 delta_h -40.28 kJ Halite NaCI = Na + + CIlog_k 1.6025 delta_h 3.7 kJ SbBr3 SbBr3 + 3H2O = Sb(OH)3 + 3Br + 3H +log_k 0.9689 delta_h -20.94 kJ SnBr2 SnBr2 + 2H2O = Sn(OH)2 + 2H + 2Brlog_k -9.5443 delta h -0 kJ SnBr4 SnBr4 + 6H2O = Sn(OH)6-2 + 6H+ + 4Brlog_k -28.8468 delta_h -0 kJ PbBr2 PbBr2 = Pb+2 + 2Brlog_k -5.3 delta_h 35.499 kJ PbBrF PbBrF = Pb+2 + Br- + Flog k -8.49 delta_h -0 kJ TIBr TIBr = TI + + Brlog_k -5.44 delta_h 54 kJ ZnBr2:2H2O ZnBr2:2H2O = Zn+2 + 2Br- + 2H2Olog k 5.2005 delta_h -30.67 kJ CdBr2:4H2O CdBr2:4H2O = Cd+2 + 2Br- + 4H2Olog_k -2.425 delta_h 30.5001 kJ Hg2Br2 Hg2Br2 = Hg2+2 + 2Brlog_k -22.25 delta_h 133 kJ HgBr2 HgBr2 + 2H2O = Hg(OH)2 + 2Br + 2H +

log k -25.2734 delta_h 138.492 kJ CuBr CuBr = Cu + Brlog k -8.3 delta h 54.86 kJ Cu2(OH)3Br Cu2(OH)3Br + 3H + = 2Cu + 2 + 3H2O + Brlog k 7.9085 delta_h -93.43 kJ Bromyrite AgBr = Ag + + Brlog_k -12.3 delta_h 84.5 kJ (Co(NH3)6)Br3 (Co(NH3)6)Br3 + 6H + = Co + 3 + 6NH4 + 3Brlog_k 18.3142 delta h -21.1899 kJ (Co(NH3)5Cl)Br2 (Co(NH3)5CI)Br2 + 5H + = Co + 3 + 5NH4 + CI + 2Brlog_k 5.0295 delta h -6.4 kJ CrBr3 CrBr3 + 2H2O = Cr(OH)2 + 3Br + 2H +log_k 19.9086 delta_h -141.323 kJ AsI3 AsI3 + 3H2O = H3AsO3 + 3I + 3H +log_k 4.2307 delta_h 3.15 kJ SbI3 SbI3 + 3H2O = Sb(OH)3 + 3H + 3Ilog_k -0.538 delta_h 13.5896 kJ PbI2 PbI2 = Pb+2 + 2Ilog k -8.1 delta_h 62 kJ TII TII = TI + + I log k -7.23 delta_h 75 kJ ZnI2 ZnI2 = Zn+2 + 2Ilog_k 7.3055 delta_h -58.92 kJ CdI2 CdI2 = Cd+2 + 2Ilog_k -3.5389 delta_h 13.82 kJ Hg2I2 Hg2I2 = Hg2+2 + 2Ilog_k -28.34 delta_h 163 kJ

Coccinite HgI2 + 2H2O = Hg(OH)2 + 2H + 2Ilog k -34.9525 delta_h 210.72 kJ HqI2:2NH3 HqI2:2NH3 + 2H2O = Hq(OH)2 + 2I + 2NH4 +log k -16.2293 delta h 132.18 kJ HqI2:6NH3 HgI2:6NH3 + 2H2O + 4H + = Hg(OH)2 + 2I + 6NH4 +log_k 33.7335 delta_h -90.3599 kJ CuI CuI = Cu+ + Ilog_k -12 delta_h 82.69 kJ Iodyrite AqI = Aq + I log_k -16.08 delta h 110 kJ (Co(NH3)6)I3 (Co(NH3)6)I3 + 6H + = Co + 3 + 6NH4 + 3I log_k 16.5831 delta h -9.6999 kJ (Co(NH3)5Cl)I2 (Co(NH3)5CI)I2 + 5H + = Co + 3 + 5NH4 + + CI + 2Ilog_k 5.5981 delta_h 0.66 kJ CrI3 CrI3 + 2H2O = Cr(OH)2 + 3I - 2H + 2H +log_k 20.4767 delta_h -134.419 kJ Cerussite PbCO3 = Pb+2 + CO3-2log k -13.13 delta h 24.79 kJ Pb2OCO3 Pb2OCO3 + 2H + = 2Pb + 2 + H2O + CO3 - 2log k -0.5578 delta_h -40.8199 kJ Pb302C03 Pb302C03 + 4H + = 3Pb + 2 + C03 - 2 + 2H20log k 11.02 delta_h -110.583 kJ Hydrocerussite Pb3(OH)2(CO3)2 + 2H + = 3Pb+2 + 2H2O + 2CO3-2log_k -18.7705 delta_h -0 kJ Pb10(OH)60(CO3)6 Pb10(OH)6O(CO3)6 + 8H + = 10Pb + 2 + 6CO3 - 2 + 7H2Olog_k -8.76 delta_h -0 kJ TI2CO3 TI2CO3 = 2TI + CO3 - 2

log_k -3.8367 delta_h 35.49 kJ Smithsonite ZnCO3 = Zn+2 + CO3-2log_k -10 delta h -15.84 kJ ZnCO3:1H2O ZnCO3:1H2O = Zn+2 + CO3-2 + H2Olog k -10.26 delta_h -0 kJ Otavite CdCO3 = Cd+2 + CO3-2log_k -12 delta_h -0.55 kJ Hg2CO3 Hg2CO3 = Hg2+2 + CO3-2log_k -16.05 delta h 45.14 kJ Hq302C03 Hg302CO3 + 4H2O = 3Hg(OH)2 + 2H + CO3-2log_k -29.682 delta h -0 kJ CuCO3 CuCO3 = Cu+2 + CO3-2log k -11.5 delta h -0 kJ Malachite Cu2(OH)2CO3 + 2H + = 2Cu + 2 + 2H2O + CO3 - 2log_k -5.306 delta_h 76.38 kJ Azurite Cu3(OH)2(CO3)2 + 2H + = 3Cu + 2 + 2H2O + 2CO3 - 2log_k -16.906 delta_h -95.22 kJ Aq2CO3 Ag2CO3 = 2Ag + + CO3 - 2log k -11.09 delta_h 42.15 kJ NiCO3 NiCO3 = Ni+2 + CO3-2log k -6.87 delta_h -41.589 kJ CoCO3 CoCO3 = Co+2 + CO3-2log_k -9.98 delta_h -12.7612 kJ Siderite FeCO3 = Fe+2 + CO3-2log_k -10.24 delta_h -16 kJ Rhodochrosite MnCO3 = Mn+2 + CO3-2log k -10.58 delta h -1.88 kJ

Rutherfordine UO2CO3 = UO2+2 + CO3-2log k -14.5 delta_h -3.03 kJ Artinite MqCO3:Mq(OH)2:3H2O + 2H + = 2Mq + 2 + CO3 - 2 + 5H2Olog k 9.6 delta h -120.257 kJ Hydromagnesite Mg5(CO3)4(OH)2:4H2O + 2H + = 5Mg + 2 + 4CO3 - 2 + 6H2Olog_k -8.766 delta_h -218.447 kJ Magnesite MgCO3 = Mg+2 + CO3-2log_k -7.46 delta_h 20 kJ Nesquehonite MgCO3:3H2O = Mg+2 + CO3-2 + 3H2Olog k -4.67 delta_h -24.2212 kJ Aragonite CaCO3 = Ca+2 + CO3-2log_k -8.3 delta h -12 kJ Calcite CaCO3 = Ca+2 + CO3-2log_k -8.48 delta_h -8 kJ Dolomite(ordered) CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2log_k -17.09 delta_h -39.5 kJ Dolomite(disordered) CaMg(CO3)2 = Ca+2 + Mg+2 + 2CO3-2log k -16.54 delta h -46.4 kJ Huntite CaMg3(CO3)4 = 3Mg+2 + Ca+2 + 4CO3-2log k -29.968 delta_h -107.78 kJ Strontianite SrCO3 = Sr+2 + CO3-2log k -9.27 delta_h -0 kJ Witherite BaCO3 = Ba+2 + CO3-2log_k -8.57 delta_h 4 kJ Thermonatrite Na2CO3:H2O = 2Na + CO3 - 2 + H2Olog_k 0.637 delta h -10.4799 kJ TINO3 TINO3 = TI + + NO3 -

log k -1.6127 delta h 42.44 kJ Zn(NO3)2:6H2O Zn(NO3)2:6H2O = Zn+2 + 2NO3 + 6H2Olog k 3.3153 delta h 24.5698 kJ Cu2(OH)3NO3 Cu2(OH)3NO3 + 3H + = 2Cu + 2 + 3H2O + NO3log k 9.251 delta_h -72.5924 kJ (Co(NH3)6)(NO3)3 (Co(NH3)6)(NO3)3 + 6H + = Co + 3 + 6NH4 + 3NO3log k 17.9343 delta_h 1.59 kJ (Co(NH3)5CI)(NO3)2 (Co(NH3)5CI)(NO3)2 + 5H + = Co + 3 + 5NH4 + + CI + 2NO3 log_k 6.2887 delta h 6.4199 kJ UO2(NO3)2 UO2(NO3)2 = UO2+2 + 2NO3log_k 12.1476 delta h -83.3999 kJ UO2(NO3)2:2H2O UO2(NO3)2:2H2O = UO2+2 + 2NO3- + 2H2Olog k 4.851 delta h -25.355 kJ UO2(NO3)2:3H2O UO2(NO3)2:3H2O = UO2+2 + 2NO3- + 3H2Olog_k 3.39 delta_h -9.1599 kJ UO2(NO3)2:6H2O UO2(NO3)2:6H2O = UO2+2 + 2NO3- + 6H2Olog_k 2.0464 delta_h 20.8201 kJ Pb(BO2)2 Pb(BO2)2 + 2H2O + 2H + = Pb+2 + 2H3BO3log k 6.5192 delta_h -15.6119 kJ Zn(BO2)2 Zn(BO2)2 + 2H2O + 2H + = Zn + 2 + 2H3BO3log k 8.29 delta h -0 kJ Cd(BO2)2 Cd(BO2)2 + 2H2O + 2H + = Cd + 2 + 2H3BO3log_k 9.84 delta_h -0 kJ Co(BO2)2 Co(BO2)2 + 2H2O + 2H + = Co + 2 + 2H3BO3log_k 27.0703 delta_h -0 kJ SnSO4 SnSO4 + 2H2O = Sn(OH)2 + 2H + SO4-2log k -56.9747 delta h -0 kJ

Sn(SO4)2 Sn(SO4)2 + 6H2O = Sn(OH)6-2 + 6H+ + 2SO4-2log k -15.2123 delta_h -0 kJ Larnakite PbO:PbSO4 + 2H + = 2Pb + 2 + SO4 - 2 + H2Olog k -0.4344 delta h -21.83 kJ Pb302S04 Pb302SO4 + 4H + = 3Pb + 2 + SO4 - 2 + 2H2Olog_k 10.6864 delta_h -79.14 kJ Pb403S04 Pb403SO4 + 6H + = 4Pb + 2 + SO4 - 2 + 3H2Olog_k 21.8772 delta_h -136.45 kJ Anglesite PbSO4 = Pb+2 + SO4-2log k -7.79 delta h 12 kJ Pb4(OH)6SO4 Pb4(OH)6SO4 + 6H + = 4Pb + 2 + SO4 - 2 + 6H2Olog_k 21.1 delta h -0 kJ AIOHSO4 AIOHSO4 + H + = AI + 3 + SO4 - 2 + H2Olog_k -3.23 delta_h -0 kJ Al4(OH)10SO4 AI4(OH)10SO4 + 10H + = 4AI + 3 + SO4 - 2 + 10H2Olog_k 22.7 delta_h -0 kJ TI2SO4 TI2SO4 = 2TI + SO4-2log k -3.7868 delta h 33.1799 kJ Zn2(OH)2SO4 Zn2(OH)2SO4 + 2H + = 2Zn + 2 + 2H2O + SO4 - 2log_k 7.5 delta_h -0 kJ Zn4(OH)6SO4 Zn4(OH)6SO4 + 6H + = 4Zn + 2 + 6H2O + SO4 - 2log k 28.4 delta_h -0 kJ Zn30(S04)2 Zn3O(SO4)2 + 2H + = 3Zn + 2 + 2SO4 - 2 + H2Olog k 18.9135 delta_h -258.08 kJ Zincosite ZnSO4 = Zn+2 + SO4-2log_k 3.9297 delta_h -82.586 kJ ZnSO4:1H2O ZnSO4:1H2O = Zn+2 + SO4-2 + H2O

log k -0.638 delta_h -44.0699 kJ Bianchite ZnSO4:6H2O = Zn+2 + SO4-2 + 6H2Olog k -1.765 delta h -0.6694 kJ Goslarite ZnSO4:7H2O = Zn+2 + SO4-2 + 7H2Olog k -2.0112 delta_h 14.21 kJ Cd3(OH)4SO4 Cd3(OH)4SO4 + 4H + = 3Cd + 2 + 4H2O + SO4 - 2log k 22.56 delta_h -0 kJ Cd3(OH)2(SO4)2 Cd3(OH)2(SO4)2 + 2H + = 3Cd + 2 + 2H2O + 2SO4 - 2log_k 6.71 delta h -0 kJ Cd4(OH)6SO4 Cd4(OH)6SO4 + 6H + = 4Cd + 2 + 6H2O + SO4 - 2log_k 28.4 delta h -0 kJ CdSO4 CdSO4 = Cd+2 + SO4-2log k -0.1722 delta h -51.98 kJ CdSO4:1H2O CdSO4:1H2O = Cd+2 + SO4-2 + H2Olog_k -1.7261 delta_h -31.5399 kJ CdSO4:2.67H2O CdSO4:2.67H2O = Cd+2 + SO4-2 + 2.67H2Olog_k -1.873 delta_h -17.9912 kJ Hq2SO4 Hg2SO4 = Hg2+2 + SO4-2log k -6.13 delta_h 5.4 kJ HqSO4 HgSO4 + 2H2O = Hg(OH)2 + SO4-2 + 2H+log k -9.4189 delta_h 14.6858 kJ Cu2SO4 Cu2SO4 = 2Cu + SO4-2log_k -1.95 delta_h -19.079 kJ Antlerite Cu3(OH)4SO4 + 4H + = 3Cu + 2 + 4H2O + SO4 - 2log_k 8.788 delta_h -0 kJ Brochantite Cu4(OH)6SO4 + 6H + = 4Cu + 2 + 6H2O + SO4 - 2log k 15.222 delta h -202.86 kJ

Langite Cu4(OH)6SO4:H2O + 6H + = 4Cu + 2 + 7H2O + SO4 - 2log k 17.4886 delta_h -165.55 kJ CuOCuSO4 CuOCuSO4 + 2H + = 2Cu + 2 + H2O + SO4 - 2log k 10.3032 delta h -137.777 kJ CuSO4 CuSO4 = Cu+2 + SO4-2log_k 2.9395 delta_h -73.04 kJ Chalcanthite CuSO4:5H2O = Cu+2 + SO4-2 + 5H2Olog_k -2.64 delta_h 6.025 kJ Ag2SO4 Ag2SO4 = 2Ag + + SO4 - 2log_k -4.82 delta h 17 kJ Ni4(OH)6SO4 Ni4(OH)6SO4 + 6H + = 4Ni + 2 + SO4 - 2 + 6H2Olog_k 32 delta h -0 kJ Retgersite NiSO4:6H2O = Ni+2 + SO4-2 + 6H2Olog_k -2.04 delta_h 4.6024 kJ Morenosite NiSO4:7H2O = Ni+2 + SO4-2 + 7H2Olog_k -2.1449 delta_h 12.1802 kJ CoSO4 CoSO4 = Co+2 + SO4-2log k 2.8024 delta h -79.277 kJ CoSO4:6H2O CoSO4:6H2O = Co+2 + SO4-2 + 6H2Olog k -2.4726 delta_h 1.0801 kJ Melanterite FeSO4:7H2O = Fe+2 + SO4-2 + 7H2Olog k -2.209 delta_h 20.5 kJ Fe2(SO4)3 Fe2(SO4)3 = 2Fe+3 + 3SO4-2log_k -3.7343 delta_h -242.028 kJ H-Jarosite (H30)Fe3(SO4)2(OH)6 + 5H + = 3Fe + 3 + 2SO4 - 2 + 7H2Olog_k -12.1 delta_h -230.748 kJ Na-Jarosite NaFe3(SO4)2(OH)6 + 6H + = Na + + 3Fe + 3 + 2SO4 - 2 + 6H2O log_k -11.2 delta_h -151.377 kJ K-Jarosite KFe3(SO4)2(OH)6 + 6H + = K + + 3Fe + 3 + 2SO4 - 2 + 6H2Olog k -14.8 delta h -130.875 kJ MnSO4 MnSO4 = Mn+2 + SO4-2log k 2.5831 delta_h -64.8401 kJ Mn2(SO4)3 Mn2(SO4)3 = 2Mn+3 + 3SO4-2log_k -5.711 delta_h -163.427 kJ VOSO4 VOSO4 = VO+2 + SO4-2log_k 3.6097 delta h -86.7401 kJ Epsomite MqSO4:7H2O = Mq+2 + SO4-2 + 7H2Olog_k -2.1265 delta_h 11.5601 kJ Anhydrite CaSO4 = Ca+2 + SO4-2log k -4.36 delta h -7.2 kJ Gypsum CaSO4:2H2O = Ca+2 + SO4-2 + 2H2Olog_k -4.61 delta_h 1 kJ Celestite SrSO4 = Sr+2 + SO4-2log_k -6.62 delta_h 2 kJ Barite BaSO4 = Ba+2 + SO4-2log k -9.98 delta h 23 kJ Mirabilite Na2SO4:10H2O = 2Na + SO4-2 + 10H2Olog k -1.114 delta_h 79.4416 kJ Thenardite Na2SO4 = 2Na + SO4 - 2log_k 0.3217 delta_h -9.121 kJ K-Alum KAI(SO4)2:12H2O = K + AI + 3 + 2SO4 - 2 + 12H2Olog_k -5.17 delta_h 30.2085 kJ Alunite KAI3(SO4)2(OH)6 + 6H + = K + + 3AI + 3 + 2SO4 - 2 + 6H2Olog k -1.4 delta h -210 kJ

(NH4)2CrO4 (NH4)2CrO4 = CrO4-2 + 2NH4+log k 0.4046 delta_h 9.163 kJ PbCrO4 PbCrO4 = Pb+2 + CrO4-2log k -12.6 delta_h 44.18 kJ TI2CrO4 TI2CrO4 = 2TI + CrO4 - 2log_k -12.01 delta_h 74.27 kJ Hg2CrO4 Hg2CrO4 = Hg2+2 + CrO4-2log_k -8.7 delta_h -0 kJ CuCrO4 CuCrO4 = Cu+2 + CrO4-2log_k -5.44 delta h -0 kJ Ag2CrO4 Ag2CrO4 = 2Ag+ + CrO4-2log_k -11.59 delta_h 62 kJ MgCrO4 MgCrO4 = CrO4-2 + Mg+2log_k 5.3801 delta_h -88.9518 kJ CaCrO4 CaCrO4 = Ca+2 + CrO4-2log_k -2.2657 delta_h -26.945 kJ SrCrO4 SrCrO4 = Sr+2 + CrO4-2log k -4.65 delta_h -10.1253 kJ BaCrO4 BaCrO4 = Ba+2 + CrO4-2log_k -9.67 delta_h 33 kJ Li2CrO4 Li2CrO4 = CrO4-2 + 2Li+log k 4.8568 delta_h -45.2792 kJ Na2CrO4 Na2CrO4 = CrO4-2 + 2Na +log_k 2.9302 delta_h -19.6301 kJ Na2Cr2O7 Na2Cr207 + H2O = 2CrO4-2 + 2Na + 2H +log_k -9.8953 delta h 22.1961 kJ K2CrO4 K2CrO4 = CrO4-2 + 2K+

log k -0.5134 delta h 18.2699 kJ K2Cr207 K2Cr2O7 + H2O = 2CrO4-2 + 2K + 2H +log k -17.2424 delta h 80.7499 kJ Hq2SeO3 Hg2SeO3 + H + = Hg2 + 2 + HSeO3 log k -4.657 delta_h -0 kJ HgSeO3 HgSeO3 + 2H2O = Hg(OH)2 + H + HSeO3log k -12.43 delta_h -0 kJ Ag2SeO3 Ag2SeO3 + H + = 2Ag + + HSeO3log_k -7.15 delta h 39.68 kJ CuSeO3:2H2O CuSeO3:2H2O + H + = Cu + 2 + HSeO3 + 2H2Olog_k 0.5116 delta h -36.861 kJ NiSeO3:2H2O NiSeO3:2H2O + H + = HSeO3 + Ni + 2 + 2H2Olog k 2.8147 delta h -31.0034 kJ CoSeO3 CoSeO3 + H + = Co + 2 + HSeO3log_k 1.32 delta_h -0 kJ Fe2(SeO3)3:2H2O Fe2(SeO3)3:2H2O + 3H + = 3HSeO3 + 2Fe + 3 + 2H2Olog_k -20.6262 delta_h -0 kJ Fe2(OH)4SeO3 Fe2(OH)4SeO3 + 5H + = HSeO3 + 2Fe + 3 + 4H2Olog k 1.5539 delta h -0 kJ MnSeO3 MnSeO3 + H + = Mn + 2 + HSeO3log k 1.13 delta h -0 kJ MnSeO3:2H2O MnSeO3:2H2O + H + = HSeO3 - + Mn + 2 + 2H2Olog_k 0.9822 delta_h 8.4935 kJ MqSeO3:6H2O MgSeO3:6H2O + H + = Mg + 2 + HSeO3 + 6H2Olog_k 3.0554 delta_h 5.23 kJ CaSeO3:2H2O CaSeO3:2H2O + H + = HSeO3 - + Ca + 2 + 2H2Olog k 2.8139 delta h -19.4556 kJ

SrSeO3 SrSeO3 + H + = Sr + 2 + HSeO3log k 2.3 delta_h -0 kJ BaSeO3 BaSeO3 + H + = Ba + 2 + HSeO3log k 1.83 delta h 11.98 kJ Na2SeO3:5H2O Na2SeO3:5H2O + H + = 2Na + + HSeO3 + 5H2Olog_k 10.3 delta h -0 kJ PbSeO4 PbSeO4 = Pb+2 + SeO4-2log_k -6.84 delta_h 15 kJ TI2SeO4 TI2SeO4 = 2TI + SeO4 - 2log k -4.1 delta h 43 kJ ZnSeO4:6H2O ZnSeO4:6H2O = Zn+2 + SeO4-2 + 6H2Olog_k -1.52 delta h -0 kJ CdSeO4:2H2O CdSeO4:2H2O = Cd+2 + SeO4-2 + 2H2Olog_k -1.85 delta_h -0 kJ Ag2SeO4 Ag2SeO4 = 2Ag + SeO4 - 2log_k -8.91 delta_h -43.5 kJ CuSeO4:5H2O CuSeO4:5H2O = Cu+2 + SeO4-2 + 5H2Olog k -2.44 delta h -0 kJ NiSeO4:6H2O NiSeO4:6H2O = Ni+2 + SeO4-2 + 6H2Olog k -1.52 delta_h -0 kJ CoSeO4:6H2O CoSeO4:6H2O = Co+2 + SeO4-2 + 6H2Olog k -1.53 delta_h -0 kJ MnSeO4:5H2O MnSeO4:5H2O = Mn+2 + SeO4-2 + 5H2Olog_k -2.05 delta_h -0 kJ U02Se04:4H20 UO2SeO4:4H2O = UO2+2 + SeO4-2 + 4H2Olog_k -2.25 delta h -0 kJ MgSeO4:6H2O MgSeO4:6H2O = Mg+2 + SeO4-2 + 6H2O

log_k -1.2 delta_h -0 kJ CaSeO4:2H2O CaSeO4:2H2O = Ca+2 + SeO4-2 + 2H2Olog_k -3.02 delta h -8.3 kJ SrSeO4 SrSeO4 = Sr+2 + SeO4-2log_k -4.4 delta_h 0.4 kJ BaSeO4 BaSeO4 = Ba+2 + SeO4-2log_k -7.46 delta_h 22 kJ BeSeO4:4H2O BeSeO4:4H2O = Be+2 + SeO4-2 + 4H2Olog_k -2.94 delta h -0 kJ Na2SeO4 Na2SeO4 = 2Na + SeO4-2log_k 1.28 delta h -0 kJ K2SeO4 K2SeO4 = 2K + SeO4 - 2log_k -0.73 delta h -0 kJ (NH4)2SeO4 (NH4)2SeO4 = 2NH4+ + SeO4-2log_k 0.45 delta_h -0 kJ H2MoO4 H2MoO4 = MoO4-2 + 2H+log_k -12.8765 delta_h 49 kJ PbMoO4 PbMoO4 = Pb+2 + MoO4-2log k -15.62 delta_h 53.93 kJ Al2(MoO4)3 AI2(MoO4)3 = 3MoO4-2 + 2AI+3log k 2.3675 delta h -260.8 kJ TI2MoO4 TI2MoO4 = MoO4-2 + 2TI+log_k -7.9887 delta_h -0 kJ ZnMoO4 ZnMoO4 = MoO4-2 + Zn+2log_k -10.1254 delta_h -10.6901 kJ CdMoO4 CdMoO4 = MoO4-2 + Cd+2log k -14.1497 delta_h 19.48 kJ

CuMoO4 CuMoO4 = MoO4-2 + Cu+2log k -13.0762 delta_h 12.2 kJ Ag2MoO4 Ag2MoO4 = 2Ag+ + MoO4-2log k -11.55 delta h 52.7 kJ NiMoO4 NiMoO4 = MoO4-2 + Ni+2log_k -11.1421 delta_h 1.3 kJ CoMoO4 CoMoO4 = MoO4-2 + Co+2log_k -7.7609 delta_h -23.3999 kJ FeMoO4 FeMoO4 = MoO4-2 + Fe+2log_k -10.091 delta h -11.1 kJ BeMoO4 BeMoO4 = MoO4-2 + Be+2log_k -1.7817 delta h -56.4 kJ MgMoO4 MgMoO4 = Mg+2 + MoO4-2log_k -1.85 delta_h -0 kJ CaMoO4 CaMoO4 = Ca+2 + MoO4-2log_k -7.95 delta_h -2 kJ BaMoO4 BaMoO4 = MoO4-2 + Ba+2log k -6.9603 delta h 10.96 kJ Li2MoO4 Li2MoO4 = MoO4-2 + 2Li+log k 2.4416 delta_h -33.9399 kJ Na2MoO4 Na2MoO4 = MoO4-2 + 2Na +log k 1.4901 delta_h -9.98 kJ Na2MoO4:2H2O Na2MoO4:2H2O = MoO4-2 + 2Na + 2H2Olog k 1.224 delta_h -0 kJ Na2Mo2O7 Na2Mo2O7 + H2O = 2MoO4-2 + 2Na+ + 2H+log_k -16.5966 delta h 56.2502 kJ K2MoO4 K2MoO4 = MoO4-2 + 2K+

log k 3.2619 delta h -3.38 kJ PbHPO4 PbHPO4 = Pb+2 + H+ + PO4-3log k -23.805 delta h -0 kJ Pb3(PO4)2 Pb3(PO4)2 = 3Pb+2 + 2PO4-3log k -43.53 delta_h -0 kJ Pyromorphite Pb5(PO4)3CI = 5Pb+2 + 3PO4-3 + CIlog k -84.43 delta_h -0 kJ Hydroxylpyromorphite Pb5(PO4)3OH + H + = 5Pb + 2 + 3PO4 - 3 + H2Olog_k -62.79 delta h -0 kJ Plumbgummite PbAl3(PO4)2(OH)5:H2O + 5H = Pb+2 + 3Al+3 + 2PO4-3 + 6H2Olog_k -32.79 delta h -0 kJ Hinsdalite PbAl3PO4SO4(OH)6 + 6H + = Pb+2 + 3Al+3 + PO4-3 + SO4-2 + 6H2Olog k -2.5 delta h -0 kJ Tsumebite Pb2CuPO4(OH)3:3H2O + 3H + = 2Pb + 2 + Cu + 2 + PO4 - 3 + 6H2Olog_k -9.79 delta h -0 kJ Zn3(PO4)2:4H2O Zn3(PO4)2:4H2O = 3Zn+2 + 2PO4-3 + 4H2Olog_k -35.42 delta_h -0 kJ Cd3(PO4)2 Cd3(PO4)2 = 3Cd+2 + 2PO4-3log k -32.6 delta_h -0 kJ Hg2HPO4 Hg2HPO4 = Hg2+2 + H+ + PO4-3log k -24.775 delta h -0 kJ Cu3(PO4)2 Cu3(PO4)2 = 3Cu+2 + 2PO4-3log_k -36.85 delta_h -0 kJ Cu3(PO4)2:3H2O Cu3(PO4)2:3H2O = 3Cu+2 + 2PO4-3 + 3H2Olog_k -35.12 delta_h -0 kJ Ag3PO4 Aq3PO4 = 3Aq + PO4-3log k -17.59 delta h -0 kJ

Ni3(PO4)2 Ni3(PO4)2 = 3Ni+2 + 2PO4-3log k -31.3 delta h -0 kJ CoHPO4 CoHPO4 = Co+2 + PO4-3 + H+log k -19.0607 delta h -0 kJ Co3(PO4)2 Co3(PO4)2 = 3Co+2 + 2PO4-3log_k -34.6877 delta h -0 kJ Vivianite Fe3(PO4)2:8H2O = 3Fe+2 + 2PO4-3 + 8H2Olog_k -36 delta_h -0 kJ Strengite FePO4:2H2O = Fe+3 + PO4-3 + 2H2Olog k -26.4 delta h -9.3601 kJ Mn3(PO4)2 Mn3(PO4)2 = 3Mn+2 + 2PO4-3log_k -23.827 delta h 8.8701 kJ MnHPO4 MnHPO4 = Mn+2 + PO4-3 + H+log_k -25.4 delta_h -0 kJ (VO)3(PO4)2 (VO)3(PO4)2 = 3VO+2 + 2PO4-3log_k -25.1 delta_h -0 kJ Mg3(PO4)2 Mg3(PO4)2 = 3Mg+2 + 2PO4-3log k -23.28 delta h -0 kJ MgHPO4:3H2O MgHPO4:3H2O = Mg+2 + H+ + PO4-3 + 3H2Olog k -18.175 delta_h -0 kJ FCO3Apatite Ca9.316Na0.36Mg0.144(PO4)4.8(CO3)1.2F2.48 = 9.316Ca+2 + 0.36Na+ + 0.144Mg+2 + 4.8PO4-3 + 1.2CO3-2 + 2.48Flog_k -114.4 delta_h 164.808 kJ Hydroxylapatite Ca5(PO4)3OH + H + = 5Ca + 2 + 3PO4 - 3 + H2Olog k -44.333 delta h -0 kJ CaHPO4:2H2O CaHPO4:2H2O = Ca+2 + H+ + PO4-3 + 2H2Olog_k -18.995 delta h 23 kJ CaHPO4

CaHPO4 = Ca+2 + H+ + PO4-3log k -19.275 delta h 31 kJ Ca3(PO4)2(beta) Ca3(PO4)2 = 3Ca+2 + 2PO4-3log k -28.92 delta h 54 kJ Ca4H(PO4)3:3H2O Ca4H(PO4)3:3H2O = 4Ca+2 + H+ + 3PO4-3 + 3H2Olog_k -47.08 delta h -0 kJ SrHPO4 SrHPO4 = Sr+2 + H+ + PO4-3log_k -19.295 delta_h -0 kJ BaHPO4 BaHPO4 = Ba+2 + H+ + PO4-3log k -19.775 delta h -0 kJ U(HPO4)2:4H2O U(HPO4)2:4H2O = U+4 + 2PO4-3 + 2H+ + 4H2Olog k -51.584 delta_h 16.0666 kJ (UO2)3(PO4)2 (UO2)3(PO4)2 = 3UO2+2 + 2PO4-3log k -49.4 delta_h 397.062 kJ UO2HPO4 UO2HPO4 = UO2+2 + H+ + PO4-3log k -24.225 delta_h -0 kJ Uramphite (NH4)2(UO2)2(PO4)2 = 2UO2+2 + 2NH4+ + 2PO4-3log_k -51.749 delta h 40.5848 kJ Przhevalskite Pb(UO2)2(PO4)2 = 2UO2+2 + Pb+2 + 2PO4-3log_k -44.365 delta_h -46.024 kJ Torbernite Cu(UO2)2(PO4)2 = 2UO2+2 + Cu+2 + 2PO4-3log k -45.279 delta h -66.5256 kJ Bassetite Fe(UO2)2(PO4)2 = 2UO2+2 + Fe+2 + 2PO4-3log_k -44.485 delta h -83.2616 kJ Saleeite Mg(UO2)2(PO4)2 = 2UO2+2 + Mg+2 + 2PO4-3log_k -43.646 delta_h -84.4331 kJ Ningyoite CaU(PO4)2:2H2O = U+4 + Ca+2 + 2PO4-3 + 2H2Olog k -53.906

delta h -9.4977 kJ H-Autunite H2(UO2)2(PO4)2 = 2UO2+2 + 2H+ + 2PO4-3log_k -47.931 delta h -15.0624 kJ Autunite Ca(UO2)2(PO4)2 = 2UO2+2 + Ca+2 + 2PO4-3log_k -43.927 delta_h -59.9986 kJ Sr-Autunite Sr(UO2)2(PO4)2 = 2UO2+2 + Sr+2 + 2PO4-3log_k -44.457 delta_h -54.6012 kJ Na-Autunite Na2(UO2)2(PO4)2 = 2UO2+2 + 2Na+ + 2PO4-3log_k -47.409 delta_h -1.9246 kJ K-Autunite K2(UO2)2(PO4)2 = 2UO2+2 + 2K+ + 2PO4-3log k -48.244 delta_h 24.5182 kJ Uranocircite Ba(UO2)2(PO4)2 = 2UO2+2 + Ba+2 + 2PO4-3log k -44.631 delta h -42.2584 kJ Pb3(AsO4)2 Pb3(AsO4)2 + 6H + = 3Pb + 2 + 2H3AsO4log_k 5.8 delta_h -0 kJ AlAsO4:2H2O A|AsO4:2H2O + 3H + = A|+3 + H3AsO4 + 2H2Olog_k 4.8 delta_h -0 kJ Zn3(AsO4)2:2.5H2O Zn3(AsO4)2:2.5H2O + 6H + = 3Zn + 2 + 2H3AsO4 + 2.5H2Olog k 13.65 delta h -0 kJ Cu3(AsO4)2:2H2O Cu3(AsO4)2:2H2O + 6H + = 3Cu + 2 + 2H3AsO4 + 2H2Olog_k 6.1 delta h -0 kJ Aq3AsO3 Ag3AsO3 + 3H + = 3Ag + + H3AsO3log_k 2.1573 delta_h -0 kJ Ag3AsO4 Ag3AsO4 + 3H + = 3Ag + + H3AsO4log_k -2.7867 delta_h -0 kJ Ni3(AsO4)2:8H2O Ni3(AsO4)2:8H2O + 6H + = 3Ni + 2 + 2H3AsO4 + 8H2Olog_k 15.7 delta h -0 kJ Co3(AsO4)2

Co3(AsO4)2 + 6H + = 3Co + 2 + 2H3AsO4log k 13.0341 delta h -0 kJ FeAsO4:2H2O FeAsO4:2H2O + 3H + = Fe+3 + H3AsO4 + 2H2Olog k 0.4 delta h -0 kJ Mn3(AsO4)2:8H2O Mn3(AsO4)2:8H2O + 6H + = 3Mn + 2 + 2H3AsO4 + 8H2Olog_k 12.5 delta_h -0 kJ Ca3(AsO4)2:4H2O Ca3(AsO4)2:4H2O + 6H + = 3Ca + 2 + 2H3AsO4 + 4H2Olog_k 22.3 delta_h -0 kJ Ba3(AsO4)2 Ba3(AsO4)2 + 6H + = 3Ba + 2 + 2H3AsO4log k -8.91 delta h 11.0458 kJ #NH4VO3 # NH4VO3 + 2H+ = 2VO2+ + H2O # log k 3.8 # delta_h 30 kJ Pb3(VO4)2 Pb3(VO4)2 + 8H + = 3Pb + 2 + 2VO2 + + 4H2Oloa k 6.14 delta_h -72.6342 kJ Pb2V207 Pb2V2O7 + 6H + = 2Pb + 2 + 2VO2 + + 3H2Olog k -1.9 delta_h -26.945 kJ AgVO3 AgVO3 + 2H + = Ag + + VO2 + + H2Olog_k 0.77 delta h -0 kJ Ag2HVO4 Aq2HVO4 + 3H + = 2Aq + + VO2 + + 2H2Olog_k 1.48 delta h -0 kJ Ag3H2VO5 Aq3H2VO5 + 4H + = 3Aq + + VO2 + + 3H2Olog_k 5.18 delta h -0 kJ Fe(VO3)2 Fe(VO3)2 + 4H + = Fe + 2 + 2VO2 + + 2H2Olog_k -3.72 delta_h -61.6722 kJ Mn(VO3)2 Mn(VO3)2 + 4H + = Mn + 2 + 2VO2 + + 2H2Olog_k 4.9 delta_h -92.4664 kJ Mg(VO3)2 Mg(VO3)2 + 4H + = Mg + 2 + 2VO2 + + 2H2Olog k 11.28

delta h -136.649 kJ Mg2V207 Mq2V2O7 + 6H + = 2Mq + 2 + 2VO2 + + 3H2Olog k 26.36 delta h -255.224 kJ Carnotite KUO2VO4 + 4H + = K + + UO2 + 2 + VO2 + + 2H2Olog k 0.23 delta_h -36.4008 kJ Tyuyamunite Ca(UO2)2(VO4)2 + 8H + = Ca + 2 + 2UO2 + 2 + 2VO2 + + 4H2Olog k 4.08 delta_h -153.134 kJ Ca(VO3)2 Ca(VO3)2 + 4H + = Ca + 2 + 2VO2 + + 2H2Olog_k 5.66 delta_h -84.7678 kJ Ca3(VO4)2 Ca3(VO4)2 + 8H + = 3Ca + 2 + 2VO2 + + 4H2Olog k 38.96 delta_h -293.466 kJ Ca2V207 Ca2V2O7 + 6H + = 2Ca + 2 + 2VO2 + + 3H2Olog k 17.5 delta h -159.494 kJ Ca3(VO4)2:4H2O Ca3(VO4)2:4H2O + 8H + = 3Ca + 2 + 2VO2 + + 8H2Olog_k 39.86 delta_h -0 kJ Ca2V207:2H2O Ca2V2O7:2H2O + 6H + = 2Ca + 2 + 2VO2 + + 5H2Olog_k 21.552 delta_h -0 kJ Ba3(VO4)2:4H2O Ba3(VO4)2:4H2O + 8H + = 3Ba + 2 + 2VO2 + + 8H2Olog k 32.94 delta h -0 kJ Ba2V207:2H2O Ba2V207:2H2O + 6H + = 2Ba + 2 + 2VO2 + + 5H2Olog_k 15.872 delta h -0 kJ NaVO3 NaVO3 + 2H + = Na + + VO2 + + H2Olog_k 3.8582 delta_h -30.1799 kJ Na3VO4 Na3VO4 + 4H + = 3Na + + VO2 + + 2H2Olog_k 36.6812 delta_h -184.61 kJ Na4V207 Na4V2O7 + 6H + = 4Na + + 2VO2 + + 3H2Olog k 37.4 delta h -201.083 kJ Halloysite

AI2Si2O5(OH)4 + 6H + = 2AI + 3 + 2H4SiO4 + H2Olog k 9.5749 delta h -181.43 kJ Kaolinite AI2Si2O5(OH)4 + 6H + = 2AI + 3 + 2H4SiO4 + H2Olog k 7.435 delta h -148 kJ Greenalite Fe3Si2O5(OH)4 + 6H + = 3Fe + 2 + 2H4SiO4 + H2Olog_k 20.81 delta_h -0 kJ Chrysotile Mg3Si2O5(OH)4 + 6H + = 3Mg + 2 + 2H4SiO4 + H2Olog_k 32.2 delta_h -196 kJ Sepiolite Mg2Si3O7.5OH:3H2O + 4H+ + 0.5H2O = 2Mg+2 + 3H4SiO4log k 15.76 delta_h -114.089 kJ Sepiolite(A) Mg2Si3O7.5OH:3H2O + 0.5H2O + 4H + = 2Mg + 2 + 3H4SiO4log k 18.78 delta_h -0 kJ PHASES O2(g) O2 + 4H + 4e - = 2H2Olog_k 83.0894 delta_h -571.66 kJ CH4(g)CH4 + 3H2O = CO3-2 + 8e + 10H +log_k -41.0452 delta_h 257.133 kJ CO2(g) CO2 + H2O = 2H + CO3 - 2log k -18.147 delta_h 4.06 kJ H2S(g) H2S = H+ + HSlog k -8.01 delta_h -0 kJ H2Se(q)H2Se = HSe + H +log k -4.96 delta_h -15.3 kJ Hg(g) Hg = 0.5Hg2+2 + elog_k -7.8733 delta_h 22.055 kJ Hg2(g)Hg2 = Hg2 + 2 + 2elog_k -14.9554 delta h 58.07 kJ Hg(CH3)2(g)Hg(CH3)2 + 8H2O = Hg(OH)2 + 2CO3-2 + 16e + 20H +

log k -73.7066 delta h 481.99 kJ HqF(q)HgF = 0.5Hg2 + 2 + Flog_k 32.6756 delta h -254.844 kJ HqF2(q)HgF2 + 2H2O = Hg(OH)2 + 2F + 2H +log k 12.5652 delta_h -165.186 kJ HgCl(g)HgCI = 0.5Hg2+2 + CIlog_k 19.4966 delta_h -162.095 kJ HgBr(g) HgBr = 0.5Hg2+2 + Brlog_k 16.7566 delta h -142.157 kJ HgBr2(g) HgBr2 + 2H2O = Hg(OH)2 + 2Br + 2H +log_k -18.3881 delta_h 54.494 kJ HgI(g) HgI = 0.5Hg2 + 2 + I log_k 11.3322 delta h -106.815 kJ HgI2(g) HgI2 + 2H2O = Hg(OH)2 + 2I + 2H +log_k -27.2259 delta_h 114.429 kJ SURFACE_MASTER_SPECIES Hfo_s Hfo_sOH Hfo_w Hfo_wOH Hao_ Hao_OH #hydrous aluminum oxides - gibbsite SURFACE_SPECIES  $Hfo_wOH = Hfo_wOH$ log k 0.0  $Hfo_sOH = Hfo_sOH$ log_k 0.0  $Hao_OH = Hao_OH$ log k 0.0 Hfo sOH + H + = Hfo sOH2 +log_k 7.29 delta_h 0 kJ # Id: 8113302 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH = Hfo_sO- + H+$ log_k -8.93 delta_h 0 kJ # Id: 8113301 # log K source:

# Delta H source: #T and ionic strength: Hfo wOH + H+ = Hfo wOH2+ log_k 7.29 delta h 0 kJ # Id: 8123302 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH = Hfo_wO- + H+$ log_k -8.93 delta_h 0 kJ # Id: 8123301 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Ba+2 = Hfo_sOHBa+2$ log k 5.46 delta h 0 kJ # Id: 8111000 # log K source: # Delta H source: **#**T and ionic strength: Hfo wOH + Ba+2 = Hfo wOBa+ + H+ log k -7.2 delta h 0 kJ # Id: 8121000 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Ca+2 = Hfo_sOHCa+2$ log_k 4.97 delta_h 0 kJ # Id: 8111500 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Ca+2 = Hfo_wOCa+ + H+$ log_k -5.85 delta_h 0 kJ # Id: 8121500 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Mg+2 = Hfo_wOMg+ + H+$ log_k -4.6 delta_h 0 kJ # Id: 8124600 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Ag + = Hfo_sOAg + H +$ log k -1.72 delta_h 0 kJ

# Id: 8110200 # log K source: # Delta H source: #T and ionic strength:  $Hfo_wOH + Ag + = Hfo_wOAg + H +$ log k -5.3 delta h 0 kJ # Id: 8120200 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Ni+2 = Hfo_sONi+ + H+$ log_k 0.37 delta_h 0 kJ # Id: 8115400 # log K source: # Delta H source: #T and ionic strength:  $Hfo_wOH + Ni+2 = Hfo_wONi+ + H+$ log_k -2.5 delta_h 0 kJ # Id: 8125400 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Cd+2 = Hfo_sOCd+ + H+$ log_k 0.47 delta_h 0 kJ # Id: 8111600 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Cd+2 = Hfo_wOCd+ + H+$ log_k -2.9 delta h 0 kJ # Id: 8121600 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Co+2 = Hfo_sOCo+ + H+$ log k -0.46 delta h 0 kJ # Id: 8112000 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Co+2 = Hfo_wOCo+ + H+$ log_k -3.01 delta_h 0 kJ # Id: 8122000 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Zn+2 = Hfo_sOZn+ + H+$ 

log_k 0.99 delta_h 0 kJ # Id: 8119500 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Zn+2 = Hfo_wOZn+ + H+$ log_k -1.99 delta_h 0 kJ # Id: 8129500 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Cu+2 = Hfo_sOCu+ + H+$ log_k 2.89 delta_h 0 kJ # Id: 8112310 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Cu+2 = Hfo_wOCu+ + H+$ log k 0.6 delta_h 0 kJ # Id: 8123100 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Pb+2 = Hfo_sOPb+ + H+$ log_k 4.65 delta_h 0 kJ # Id: 8116000 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Pb+2 = Hfo_wOPb+ + H+$ log_k 0.3 delta h 0 kJ # Id: 8126000 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Be+2 = Hfo_sOBe+ + H+$ log_k 5.7 delta_h 0 kJ # Id: 8111100 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Be+2 = Hfo_wOBe+ + H+$ log_k 3.3 delta_h 0 kJ # Id: 8121100 # log K source: # Delta H source:

**#**T and ionic strength:  $Hfo_sOH + Hg(OH)2 + H + = Hfo_sOHg + + 2H2O$ log k 13.95 delta_h 0 kJ # Id: 8113610 # log K source: # Delta H source: #T and ionic strength:  $Hfo_wOH + Hg(OH)2 + H + = Hfo_wOHg + + 2H2O$ log_k 12.64 delta_h 0 kJ # Id: 8123610 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Sn(OH)2 + H = Hfo_sOSn + 2H2O$ log_k 15.1 delta h 0 kJ # Id: 8117900 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Sn(OH)2 + H + = Hfo_wOSn + + 2H2O$ log_k 13 delta_h 0 kJ # Id: 8127900 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Cr(OH)2 + = Hfo_sOCrOH + H2O$ log_k 11.63 delta_h 0 kJ # Id: 8112110 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + H3AsO3 = Hfo_sH2AsO3 + H2O$ log_k 5.41 delta h 0 kJ # Id: 8110600 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + H3AsO3 = Hfo_wH2AsO3 + H2O$ log_k 5.41 delta_h 0 kJ # Id: 8120600 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + H3BO3 = Hfo_sH2BO3 + H2O$ log k 0.62 delta h 0 kJ # Id: 8110900

# log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + H3BO3 = Hfo_wH2BO3 + H2O$ log_k 0.62 delta h 0 kJ # Id: 8120900 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + PO4-3 + 3H + = Hfo_sH2PO4 + H2O$ log_k 31.29 delta_h 0 kJ # Id: 8115800 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + PO4-3 + 3H + = Hfo_wH2PO4 + H2O$ log_k 31.29 delta h 0 kJ # Id: 8125800 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + PO4-3 + 2H + = Hfo_sHPO4- + H2O$ log k 25.39 delta_h 0 kJ # Id: 8115801 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + PO4-3 + 2H + = Hfo_wHPO4- + H2O$ log_k 25.39 delta_h 0 kJ # Id: 8125801 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + PO4-3 + H+ = Hfo_sPO4-2 + H2O$ log_k 17.72 delta h 0 kJ # Id: 8115802 # loa K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + PO4-3 + H+ = Hfo_wPO4-2 + H2O$ log_k 17.72 delta_h 0 kJ # Id: 8125802 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + H3AsO4 = Hfo_sH2AsO4 + H2O$ log_k 8.61
delta h 0 kJ # Id: 8110610 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + H3AsO4 = Hfo_wH2AsO4 + H2O$ log k 8.61 delta h 0 kJ # Id: 8120610 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + H3AsO4 = Hfo_sHAsO4 + H2O + H+$ log_k 2.81 delta_h 0 kJ # Id: 8110611 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + H3AsO4 = Hfo_wHAsO4 + H2O + H +$ log_k 2.81 delta h 0 kJ # Id: 8120611 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + H3AsO4 = Hfo_sOHAsO4-3 + 3H+$ log_k -10.12 delta_h 0 kJ # Id: 8110613 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + H3AsO4 = Hfo_wOHAsO4-3 + 3H+$ log_k -10.12 delta_h 0 kJ # Id: 8120613 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + VO2 + 2H2O = Hfo_sOHVO4 - 3 + 4H +$ log_k -16.63 delta_h 0 kJ # Id: 8119031 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + VO2 + 2H2O = Hfo_wOHVO4 - 3 + 4H +$ log_k -16.63 delta_h 0 kJ # Id: 8129031 # log K source: # Delta H source: **#**T and ionic strength:

 $Hfo_sOH + SO4-2 + H+ = Hfo_sSO4- + H2O$ log_k 7.78 delta h 0 kJ # Id: 8117320 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + SO4-2 + H+ = Hfo_wSO4- + H2O$ log_k 7.78 delta_h 0 kJ # Id: 8127320 # log K source: # Delta H source: #T and ionic strength:  $Hfo_sOH + SO4-2 = Hfo_sOHSO4-2$ log_k 0.79 delta_h 0 kJ # Id: 8117321 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + SO4-2 = Hfo_wOHSO4-2$ log_k 0.79 delta h 0 kJ # Id: 8127321 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + HSeO3 - = Hfo_sSeO3 - + H2O$ log_k 4.29 delta_h 0 kJ # Id: 8117610 # log K source: # Delta H source: **#**T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wSeO3- + H2O log k 4.29 delta h 0 kJ # Id: 8127610 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + HSeO3 - = Hfo_sOHSeO3 - 2 + H +$ log_k -3.23 delta h 0 kJ # Id: 8117611 # log K source: # Delta H source: **#**T and ionic strength: Hfo_wOH + HSeO3- = Hfo_wOHSeO3-2 + H+ log_k -3.23 delta_h 0 kJ # Id: 8127611 # log K source:

# Delta H source: #T and ionic strength:  $Hfo_sOH + SeO4-2 + H+ = Hfo_sSeO4- + H2O$ log_k 7.73 delta h 0 kJ # Id: 8117620 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + SeO4-2 + H+ = Hfo_wSeO4- + H2O$ log_k 7.73 delta_h 0 kJ # Id: 8127620 # log K source: # Delta H source: **#**T and ionic strength: Hfo_sOH + SeO4-2 = Hfo_sOHSeO4-2 log k 0.8 delta h 0 kJ # Id: 8117621 # log K source: # Delta H source: **#**T and ionic strength: Hfo wOH + SeO4-2 = Hfo wOHSeO4-2 log k 0.8 delta h 0 kJ # Id: 8127621 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + CrO4-2 + H+ = Hfo_sCrO4- + H2O$ log_k 10.85 delta_h 0 kJ # Id: 8112120 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + CrO4-2 + H+ = Hfo_wCrO4- + H2O$ log_k 10.85 delta_h 0 kJ # Id: 8122120 # log K source: # Delta H source: **#**T and ionic strength: Hfo_sOH + CrO4-2 = Hfo_sOHCrO4-2 log_k 3.9 delta_h 0 kJ # Id: 8112121 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + CrO4-2 = Hfo_wOHCrO4-2$ log k 3.9 delta_h 0 kJ

# Id: 8122121 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + MoO4-2 + H+ = Hfo_sMoO4- + H2O$ log k 9.5 delta h 0 kJ # Id: 8114800 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + MoO4-2 + H+ = Hfo_wMoO4- + H2O$ log_k 9.5 delta_h 0 kJ # Id: 8124800 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + MoO4-2 = Hfo_sOHMoO4-2$ log k 2.4 delta_h 0 kJ # Id: 8114801 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + MoO4-2 = Hfo_wOHMoO4-2$ log_k 2.4 delta_h 0 kJ # Id: 8124801 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Sb(OH)6- + H+ = Hfo_sSbO(OH)4 + 2H2O$ log_k 8.4 delta h 0 kJ # Id: 8117410 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Sb(OH)6- + H+ = Hfo_wSbO(OH)4 + 2H2O$ log k 8.4 delta_h 0 kJ # Id: 8127410 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Sb(OH)6- = Hfo_sOHSbO(OH)4- + H2O$ log_k 1.3 delta_h 0 kJ # Id: 8117411 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Sb(OH)6- = Hfo_wOHSbO(OH)4- + H2O$ 

log_k 1.3 delta_h 0 kJ # Id: 8127411 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_sOH + Cyanide + H + = Hfo_sCyanide + H2O$ log_k 13 delta_h 0 kJ # Id: 8111430 # log K source: # Delta H source: **#**T and ionic strength:  $Hfo_wOH + Cyanide + H + = Hfo_wCyanide + H2O$ log_k 13 delta_h 0 kJ # Id: 8121430 # log K source: # Delta H source: **#**T and ionic strength: Hfo_sOH + Cyanide- = Hfo_sOHCyanidelog k 5.7 delta_h 0 kJ # Id: 8111431 # log K source: # Delta H source: **#**T and ionic strength: Hfo_wOH + Cyanide- = Hfo_wOHCyanidelog_k 5.7 delta_h 0 kJ # Id: 8121431 # log K source: # Delta H source: **#**T and ionic strength: #Additions from GWB Minteg  $Hfo_wOH + H4SiO4 = Hfo_wOSi(OH)3 + H2O$ log k 4.28 delta h 0 kJ  $Hfo_wOH + H4SiO4 = Hfo_wOSiO(OH)2 + H + H2O$ log_k -3.22 delta h 0 kJ  $Hfo_sOH + H4SiO4 = Hfo_sOSi(OH)3 + H2O$ log k 4.28 delta_h 0  $Hfo_sOH + H4SiO4 = Hfo_sOSiO(OH)2 + H + H2O$ log_k -3.22 delta h 0  $Hfo_wOH + CO3-2 + H+ = Hfo_wCO3- + H2O$ log_k 12.56 delta_h 0  $Hfo_wOH + CO3-2 + 2H+= Hfo_wHCO3 + H2O$ log_k 20.62 delta h 0  $Hfo_sOH + CO3-2 + H+ = Hfo_sCO3- + H2O$ 

log k 12.56 delta h 0  $Hfo_sOH + CO3-2 + 2H = Hfo_sHCO3 + H2O$ log k 20.62 delta h 0 #Karamalidis and Dzombak sorption to gibbsite (hao) as compiled in Cravotta 2021 (https: //doi.org/10.1016/j.apgeochem.2020.104845) Table S4 unless otherwise noted Hao OH + Cu+2 = Hao OCu+ + H+log k 0.25  $Hao_OH + Pb+2 = Hao_OPb+ + H+$ log k 0.37 Hao OH + Co+2 = Hao OCo+ + H+log_k -2.52 Hao OH + Cd+2 = Hao OCd + H+log_k -2.73  $Hao_OH + Mn+2 = Hao_OMn+ + H+$ log_k -5.49  $Hao_OH + Fe+2 = Hao_OFe+ + H+$ log_k -3.77  $Hao_OH + Ca+2 = Hao_OCa+ + H+$ log_k -10.49  $Hao_OH + Mg + 2 = Hao_OMg + H +$ log_k -5.93  $Hao_OH + Ba+2 = Hao_OBa+ + H+$ log k -8.5 Hao OH + Sr+2 = Hao OSr + H +log k -8.26  $Hao_OH + Zn+2 = Hao_OZn+ + H+$ log k -0.96 Hao OH + PO4-3 + 3 H + = Hao H2PO4 + H2Olog k 26.89  $Hao_OH + PO4-3 + 2H + = Hao_HPO4- + H2O$ log_k 19.37  $Hao_OH + PO4-3 + H + = Hao_PO4-2 + H2O$ log_k 13.57  $#Hao_OH + SO4-2 + H + = Hao_SO4- + H2O$ # log k -0.45 #Hao_OH + SO4-2 = Hao_OHSO4-2 # log_k 1.19  $Hao_OH + F + H + = Hao_F + H2O$ log k 8.78  $Hao_OH + F - = Hao_OHF$ log k 2.88  $Hao_OH + 2 F + H + = Hao_F2 + H2O$ log k 11.94  $Hao_OH + H4SiO4 = Hao_OH4SiO4 + H +$ log k -4.16 #Modified value from Goldberg and Glaubig (1985)  $Hao_OH + H3BO3 = Hao_H2BO3 + H2O$ Log k 4.83  $Hao_OH + H3BO3 = Hao_H3BO4 + H +$ Log k -7.40 #Modified value from Kitadai et al. (2018)

```
Hao_OH + SO4-2 + H+ = Hao_SO4- + H2O
log_k 2.4
#Modified value from Kitadai et al. (2018)
Hao_OH + SO4-2 = Hao_OHSO4-2
log_k 7.5
END
```

289

## **ATTACHMENT C**

Details of Geochemical Model Parameterization



### **Attachment C. Details of Geochemical Model Parameterization**

#### Introduction

This appendix to the Groundwater Polishing Report for the Coffeen Power Plant (CPP) Ash Pond No. 2 (AP2) Unit provides detailed information regarding geochemical model parameterization. The information provided includes sources of thermodynamic data, sources of data used in model parameterization, summarized values, and calculation methods. All solid-phase data is fully documented in the Nature and Extent Report.¹ All aqueous data have been posted to the facility's operating record in accordance with 35 I.A.C. § 845.800(d)(15).

#### **Solid Phase Inputs**

The solid phase inputs to the model included iron (hydr)oxides and aluminum (hydr)oxides. These phases tend to have relatively rapid precipitation kinetics and form an outer layer on the surfaces of aquifer solids, creating surface area for sorption and attenuation of boron. Input concentrations for iron and aluminum (hydr)oxides are ideally derived using sequential extraction procedure (SEP) data. SEP methods employ chemical extractants to dissolve metals from specific solid-associated phases. SEP methods use progressively stronger reagents to solubilize metals from increasingly recalcitrant phases. Although these procedures do not identify the discrete solid phases in a soil/aquifer matrix, they provide a means to evaluate and characterize the metal binding mechanisms and relative stability of metals in each phase, and to estimate the available mass of the respective attenuating phase(s) (i.e., aluminum and iron [hydr]oxide). However, SEP analyses were not completed on Coffeen AP2 samples. The dataset constraints necessitated alternative means of deriving oxide inputs.

Because SEP analyses were not completed on any CPP AP2 samples, model input concentrations for ferrihydrite and gibbsite were derived using site-specific total metals and the proportion of total metals as crystalline metal oxides or amorphous metal oxides compiled from SEP datasets consisting of samples collected from similar geologic systems at various power generating facilities across Illinois. Much of the Coffeen AP2 uppermost aquifer (UA) consists of the Hagarstown Member, so the analogous dataset for the UA is comprised of samples collected from various power generating facilities across Illinois specifically within the Hagarstown Member. The geologic similarity (regional geology, similar lithologies and depositional environments, similar mineral assemblages) between the samples comprising this dataset and the CPP AP2 subsurface make this dataset appropriate for estimating the amount and distribution of sorbing solid phases in the absence of a

¹ The Nature and Extent Report was previously submitted to IEPA on June 12, 2024, and provided with relevant updates as Appendix D of the CAAA to which this report is attached.

complete site-specific dataset. SEP data for iron and aluminum is available for 3 Hagarstown Member solid phase samples collected from a different power generating unit.

Total solid-phase iron was measured in three AP2 UA solids samples at concentrations ranging from 14,000 milligrams per kilogram (mg/kg) to 22,000 mg/kg. Six AP2 UA solid samples were analyzed for mineralogy via X-ray diffraction analysis. X-ray diffraction analysis identified multiple minerals containing iron in their crystal structures, only one of which is an iron oxide mineral (magnetite). The crystalline iron component for the UA was determined by applying a proportion of 0.0006 (representative of 0.06 weight % - the average magnetite component of AP2 UA samples) to the median total iron value from UA samples.

The amorphous ferrihydrite component for the UA was based on the 25th percentile of amorphous ferrihydrite distribution in the analogous compiled SEP dataset.

The gibbsite component of the models was determined using the average mass of aluminum associated with the oxide fraction from the compiled SEP dataset described above.

In thermodynamic modeling, the amount of sorbing phase present is typically the dominant control on the concentration of constituents sorbed under a given pH. Therefore, different amounts of metal oxides were used to test the sensitivity of the model to the amount of sorbing phase present. The amount of metal oxides used were derived from the 25th percentile, median (*i.e.*, 50th percentile), and 75th percentile of the SEP results for the relevant iron and aluminum phases.

Sorption of inorganic constituents to iron (hydr)oxides in the MINTEQ v4 database² is represented by the hydrous ferric oxide (HFO) thermodynamic dataset presented in Dzombak and Morel (1990). Sorption of inorganic constituents to aluminum (hydr)oxides is represented by the hydrous aluminum oxide (HAO) thermodynamic data presented in Karamalidis and Dzombak (2010), Goldberg and Glaubig (1985) (boron), and Kitadai et al. (2018) (sulfate). These sorption data are based on gibbsite, a nearly ubiquitous crystalline aluminum hydroxide mineral (Karamalidis and Dzombak 2010).

The quantities of HFO and HAO in the model are represented by ferrihydrite ( $Fe(OH)_3$ ) and gibbsite (Al(OH)_3), respectively. Ferrihydrite is the most similar naturally occurring iron oxide to HFO (Dzombak and Morel, 1990), and sorption data for HAO was determined using gibbsite (Karamalidis and Dzombak 2010). Metal concentrations are presented in milligrams per kilogram of dry weight (mg/kg dw), whereas ferrihydrite and gibbsite inputs to the model represent moles of solid phase associated with one liter (L) of aqueous phase. The concentrations of iron and aluminum were converted to moles of ferrihydrite and gibbsite (respectively) according to the following:

The mass in kilograms (kg) of solid in the model (i.e., per 1 L of water) was calculated by:

$$Solid Mass In Model (kg) = \frac{(1-\phi)}{\phi} \times \frac{1000 \ cm^3 \ water}{L \ water} \times 1 \ L \ water \times \rho \ \times \ \frac{1 \ kg \ solid}{1000 \ g \ solid}$$

Where:

² The default MINTEQ v4 database for PHREEQC does not include sorption data for carbonate and silicate to HFO. Thermodynamic constants for sorption of carbonate and silicate to HFO were added from the MINTEQ database associated with the Geochemist's Workbench software program.



 $\phi$  = porosity (water volume in cubic centimeters [cm³] / total volume in cm³)

 $\rho$  = density of the solid (grams [g]/cm³)

Porosity and density represent the median of measurements each hydrostratigraphic unit as reported in the Hydrogeologic Characterization Report³.

Moles of ferrihydrite and gibbsite were determined using metal concentrations as described above, the molar mass of iron or aluminum, and the mass of solid phase in the model:

Moles of Metal Oxide  
= 
$$\frac{mg \, Fe \, or \, Al}{kg \, solid} \times \frac{g}{1000 \, mg} \times \frac{moles \, Fe \, or \, Al}{g \, Fe \, or \, Al} \times kg \, Solid \, Mass \, in \, Model$$

The moles of ferrihydrite and gibbsite are represented by moles of Fe or Al (respectively) in a 1:1 ratio mased on the mineral formula. Ferrihydrite and gibbsite were allowed to precipitate or dissolve in the reaction phase of the model to evaluate the impact of source control on sorbing phase availability.

Calcite and dolomite were included as mineral phases in the model because carbonate mineral formation and dissolution are often major controls on groundwater pH. Calcite is a common carbonate mineral and was detected at levels of greater than 1% by weight in X-ray diffraction analysis and are therefore considered to be present in excess within the aquifer. Dolomite was not detected in AP2 UA XRD samples and was therefore not added to the initial model input. Therefore, the mass fractions reported in the X-ray diffraction are used as model inputs for the UA. Both calcite and dolomite were allowed to precipitate in the reaction phase of the model.

Barite and gypsum are common sulfate minerals that have the potential to form under ambient environmental conditions. Neither mineral was detected in X-ray diffraction results at well locations containing exceedances of GWPSs. Therefore, barite and gypsum did not have initial concentrations in the model but were allowed to precipitate or dissolve in the reaction phase of the model.

#### **Aqueous Inputs**

In addition to the constituent of concern boron, the following parameters are included in the model and are anticipated to capture the expected attenuation and mobilization mechanisms for reasons detailed below:

- Temperature, pH and pe: pH and pe (a measure of redox potential) are major controls on chemical attenuation and mobility.
- Chloride, potassium, and sodium: Major ions in groundwater typically required for the model to reach charge balance.
- Carbonate ion, calcium, and magnesium: Major ions in groundwater that may also form common minerals, including carbonates. Carbonate mineral formation and dissolution is often a major

³ The Hydrogeologic Characterization Report was previously submitted to IEPA as part of the Closure Permit Application and is provided as Appendix B.3 to the Construction Permit Application.



control on groundwater pH. Bicarbonate and carbonate ions, a major component of groundwater alkalinity, may also compete with sulfate/boron for sorbing sites.

- Silicon and phosphate: Silicate and phosphate are oxyanions that compete with sulfate/boron for sorbing sites.
- Aluminum, iron, and manganese: As discussed above, iron and aluminum form reactive metal (hydr)oxide minerals which have high capacities for sorbing other ions on their surfaces. Although sorption to manganese oxides was not considered in this model, manganese behaves similarly to iron and is included for completeness.
- Remaining constituents regulated under 35 IAC § 845.600⁴: Although these parameters are not subject to corrective action at NEW PAP, they are included in the model for completeness.

Values for pe and carbonate ion concentrations were derived from values previously reported in the analytical data according to the following methods.

pe is a non-dimension scale of redox potential and is calculated from oxidation reduction potential (ORP). First, the field-measured ORP was converted to Eh (i.e., the redox potential normalized to the standard hydrogen electrode). The following equation provided in the Horiba water quality meter instruction manual⁵ was used:

Eh = ORP + 206 - 0.7*(T - 25)

Where both Eh and ORP are in volts (V) and T is temperature in degrees Celsius. Eh is then converted to pe:

pe = (Eh * F) / (2.303 * R * T)

Where:

F = Faraday constant (96,500 Joules (J) / V-equivalent)

R = Molar gas constant (8.31 J / Kelvin (K)-mole)

T = temperature in Kelvin

Data reported for groundwater at the site include carbonate and bicarbonate alkalinity in units of mg of calcium carbonate per liter (mg CaCO₃/L). For use in modeling, it is convenient to convert these values to a single carbonate ( $CO_3^{2-}$ ) ion concentration. Because carbonate and bicarbonate alkalinity are reported in the same units (i.e., standardized to mg CaCO₃) and represent different protonation states of the same inorganic carbon oxyanion, they were summed to represent total alkalinity due to carbonate. This summed alkalinity was converted to concentration of carbonate ion according to the following equation:

⁴ Mercury, thallium, total dissolved solids, and radium were not included in the model. Mercury reactions within the environment are highly complex and would require a separate modeling effort. Thallium forms a non-reactive monovalent cation and is rarely detected in the groundwater and is therefore not expected to contribute to model outcomes. Total dissolved solids are not a chemical parameter, but rather the result of other chemical abundances taken together. Radium is not included in most thermodynamic databases.

⁵ <u>https://static.horiba.com/fileadmin/Horiba/Products/Process_and_Environmental/Water_Pollution/Instruction_Manuals/U-50/U-50_Manual.pdf</u>



$$\frac{mg\ CO_3^{2-}}{L} = \frac{mg\ CaCO_3}{L} \times \frac{mole\ CaCO_3}{100.1\ mg\ CaCO_3} \times \frac{1\ mole\ CO_3^{2-}}{1\ mole\ CaCO_3} \times \frac{60\ mg\ CO_3^{2-}}{mole\ CO_3^{2-}}$$

The full suite of geochemical parameters for this model was measured in Quarter 2 and Quarter 3, 2023. The medians of these results were used in the model to represent average groundwater interacting with the solid phase. For downgradient wells the median for each parameter was calculated for each location individually. For background wells, a single median for each parameter was calculated using data from all three background locations measured in Quarter 2 and Quarter 3, 2023.

The model was run without charge balancing and with charge balancing on chloride. The results during the reaction modeling did not substantially differ with and without charge balancing on chloride. The results presented in the Groundwater Polishing Report therefore represent the model results using charge balancing on chloride.

#### References

Appelo C.A.J. and Postma D. 2005. Geochemistry, Groundwater, and Pollution. 2nd Edition. A.A. Balkema Publishers, member of Taylor & Francis Group. The Netherlands.

Dzombak D.A. and Morel F.M.M. 1990. Surface Complexation Modeling: Hydrous Ferric Oxide. John Wiley & Sons, New York.

Goldberg S. and Glaubig R.A. 1985. Boron Adsorption on Aluminum and Iron Oxide Minerals. *Soil Science Society of America Journal* **49**(6):1374-1379.

Karamalidis A.K. and Dzombak D.A. 2010. Surface Complexation Modeling: Gibbsite. John Wiley & Sons, New York.

Kitadai N., Nishiuchi K, and Tanaka M. 2018. A comprehensive predictive model for sulfate adsorption on oxide minerals. *Geochimica et Cosmochimica Acta* **238**:150-168.

# **ATTACHMENT D** Complete Geochemical Modeling Outputs

#### Attachment D. PHREEQC modeling output

Groundwater Polishing Report Ash Pond No. 2 Coffeen Power Plant Coffeen, IL

	Location			
Location	Description	Model	Charge Balance	Solids Summary
G401	C - UA	Initial Soln	TRUE	25p
G402	C - UA	Initial Soln	TRUE	25p
G404	C - UA	Initial Soln	TRUE	25p
G405	C - UA	Initial Soln	TRUE	25p
G406	C - UA	Initial Soln	TRUE	25p
G401	C - UA	Speciation Model	TRUE	25p
G402	C - UA	Speciation Model	TRUE	25p
G404	C - UA	Speciation Model	TRUE	25p
G405	C - UA	Speciation Model	TRUE	25p
G406	C - UA	Speciation Model	TRUE	25p
G401	C - UA	First Reaction	TRUE	25p
G401	C - UA	Second Reaction	TRUE	25p
G402	C - UA	First Reaction	TRUE	25p
G402	C - UA	Second Reaction	TRUE	25p
G404	C - UA	First Reaction	TRUE	25p
G404	C - UA	Second Reaction	TRUE	25p
G405	C - UA	First Reaction	TRUE	25p
G405	C - UA	Second Reaction	TRUE	25p
G406	C - UA	First Reaction	TRUE	25p
G406	C - UA	Second Reaction	TRUE	25p
G401	C - UA	Initial Soln	TRUE	75p
G402	C - UA	Initial Soln	TRUE	75p
G404	C - UA	Initial Soln	TRUE	75p
G405	C - UA	Initial Soln	TRUE	75p
G406	C - UA	Initial Soln	TRUE	75p
G401	C - UA	Speciation Model	TRUE	75p
G402	C - UA	Speciation Model	TRUE	75p
G404	C - UA	Speciation Model	TRUE	75p
G405	C - UA	Speciation Model	TRUE	75p
G406	C - UA	Speciation Model	TRUE	75p
G401	C - UA	First Reaction	TRUE	75p
G401	C - UA	Second Reaction	TRUE	75p
G402	C - UA	First Reaction	TRUE	75p
G402	C - UA	Second Reaction	TRUE	75p
G404	C - UA	First Reaction	TRUE	75p
G404	C - UA	Second Reaction	TRUE	75p
G405	C - UA	First Reaction	TRUE	75p
G405	C - UA	Second Reaction	TRUE	75p
G406	C - UA	First Reaction	TRUE	75p
G406	C - UA	Second Reaction	TRUE	75p
G401	C - UA	Initial Soln	TRUE	median
G402	C - UA	Initial Soln	TRUE	median
G404	C - UA	Initial Soln	TRUE	median

G405	C - UA	Initial Soln	TRUE	median
G406	C - UA	Initial Soln	TRUE	median
G401	C - UA	Speciation Model	TRUE	median
G402	C - UA	Speciation Model	TRUE	median
G404	C - UA	Speciation Model	TRUE	median
G405	C - UA	Speciation Model	TRUE	median
G406	C - UA	Speciation Model	TRUE	median
G401	C - UA	First Reaction	TRUE	median
G401	C - UA	Second Reaction	TRUE	median
G402	C - UA	First Reaction	TRUE	median
G402	C - UA	Second Reaction	TRUE	median
G404	C - UA	First Reaction	TRUE	median
G404	C - UA	Second Reaction	TRUE	median
G405	C - UA	First Reaction	TRUE	median
G405	C - UA	Second Reaction	TRUE	median
G406	C - UA	First Reaction	TRUE	median
G406	C - UA	Second Reaction	TRUE	median
G401	C - UA	Initial Soln	FALSE	25p
G402	C - UA	Initial Soln	FALSE	25p
G404	C - UA	Initial Soln	FALSE	25p
G405	C - UA	Initial Soln	FALSE	25p
G406	C - UA	Initial Soln	FALSE	25p
G401	C - UA	Speciation Model	FALSE	25p
G402	C - UA	Speciation Model	FALSE	25p
G404	C - UA	Speciation Model	FALSE	25p
G405	C - UA	Speciation Model	FALSE	25p
G406	C - UA	Speciation Model	FALSE	25p
G401	C - UA	First Reaction	FALSE	25p
G401	C - UA	Second Reaction	FALSE	25p
G402	C - UA	First Reaction	FALSE	25p
G402	C - UA	Second Reaction	FALSE	25p
G404	C - UA	First Reaction	FALSE	25p
G404	C - UA	Second Reaction	FALSE	25p
G405	C - UA	First Reaction	FALSE	25p
G405	C - UA	Second Reaction	FALSE	25p
G406	C - UA	First Reaction	FALSE	25p
G406	C - UA	Second Reaction	FALSE	25p
G401	C - UA	Initial Soln	FALSE	75p
G402	C - UA	Initial Soln	FALSE	75p
G404	C - UA	Initial Soln	FALSE	/5p
G405	C - UA	Initial Soln	FALSE	75p
G406	C - UA		FALSE	75p
G401	C - UA	Speciation Model	FALSE	/5p
G402	C - UA	Speciation Model	FALSE	/5p
G404	C - UA	Speciation Model	FALSE	/5p
G405		Speciation Model	FALSE	/5p
G406	C - UA	Speciation Model	FALSE	/5p
G401			FALSE	/5p
G401	C - UA	Second Reaction	FALSE	/5p
G402	C - UA	FIRST REACTION	FALSE	75p

G402	C - UA	Second Reaction	FALSE	75p
G404	C - UA	First Reaction	FALSE	75p
G404	C - UA	Second Reaction	FALSE	75p
G405	C - UA	First Reaction	FALSE	75p
G405	C - UA	Second Reaction	FALSE	75p
G406	C - UA	First Reaction	FALSE	75p
G406	C - UA	Second Reaction	FALSE	75p
G401	C - UA	Initial Soln	FALSE	median
G402	C - UA	Initial Soln	FALSE	median
G404	C - UA	Initial Soln	FALSE	median
G405	C - UA	Initial Soln	FALSE	median
G406	C - UA	Initial Soln	FALSE	median
G401	C - UA	Speciation Model	FALSE	median
G402	C - UA	Speciation Model	FALSE	median
G404	C - UA	Speciation Model	FALSE	median
G405	C - UA	Speciation Model	FALSE	median
G406	C - UA	Speciation Model	FALSE	median
G401	C - UA	First Reaction	FALSE	median
G401	C - UA	Second Reaction	FALSE	median
G402	C - UA	First Reaction	FALSE	median
G402	C - UA	Second Reaction	FALSE	median
G404	C - UA	First Reaction	FALSE	median
G404	C - UA	Second Reaction	FALSE	median
G405	C - UA	First Reaction	FALSE	median
G405	C - UA	Second Reaction	FALSE	median
G406	C - UA	First Reaction	FALSE	median
G406	C - UA	Second Reaction	FALSE	median

#### NOTES:

All model results are in units of moles with the exceptions of:

pH and pe (standard units)

charge (equivalents)

Results beginning with 'd_' (change from prior model step)

Results beginning with 'si_' (saturation index)

рН	ре	charge	pct_err	S(6)
6.09	3.18	-1.86e-16	-3.06e-13	0.0209
6.96	5.33	6.32e-17	1.65e-13	0.00615
6.76	4.90	3.95e-12	1.05e-08	0.00718
6.96	4.03	2.68e-18	6.48e-15	0.00999
6.63	5.75	2.11e-16	7.58e-13	0.00501
6.09	3.18	-1.72e-16	-2.83e-13	0.0209
6.96	5.33	7.53e-17	1.97e-13	0.00615
6.76	4.90	3.95e-12	1.05e-08	0.00718
6.96	4.03	-2.53e-18	-6.12e-15	0.00999
6.63	5.75	2.23e-16	8.01e-13	0.00501
7.34	-4.93e-01	-1.62e-04	-6.76e-01	0.00120
7.39	-4.62e-01	-4.21e-06	-1.86e-02	0.000920
7.35	3.59	-9.48e-05	-4.08e-01	0.000947
7.39	3.36	-1.66e-07	-7.33e-04	0.000900
7.33	2.55	-8.16e-05	-3.49e-01	0.000927
7.38	2.57	6.31e-07	0.00278	0.000884
7.36	1.72	-1.22e-04	-5.27e-01	0.000958
7.39	1.79	2.42e-07	0.00107	0.000890
7.33	3.56	-1.02e-04	-4.35e-01	0.000952
7.38	3.34	-2.70e-06	-1.19e-02	0.000910
6.09	3.18	-1.86e-16	-3.06e-13	0.0209
6.96	5.33	6.32e-17	1.65e-13	0.00615
6.76	4.90	3.95e-12	1.05e-08	0.00718
6.96	4.03	2.68e-18	6.48e-15	0.00999
6.63	5.75	2.11e-16	7.58e-13	0.00501
6.09	3.18	-1.72e-16	-2.83e-13	0.0209
6.96	5.33	7.53e-17	1.97e-13	0.00615
6.76	4.90	3.95e-12	1.05e-08	0.00718
6.96	4.03	-2.53e-18	-6.12e-15	0.00999
6.63	5.75	2.23e-16	8.01e-13	0.00501
7.32	-4.69e-01	-1.59e-04	-6.49e-01	0.00132
7.38	-4.72e-01	-1.00e-05	-4.39e-02	0.000922
7.33	3.67	-1.07e-04	-4.54e-01	0.000960
7.38	3.42	-1.50e-06	-6.59e-03	0.000897
7.31	2.57	-8.49e-05	-3.58e-01	0.000943
7.37	2.57	-6.00e-07	-2.63e-03	0.000879
7.35	1.72	-1.36e-04	-5.84e-01	0.000981
7.38	1.77	-1.07e-06	-4.71e-03	0.000886
7.30	3.64	-1.09e-04	-4.56e-01	0.000968
7.37	3.40	-5.18e-06	-2.26e-02	0.000909
6.09	3.18	-1.86e-16	-3.06e-13	0.0209
6.96	5.33	6.32e-17	1.65e-13	0.00615
6.76	4.90	3.95e-12	1.05e-08	0.00718

6.96	4.03	2.68e-18	6.48e-15	0.00999
6.63	5.75	2.11e-16	7.58e-13	0.00501
6.09	3.18	-1.72e-16	-2.83e-13	0.0209
6.96	5.33	7.53e-17	1.97e-13	0.00615
6.76	4.90	3.95e-12	1.05e-08	0.00718
6.96	4.03	-2.53e-18	-6.12e-15	0.00999
6.63	5.75	2.23e-16	8.01e-13	0.00501
7.32	-4.66e-01	-1.43e-04	-5.87e-01	0.00129
7.38	-4.61e-01	-8.05e-06	-3.53e-02	0.000922
7.33	3.64	-9.69e-05	-4.14e-01	0.000955
7.38	3.40	-8.80e-07	-3.87e-03	0.000898
7.32	2.58	-7.64e-05	-3.23e-01	0.000939
7.37	2.58	-7.61e-08	-3.34e-04	0.000881
7.35	1.73	-1.24e-04	-5.32e-01	0.000974
7.38	1.78	-4.58e-07	-2.02e-03	0.000888
7.31	3.62	-9.90e-05	-4.15e-01	0.000963
7.37	3.38	-4.20e-06	-1.83e-02	0.000909
6.09	3.18	0.00221	3.78	0.0209
6.96	5.33	0.00661	21.1	0.00615
6.76	4.90	0.00304	8.79	0.00718
6.96	4.03	0.00380	10.2	0.00999
6.63	5.75	0.00422	18.0	0.00501
6.09	3.18	0.00221	3.78	0.0209
6.96	5.33	0.00661	21.1	0.00615
6.76	4.90	0.00304	8.79	0.00718
6.96	4.03	0.00380	10.2	0.00999
6.63	5.75	0.00422	18.0	0.00501
7.34	-4.97e-01	-1.59e-04	-6.62e-01	0.00120
7.39	-4.66e-01	-4.14e-06	-1.82e-02	0.000920
7.35	3.58	-8.19e-05	-3.53e-01	0.000943
7.39	3.36	4.77e-08	0.000211	0.000900
7.33	2.54	-7.68e-05	-3.29e-01	0.000925
7.38	2.57	7.30e-07	0.00322	0.000884
7.36	1.71	-1.15e-04	-4.99e-01	0.000955
7.39	1.78	3.60e-07	0.00159	0.000890
7.33	3.55	-9.05e-05	-3.85e-01	0.000948
7.38	3.33	-2.52e-06	-1.11e-02	0.000910
6.09	3.18	0.00221	3.78	0.0209
6.96	5.33	0.00661	21.1	0.00615
6.76	4.90	0.00304	8.79	0.00718
6.96	4.03	0.00380	10.2	0.00999
6.63	5.75	0.00422	18.0	0.00501
6.09	3.18	0.00221	3.78	0.0209
6.96	5.33	0.00661	21.1	0.00615
6.76	4.90	0.00304	8.79	0.00718
6.96	4.03	0.00380	10.2	0.00999
6.63	5.75	0.00422	18.0	0.00501
7.32	-4.74e-01	-1.55e-04	-6.34e-01	0.00132
7.38	-4.76e-01	-9.93e-06	-4.34e-02	0.000922
7.33	3.66	-9.15e-05	-3.90e-01	0.000955

7.38	3.42	-1.20e-06	-5.28e-03	0.000897
7.31	2.56	-7.96e-05	-3.36e-01	0.000941
7.37	2.56	-4.64e-07	-2.03e-03	0.000878
7.35	1.71	-1.29e-04	-5.52e-01	0.000978
7.38	1.76	-9.08e-07	-4.00e-03	0.000886
7.30	3.63	-9.54e-05	-3.99e-01	0.000963
7.37	3.39	-4.92e-06	-2.15e-02	0.000909
6.09	3.18	0.00221	3.78	0.0209
6.96	5.33	0.00661	21.1	0.00615
6.76	4.90	0.00304	8.79	0.00718
6.96	4.03	0.00380	10.2	0.00999
6.63	5.75	0.00422	18.0	0.00501
6.09	3.18	0.00221	3.78	0.0209
6.96	5.33	0.00661	21.1	0.00615
6.76	4.90	0.00304	8.79	0.00718
6.96	4.03	0.00380	10.2	0.00999
6.63	5.75	0.00422	18.0	0.00501
7.32	-4.70e-01	-1.40e-04	-5.74e-01	0.00129
7.38	-4.65e-01	-7.96e-06	-3.49e-02	0.000922
7.33	3.64	-8.32e-05	-3.55e-01	0.000950
7.38	3.40	-6.23e-07	-2.74e-03	0.000898
7.32	2.57	-7.16e-05	-3.03e-01	0.000937
7.37	2.57	4.09e-08	0.000179	0.000881
7.35	1.72	-1.17e-04	-5.03e-01	0.000972
7.38	1.77	-3.20e-07	-1.41e-03	0.000888
7.31	3.61	-8.65e-05	-3.63e-01	0.000959
7.37	3.38	-3.98e-06	-1.74e-02	0.000910

В	Li	As	C(4)	CI
0.000378	3.16e-06	1.06e-08	0.00118	0.00230
0.000491	3.10e-06	5.01e-08	0.00504	0.00670
0.00110	1.13e-06	9.66e-09	0.00370	0.00605
0.000940	6.13e-07	1.14e-08	0.00283	0.00413
0.000136	1.58e-06	3.64e-09	0.00354	0.00431
0.000378	3.16e-06	1.06e-08	0.00118	0.00230
0.000491	3.10e-06	5.01e-08	0.00504	0.00670
0.00110	1.13e-06	9.66e-09	0.00370	0.00605
0.000940	6.13e-07	1.14e-08	0.00283	0.00413
0.000136	1.58e-06	3.64e-09	0.00354	0.00431
0.000183	3.89e-07	7.23e-09	0.00463	0.00608
0.000130	3.89e-07	5.58e-09	0.00429	0.00608
0.000224	3.89e-07	2.61e-08	0.00462	0.00608
0.000173	3.89e-07	2.48e-08	0.00427	0.00608
0.000340	3.89e-07	6.79e-09	0.00475	0.00608
0.000232	3.89e-07	6.65e-09	0.00435	0.00608
0.000303	3.89e-07	1.09e-08	0.00452	0.00608
0.000213	3.89e-07	1.12e-08	0.00427	0.00608
0.000157	3.89e-07	2.68e-09	0.00482	0.00608
0.000135	3.89e-07	2.47e-09	0.00433	0.00608
0.000378	3.16e-06	1.06e-08	0.00118	0.00230
0.000491	3.10e-06	5.01e-08	0.00504	0.00670
0.00110	1.13e-06	9.66e-09	0.00370	0.00605
0.000940	6.13e-07	1.14e-08	0.00283	0.00413
0.000136	1.58e-06	3.64e-09	0.00354	0.00431
0.000378	3.16e-06	1.06e-08	0.00118	0.00230
0.000491	3.10e-06	5.01e-08	0.00504	0.00670
0.00110	1.13e-06	9.66e-09	0.00370	0.00605
0.000940	6.13e-07	1.14e-08	0.00283	0.00413
0.000136	1.58e-06	3.64e-09	0.00354	0.00431
0.000197	3.89e-07	7.71e-09	0.00477	0.00608
0.000139	3.89e-07	5.64e-09	0.00438	0.00608
0.000234	3.89e-07	2.70e-08	0.00477	0.00608
0.000186	3.89e-07	2.39e-08	0.00435	0.00608
0.000366	3.89e-07	6.94e-09	0.00493	0.00608
0.000255	3.89e-07	6.20e-09	0.00444	0.00608
0.000324	3.89e-07	1.08e-08	0.00462	0.00608
0.000233	3.89e-07	1.05e-08	0.00433	0.00608
0.000160	3.89e-07	2.81e-09	0.00503	0.00608
0.000142	3.89e-07	2.34e-09	0.00444	0.00608
0.000378	3.16e-06	1.06e-08	0.00118	0.00230
0.000491	3.10e-06	5.01e-08	0.00504	0.00670
0.00110	1.13e-06	9.66e-09	0.00370	0.00605

0.000940	6.13e-07	1.14e-08	0.00283	0.00413
0.000136	1.58e-06	3.64e-09	0.00354	0.00431
0.000378	3.16e-06	1.06e-08	0.00118	0.00230
0.000491	3.10e-06	5.01e-08	0.00504	0.00670
0.00110	1.13e-06	9.66e-09	0.00370	0.00605
0.000940	6.13e-07	1.14e-08	0.00283	0.00413
0.000136	1.58e-06	3.64e-09	0.00354	0.00431
0.000191	3.89e-07	7.49e-09	0.00474	0.00608
0.000135	3.89e-07	5.53e-09	0.00436	0.00608
0.000229	3.89e-07	2.68e-08	0.00474	0.00608
0.000181	3.89e-07	2.40e-08	0.00433	0.00608
0.000354	3.89e-07	6.89e-09	0.00490	0.00608
0.000245	3.89e-07	6.25e-09	0.00442	0.00608
0.000315	3.89e-07	1.08e-08	0.00460	0.00608
0.000224	3.89e-07	1.06e-08	0.00432	0.00608
0.000158	3.89e-07	2.78e-09	0.00499	0.00608
0.000139	3.89e-07	2.35e-09	0.00441	0.00608
0.000378	3.16e-06	1.06e-08	0.00118	9.34e-05
0.000491	3.10e-06	5.01e-08	0.00504	9.04e-05
0.00110	1.13e-06	9.66e-09	0.00370	0.00301
0.000940	6.13e-07	1.14e-08	0.00283	0.000323
0.000136	1.58e-06	3.64e-09	0.00354	9.04e-05
0.000378	3.16e-06	1.06e-08	0.00118	9.34e-05
0.000491	3.10e-06	5.01e-08	0.00504	9.04e-05
0.00110	1.13e-06	9.66e-09	0.00370	0.00301
0.000940	6.13e-07	1.14e-08	0.00283	0.000323
0.000136	1.58e-06	3.64e-09	0.00354	9.04e-05
0.000183	3.89e-07	7.31e-09	0.00463	0.00608
0.000129	3.89e-07	5.64e-09	0.00429	0.00608
0.000222	3.89e-07	2.73e-08	0.00461	0.00608
0.000173	3.89e-07	2.59e-08	0.00427	0.00608
0.000341	3.89e-07	6.93e-09	0.00475	0.00608
0.000232	3.89e-07	6.79e-09	0.00435	0.00608
0.000303	3.89e-07	1.11e-08	0.00451	0.00608
0.000213	3.89e-07	1.15e-08	0.00427	0.00608
0.000156	3.89e-07	2.76e-09	0.00481	0.00608
0.000134	3.89e-07	2.55e-09	0.00433	0.00608
0.000378	3.16e-06	1.06e-08	0.00118	9.34e-05
0.000491	3.10e-06	5.01e-08	0.00504	9.04e-05
0.00110	1.13e-06	9.66e-09	0.00370	0.00301
0.000940	6.13e-07	1.14e-08	0.00283	0.000323
0.000136	1.58e-06	3.64e-09	0.00354	9.04e-05
0.000378	3.16e-06	1.06e-08	0.00118	9.34e-05
0.000491	3.10e-06	5.01e-08	0.00504	9.04e-05
0.00110	1.13e-06	9.66e-09	0.00370	0.00301
0.000940	6.13e-07	1.14e-08	0.00283	0.000323
0.000136	1.58e-06	3.64e-09	0.00354	9.04e-05
0.000197	3.89e-07	7.80e-09	0.00477	0.00608
0.000139	3.89e-07	5.70e-09	0.00438	0.00608
0.000232	3.89e-07	2.82e-08	0.00477	0.00608

0.000186	3.89e-07	2.50e-08	0.00435	0.00608
0.000366	3.89e-07	7.08e-09	0.00493	0.00608
0.000255	3.89e-07	6.33e-09	0.00444	0.00608
0.000324	3.89e-07	1.11e-08	0.00461	0.00608
0.000233	3.89e-07	1.08e-08	0.00433	0.00608
0.000159	3.89e-07	2.89e-09	0.00503	0.00608
0.000141	3.89e-07	2.41e-09	0.00444	0.00608
0.000378	3.16e-06	1.06e-08	0.00118	9.34e-05
0.000491	3.10e-06	5.01e-08	0.00504	9.04e-05
0.00110	1.13e-06	9.66e-09	0.00370	0.00301
0.000940	6.13e-07	1.14e-08	0.00283	0.000323
0.000136	1.58e-06	3.64e-09	0.00354	9.04e-05
0.000378	3.16e-06	1.06e-08	0.00118	9.34e-05
0.000491	3.10e-06	5.01e-08	0.00504	9.04e-05
0.00110	1.13e-06	9.66e-09	0.00370	0.00301
0.000940	6.13e-07	1.14e-08	0.00283	0.000323
0.000136	1.58e-06	3.64e-09	0.00354	9.04e-05
0.000191	3.89e-07	7.59e-09	0.00474	0.00608
0.000135	3.89e-07	5.59e-09	0.00436	0.00608
0.000227	3.89e-07	2.80e-08	0.00474	0.00608
0.000180	3.89e-07	2.51e-08	0.00433	0.00608
0.000355	3.89e-07	7.02e-09	0.00490	0.00608
0.000245	3.89e-07	6.37e-09	0.00442	0.00608
0.000315	3.89e-07	1.11e-08	0.00459	0.00608
0.000224	3.89e-07	1.09e-08	0.00432	0.00608
0.000157	3.89e-07	2.86e-09	0.00498	0.00608
0.000138	3.89e-07	2.42e-09	0.00441	0.00608

F	Ca	Mg	Na	к
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.62e-05	0.00224	0.00222	0.00353	1.52e-05
1.60e-05	0.00207	0.00206	0.00353	1.52e-05
1.60e-05	0.00215	0.00213	0.00353	1.52e-05
1.61e-05	0.00208	0.00206	0.00353	1.52e-05
1.60e-05	0.00217	0.00216	0.00353	1.52e-05
1.61e-05	0.00208	0.00207	0.00353	1.52e-05
1.60e-05	0.00213	0.00211	0.00353	1.52e-05
1.60e-05	0.00207	0.00206	0.00353	1.52e-05
1.63e-05	0.00218	0.00217	0.00353	1.52e-05
1.61e-05	0.00209	0.00208	0.00353	1.52e-05
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.63e-05	0.00232	0.00230	0.00353	1.52e-05
1.60e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00218	0.00217	0.00353	1.52e-05
1.61e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00221	0.00220	0.00353	1.52e-05
1.60e-05	0.00210	0.00209	0.00353	1.52e-05
1.60e-05	0.00215	0.00214	0.00353	1.52e-05
1.60e-05	0.00208	0.00207	0.00353	1.52e-05
1.64e-05	0.00223	0.00222	0.00353	1.52e-05
1.61e-05	0.00211	0.00210	0.00353	1.52e-05
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05

1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.63e-05	0.00231	0.00229	0.00353	1.52e-05
1.60e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00218	0.00216	0.00353	1.52e-05
1.61e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00220	0.00219	0.00353	1.52e-05
1.60e-05	0.00210	0.00209	0.00353	1.52e-05
1.60e-05	0.00215	0.00214	0.00353	1.52e-05
1.60e-05	0.00208	0.00207	0.00353	1.52e-05
1.64e-05	0.00222	0.00221	0.00353	1.52e-05
1.61e-05	0.00211	0.00209	0.00353	1.52e-05
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.62e-05	0.00224	0.00222	0.00353	1.52e-05
1.60e-05	0.00207	0.00206	0.00353	1.52e-05
1.60e-05	0.00215	0.00213	0.00353	1.52e-05
1.61e-05	0.00208	0.00206	0.00353	1.52e-05
1.60e-05	0.00217	0.00216	0.00353	1.52e-05
1.61e-05	0.00208	0.00207	0.00353	1.52e-05
1.60e-05	0.00213	0.00211	0.00353	1.52e-05
1.60e-05	0.00207	0.00206	0.00353	1.52e-05
1.63e-05	0.00218	0.00217	0.00353	1.52e-05
1.61e-05	0.00209	0.00208	0.00353	1.52e-05
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.63e-05	0.00232	0.00230	0.00353	1.52e-05
1.60e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00218	0.00217	0.00353	1.52e-05

1.61e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00221	0.00220	0.00353	1.52e-05
1.60e-05	0.00210	0.00209	0.00353	1.52e-05
1.60e-05	0.00215	0.00214	0.00353	1.52e-05
1.60e-05	0.00208	0.00207	0.00353	1.52e-05
1.64e-05	0.00223	0.00222	0.00353	1.52e-05
1.61e-05	0.00211	0.00210	0.00353	1.52e-05
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.06e-05	0.0125	0.00600	0.00311	6.49e-05
1.39e-05	0.00527	0.00531	0.00196	2.91e-05
6.51e-06	0.00557	0.00424	0.00348	1.35e-05
1.53e-05	0.00629	0.00453	0.00477	1.25e-05
1.41e-05	0.00478	0.00269	0.00164	5.29e-06
1.63e-05	0.00231	0.00229	0.00353	1.52e-05
1.60e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00218	0.00216	0.00353	1.52e-05
1.61e-05	0.00209	0.00208	0.00353	1.52e-05
1.60e-05	0.00220	0.00219	0.00353	1.52e-05
1.60e-05	0.00210	0.00209	0.00353	1.52e-05
1.60e-05	0.00215	0.00214	0.00353	1.52e-05
1.60e-05	0.00208	0.00207	0.00353	1.52e-05
1.64e-05	0.00222	0.00221	0.00353	1.52e-05
1.61e-05	0.00211	0.00209	0.00353	1.52e-05

Ва	Si	Р	Mn	Fe
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
2.34e-07	9.49e-05	1.54e-06	6.04e-06	4.70e-05
2.94e-07	9.24e-05	1.54e-06	2.72e-06	3.03e-05
2.90e-07	0.000108	8.84e-07	2.56e-06	9.27e-09
3.00e-07	0.000104	8.92e-07	2.07e-06	9.71e-09
2.97e-07	8.58e-05	1.98e-07	2.59e-06	4.92e-08
3.06e-07	8.49e-05	2.10e-07	2.00e-06	3.48e-08
2.85e-07	9.66e-05	6.21e-07	2.43e-06	2.50e-07
3.03e-07	9.79e-05	6.49e-07	2.00e-06	1.75e-07
2.91e-07	8.90e-05	7.07e-07	1.56e-05	1.04e-08
2.97e-07	8.55e-05	7.19e-07	6.52e-06	1.03e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
2.16e-07	9.67e-05	1.54e-06	6.86e-06	5.23e-05
2.95e-07	8.90e-05	1.50e-06	2.93e-06	3.35e-05
2.88e-07	0.000111	8.85e-07	2.68e-06	9.30e-09
3.02e-07	0.000101	8.72e-07	2.10e-06	9.47e-09
2.95e-07	8.72e-05	1.95e-07	2.74e-06	5.40e-08
3.09e-07	8.04e-05	1.97e-07	2.02e-06	3.75e-08
2.80e-07	9.67e-05	6.12e-07	2.54e-06	2.72e-07
3.05e-07	9.37e-05	6.24e-07	2.02e-06	1.91e-07
2.89e-07	9.15e-05	7.08e-07	1.77e-05	1.07e-08
2.99e-07	8.15e-05	6.90e-07	7.68e-06	1.02e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06

1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
2.20e-07	9.62e-05	1.54e-06	6.50e-06	5.04e-05
2.95e-07	8.93e-05	1.51e-06	2.82e-06	3.22e-05
2.89e-07	0.000110	8.84e-07	2.63e-06	9.36e-09
3.01e-07	0.000101	8.74e-07	2.09e-06	9.61e-09
2.96e-07	8.67e-05	1.95e-07	2.68e-06	5.23e-08
3.08e-07	8.09e-05	1.99e-07	2.01e-06	3.64e-08
2.82e-07	9.64e-05	6.13e-07	2.50e-06	2.63e-07
3.04e-07	9.42e-05	6.28e-07	2.01e-06	1.84e-07
2.90e-07	9.08e-05	7.06e-07	1.68e-05	1.07e-08
2.99e-07	8.19e-05	6.93e-07	7.14e-06	1.03e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
2.34e-07	9.48e-05	1.54e-06	6.08e-06	4.74e-05
2.94e-07	9.23e-05	1.54e-06	2.73e-06	3.06e-05
2.91e-07	0.000108	8.87e-07	2.61e-06	9.29e-09
3.00e-07	0.000103	8.96e-07	2.09e-06	9.73e-09
2.98e-07	8.57e-05	1.99e-07	2.62e-06	5.00e-08
3.06e-07	8.48e-05	2.10e-07	2.01e-06	3.53e-08
2.86e-07	9.64e-05	6.23e-07	2.46e-06	2.55e-07
3.03e-07	9.78e-05	6.52e-07	2.01e-06	1.79e-07
2.92e-07	8.88e-05	7.12e-07	1.60e-05	1.04e-08
2.97e-07	8.54e-05	7.24e-07	6.69e-06	1.03e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
2.16e-07	9.66e-05	1.54e-06	6.91e-06	5.29e-05
2.95e-07	8.89e-05	1.50e-06	2.93e-06	3.38e-05
2.90e-07	0.000110	8.88e-07	2.74e-06	9.32e-09

3.02e-07	0.000101	8.76e-07	2.12e-06	9.49e-09
2.96e-07	8.70e-05	1.96e-07	2.78e-06	5.49e-08
3.09e-07	8.03e-05	1.98e-07	2.03e-06	3.81e-08
2.81e-07	9.65e-05	6.14e-07	2.57e-06	2.78e-07
3.05e-07	9.36e-05	6.27e-07	2.03e-06	1.95e-07
2.90e-07	9.13e-05	7.12e-07	1.83e-05	1.07e-08
2.99e-07	8.14e-05	6.94e-07	7.90e-06	1.02e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
7.96e-08	0.000260	3.88e-07	0.000575	0.00160
2.01e-07	0.000232	8.07e-07	1.57e-05	8.11e-08
2.22e-07	0.000177	1.04e-07	3.69e-05	1.16e-06
1.05e-07	0.000132	3.39e-07	1.98e-05	2.65e-06
9.80e-08	0.000216	2.90e-07	8.06e-05	5.48e-08
2.20e-07	9.61e-05	1.54e-06	6.55e-06	5.09e-05
2.95e-07	8.93e-05	1.51e-06	2.83e-06	3.24e-05
2.90e-07	0.000110	8.87e-07	2.68e-06	9.38e-09
3.01e-07	0.000101	8.78e-07	2.10e-06	9.63e-09
2.96e-07	8.66e-05	1.96e-07	2.71e-06	5.31e-08
3.08e-07	8.08e-05	1.99e-07	2.02e-06	3.70e-08
2.82e-07	9.63e-05	6.15e-07	2.53e-06	2.69e-07
3.04e-07	9.40e-05	6.30e-07	2.02e-06	1.88e-07
2.91e-07	9.06e-05	7.11e-07	1.74e-05	1.07e-08
2.99e-07	8.18e-05	6.98e-07	7.33e-06	1.03e-08

ΔΙ	Sb	Be	Cd	Cr
1.25e-07	2.12e-09	2.20e-08	2,99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
4.94e-08	2.53e-09	2.04e-09	1.34e-10	5.94e-10
5.31e-08	2.53e-09	1.87e-09	1.02e-10	5.50e-10
5.00e-08	2.53e-09	7.92e-09	5.13e-10	2.60e-08
5.31e-08	2.53e-09	7.23e-09	3.97e-10	2.31e-08
4.89e-08	2.53e-09	6.51e-09	3.02e-10	8.00e-09
5.24e-08	2.53e-09	5.84e-09	2.09e-10	7.14e-09
5.09e-08	2.53e-09	1.13e-08	3.95e-10	7.39e-09
5.31e-08	2.53e-09	1.06e-08	2.90e-10	6.83e-09
4.84e-08	2.53e-09	4.50e-09	1.11e-09	3.51e-09
5.25e-08	2.53e-09	4.00e-09	9.18e-10	3.17e-09
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
4.80e-08	2.53e-09	2.13e-09	1.43e-10	6.17e-10
5.22e-08	2.53e-09	1.90e-09	1.07e-10	5.53e-10
4.87e-08	2.53e-09	8.27e-09	5.48e-10	2.71e-08
5.23e-08	2.53e-09	7.36e-09	4.25e-10	2.38e-08
4.75e-08	2.53e-09	6.85e-09	3.33e-10	8.42e-09
5.15e-08	2.53e-09	5.98e-09	2.27e-10	7.30e-09
5.00e-08	2.53e-09	1.17e-08	4.26e-10	7.64e-09
5.26e-08	2.53e-09	1.07e-08	3.12e-10	6.93e-09
4.68e-08	2.53e-09	4.76e-09	1.17e-09	3.67e-09
5.15e-08	2.53e-09	4.10e-09	9.66e-10	3.22e-09
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08

1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
4.82e-08	2.53e-09	2.11e-09	1.40e-10	6.12e-10
5.24e-08	2.53e-09	1.89e-09	1.04e-10	5.52e-10
4.89e-08	2.53e-09	8.21e-09	5.36e-10	2.68e-08
5.25e-08	2.53e-09	7.33e-09	4.13e-10	2.35e-08
4.77e-08	2.53e-09	6.79e-09	3.22e-10	8.33e-09
5.17e-08	2.53e-09	5.95e-09	2.20e-10	7.25e-09
5.01e-08	2.53e-09	1.16e-08	4.14e-10	7.58e-09
5.27e-08	2.53e-09	1.07e-08	3.03e-10	6.90e-09
4.71e-08	2.53e-09	4.71e-09	1.15e-09	3.63e-09
5.17e-08	2.53e-09	4.08e-09	9.48e-10	3.20e-09
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
4.95e-08	2.53e-09	2.04e-09	1.41e-10	5.99e-10
5.31e-08	2.53e-09	1.87e-09	1.07e-10	5.54e-10
5.00e-08	2.53e-09	7.90e-09	6.64e-10	2.64e-08
5.31e-08	2.53e-09	7.22e-09	5.12e-10	2.35e-08
4.89e-08	2.53e-09	6.50e-09	3.40e-10	8.05e-09
5.24e-08	2.53e-09	5.83e-09	2.34e-10	7.19e-09
5.09e-08	2.53e-09	1.13e-08	4.53e-10	7.44e-09
5.31e-08	2.53e-09	1.06e-08	3.32e-10	6.87e-09
4.84e-08	2.53e-09	4.49e-09	1.34e-09	3.56e-09
5.25e-08	2.53e-09	3.99e-09	1.10e-09	3.22e-09
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
4.80e-08	2.53e-09	2.13e-09	1.52e-10	6.22e-10
5.22e-08	2.53e-09	1.90e-09	1.12e-10	5.58e-10
4.87e-08	2.53e-09	8.25e-09	7.10e-10	2.75e-08

5.24e-08	2.53e-09	7.35e-09	5.48e-10	2.41e-08
4.75e-08	2.53e-09	6.85e-09	3.75e-10	8.47e-09
5.15e-08	2.53e-09	5.97e-09	2.54e-10	7.35e-09
5.00e-08	2.53e-09	1.17e-08	4.89e-10	7.68e-09
5.26e-08	2.53e-09	1.07e-08	3.58e-10	6.98e-09
4.69e-08	2.53e-09	4.75e-09	1.41e-09	3.72e-09
5.15e-08	2.53e-09	4.09e-09	1.16e-09	3.27e-09
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
1.25e-07	2.12e-09	2.20e-08	2.99e-09	1.69e-08
2.83e-07	2.12e-09	2.19e-08	2.09e-09	6.55e-08
1.29e-07	5.41e-09	2.19e-08	2.54e-09	3.37e-08
1.94e-07	8.31e-09	2.20e-08	2.09e-09	1.69e-08
1.92e-07	2.12e-09	2.19e-08	2.09e-09	1.68e-08
4.82e-08	2.53e-09	2.11e-09	1.48e-10	6.17e-10
5.24e-08	2.53e-09	1.89e-09	1.10e-10	5.56e-10
4.89e-08	2.53e-09	8.18e-09	6.94e-10	2.72e-08
5.25e-08	2.53e-09	7.32e-09	5.34e-10	2.39e-08
4.77e-08	2.53e-09	6.78e-09	3.62e-10	8.38e-09
5.17e-08	2.53e-09	5.94e-09	2.46e-10	7.30e-09
5.01e-08	2.53e-09	1.16e-08	4.76e-10	7.63e-09
5.27e-08	2.53e-09	1.07e-08	3.47e-10	6.95e-09
4.71e-08	2.53e-09	4.70e-09	1.39e-09	3.68e-09
5.17e-08	2.53e-09	4.07e-09	1.14e-09	3.25e-09

Co	Pb	Мо	Se	Hfo s
2.26e-06	9.92e-10	3.50e-09	4.26e-09	0
5.01e-08	1.09e-08	2.45e-08	4.25e-09	0
3.01e-08	1.72e-09	7.67e-09	4.25e-09	0
1.67e-08	2.25e-09	1.04e-08	9.51e-09	0
1.12e-08	9.90e-10	3.50e-09	4.25e-09	0
2.26e-06	9.92e-10	3.50e-09	4.26e-09	4.90e-05
5.01e-08	1.09e-08	2.45e-08	4.25e-09	4.90e-05
3.01e-08	1.72e-09	7.67e-09	4.25e-09	4.90e-05
1.67e-08	2.25e-09	1.04e-08	9.51e-09	4.90e-05
1.12e-08	9.90e-10	3.50e-09	4.25e-09	4.90e-05
8.37e-08	1.37e-10	9.23e-09	3.58e-08	4.90e-05
5.64e-08	1.01e-10	7.42e-09	4.27e-09	4.90e-05
1.16e-08	4.90e-09	8.87e-09	3.06e-09	4.90e-05
8.69e-09	3.77e-09	7.42e-09	3.12e-09	4.90e-05
3.39e-09	5.30e-10	8.27e-09	3.92e-09	4.90e-05
2.23e-09	3.59e-10	7.42e-09	3.91e-09	4.90e-05
2.86e-09	1.04e-09	8.54e-09	9.98e-09	4.90e-05
2.04e-09	7.57e-10	7.45e-09	9.53e-09	4.90e-05
5.71e-09	1.45e-09	7.66e-09	4.16e-09	4.90e-05
4.64e-09	1.21e-09	7.35e-09	4.00e-09	4.90e-05
2.26e-06	9.92e-10	3.50e-09	4.26e-09	0
5.01e-08	1.09e-08	2.45e-08	4.25e-09	0
3.01e-08	1.72e-09	7.67e-09	4.25e-09	0
1.67e-08	2.25e-09	1.04e-08	9.51e-09	0
1.12e-08	9.90e-10	3.50e-09	4.25e-09	0
2.26e-06	9.92e-10	3.50e-09	4.26e-09	7.50e-05
5.01e-08	1.09e-08	2.45e-08	4.25e-09	7.50e-05
3.01e-08	1.72e-09	7.67e-09	4.25e-09	7.50e-05
1.67e-08	2.25e-09	1.04e-08	9.51e-09	7.50e-05
1.12e-08	9.90e-10	3.50e-09	4.25e-09	7.50e-05
9.26e-08	1.42e-10	1.02e-08	5.25e-08	7.50e-05
6.17e-08	1.05e-10	7.54e-09	4.31e-09	7.50e-05
1.25e-08	5.21e-09	9.61e-09	3.06e-09	7.50e-05
9.39e-09	4.05e-09	7.53e-09	2.95e-09	7.50e-05
3.78e-09	5.81e-10	8.71e-09	3.97e-09	7.50e-05
2.47e-09	3.94e-10	7.49e-09	3.72e-09	7.50e-05
3.11e-09	1.12e-09	9.09e-09	1.02e-08	7.50e-05
2.22e-09	8.21e-10	7.56e-09	9.57e-09	7.50e-05
6.07e-09	1.51e-09	7.83e-09	4.27e-09	7.50e-05
4.92e-09	1.27e-09	7.35e-09	3.85e-09	7.50e-05
2.26e-06	9.92e-10	3.50e-09	4.26e-09	0
5.01e-08	1.09e-08	2.45e-08	4.25e-09	0
3.01e-08	1.72e-09	7.67e-09	4.25e-09	0

1.67e-08	2.25e-09	1.04e-08	9.51e-09	0
1.12e-08	9.90e-10	3.50e-09	4.25e-09	0
2.26e-06	9.92e-10	3.50e-09	4.26e-09	7.00e-05
5.01e-08	1.09e-08	2.45e-08	4.25e-09	7.00e-05
3.01e-08	1.72e-09	7.67e-09	4.25e-09	7.00e-05
1.67e-08	2.25e-09	1.04e-08	9.51e-09	7.00e-05
1.12e-08	9.90e-10	3.50e-09	4.25e-09	7.00e-05
8.94e-08	1.38e-10	9.99e-09	4.93e-08	7.00e-05
5.95e-08	1.02e-10	7.51e-09	4.31e-09	7.00e-05
1.21e-08	5.09e-09	9.47e-09	3.05e-09	7.00e-05
9.11e-09	3.93e-09	7.51e-09	2.97e-09	7.00e-05
3.64e-09	5.61e-10	8.62e-09	3.95e-09	7.00e-05
2.37e-09	3.79e-10	7.48e-09	3.74e-09	7.00e-05
3.02e-09	1.09e-09	8.99e-09	1.01e-08	7.00e-05
2.15e-09	7.95e-10	7.54e-09	9.56e-09	7.00e-05
5.96e-09	1.49e-09	7.79e-09	4.24e-09	7.00e-05
4.82e-09	1.24e-09	7.35e-09	3.86e-09	7.00e-05
2.26e-06	9.92e-10	3.50e-09	4.26e-09	0
5.01e-08	1.09e-08	2.45e-08	4.25e-09	0
3.01e-08	1.72e-09	7.67e-09	4.25e-09	0
1.67e-08	2.25e-09	1.04e-08	9.51e-09	0
1.12e-08	9.90e-10	3.50e-09	4.25e-09	0
2.26e-06	9.92e-10	3.50e-09	4.26e-09	4.90e-05
5.01e-08	1.09e-08	2.45e-08	4.25e-09	4.90e-05
3.01e-08	1.72e-09	7.67e-09	4.25e-09	4.90e-05
1.67e-08	2.25e-09	1.04e-08	9.51e-09	4.90e-05
1.12e-08	9.90e-10	3.50e-09	4.25e-09	4.90e-05
8.47e-08	1.39e-10	9.25e-09	3.59e-08	4.90e-05
5.71e-08	1.03e-10	7.42e-09	4.27e-09	4.90e-05
1.21e-08	5.07e-09	8.93e-09	3.10e-09	4.90e-05
9.13e-09	3.91e-09	7.42e-09	3.16e-09	4.90e-05
3.50e-09	5.46e-10	8.30e-09	3.95e-09	4.90e-05
2.30e-09	3.70e-10	7.43e-09	3.93e-09	4.90e-05
2.96e-09	1.07e-09	8.57e-09	1.01e-08	4.90e-05
2.11e-09	7.80e-10	7.45e-09	9.62e-09	4.90e-05
5.91e-09	1.51e-09	7.69e-09	4.21e-09	4.90e-05
4.81e-09	1.26e-09	7.35e-09	4.04e-09	4.90e-05
2.26e-06	9.92e-10	3.50e-09	4.26e-09	0
5.01e-08	1.09e-08	2.45e-08	4.25e-09	0
3.01e-08	1.72e-09	7.67e-09	4.25e-09	0
1.67e-08	2.25e-09	1.04e-08	9.51e-09	0
1.12e-08	9.90e-10	3.50e-09	4.25e-09	0
2.26e-06	9.92e-10	3.50e-09	4.26e-09	7.50e-05
5.01e-08	1.09e-08	2.45e-08	4.25e-09	7.50e-05
3.01e-08	1.72e-09	7.67e-09	4.25e-09	7.50e-05
1.67e-08	2.25e-09	1.04e-08	9.51e-09	7.50e-05
1.12e-08	9.90e-10	3.50e-09	4.25e-09	7.50e-05
9.37e-08	1.44e-10	1.02e-08	5.27e-08	7.50e-05
6.24e-08	1.07e-10	7.54e-09	4.31e-09	7.50e-05
1.31e-08	5.39e-09	9.71e-09	3.10e-09	7.50e-05

9.86e-09	4.19e-09	7.54e-09	2.99e-09	7.50e-05
3.90e-09	5.99e-10	8.74e-09	3.99e-09	7.50e-05
2.54e-09	4.06e-10	7.50e-09	3.75e-09	7.50e-05
3.22e-09	1.16e-09	9.14e-09	1.03e-08	7.50e-05
2.30e-09	8.46e-10	7.57e-09	9.66e-09	7.50e-05
6.28e-09	1.57e-09	7.86e-09	4.32e-09	7.50e-05
5.09e-09	1.31e-09	7.35e-09	3.89e-09	7.50e-05
2.26e-06	9.92e-10	3.50e-09	4.26e-09	0
5.01e-08	1.09e-08	2.45e-08	4.25e-09	0
3.01e-08	1.72e-09	7.67e-09	4.25e-09	0
1.67e-08	2.25e-09	1.04e-08	9.51e-09	0
1.12e-08	9.90e-10	3.50e-09	4.25e-09	0
2.26e-06	9.92e-10	3.50e-09	4.26e-09	7.00e-05
5.01e-08	1.09e-08	2.45e-08	4.25e-09	7.00e-05
3.01e-08	1.72e-09	7.67e-09	4.25e-09	7.00e-05
1.67e-08	2.25e-09	1.04e-08	9.51e-09	7.00e-05
1.12e-08	9.90e-10	3.50e-09	4.25e-09	7.00e-05
9.05e-08	1.40e-10	1.00e-08	4.95e-08	7.00e-05
6.02e-08	1.03e-10	7.51e-09	4.31e-09	7.00e-05
1.28e-08	5.27e-09	9.56e-09	3.09e-09	7.00e-05
9.57e-09	4.07e-09	7.51e-09	3.01e-09	7.00e-05
3.76e-09	5.78e-10	8.66e-09	3.98e-09	7.00e-05
2.45e-09	3.90e-10	7.48e-09	3.77e-09	7.00e-05
3.12e-09	1.12e-09	9.03e-09	1.02e-08	7.00e-05
2.22e-09	8.18e-10	7.54e-09	9.65e-09	7.00e-05
6.17e-09	1.54e-09	7.83e-09	4.29e-09	7.00e-05
4.99e-09	1.29e-09	7.35e-09	3.90e-09	7.00e-05

Hfo_w	Hao_	m_Hfo_wOH	m_Hfo_wOH2+	m_Hfo_wOHSO4-2
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.00196	0.00323	0.000103	0.000384	7.02e-05
0.00196	0.00323	9.11e-05	9.21e-05	5.62e-06
0.00196	0.00323	0.000109	0.000119	1.66e-05
0.00196	0.00323	0.000138	0.000107	2.25e-05
0.00196	0.00323	9.63e-05	0.000135	1.27e-05
0.00196	0.00323	0.000199	0.000159	8.54e-07
0.00196	0.00323	0.000210	0.000157	6.49e-07
0.00196	0.00323	0.000164	0.000102	9.06e-07
0.00196	0.00323	0.000173	0.000102	8.47e-07
0.00196	0.00323	0.000185	0.000108	1.18e-06
0.00196	0.00323	0.000195	0.000109	1.08e-06
0.00196	0.00323	0.000162	8.27e-05	1.26e-06
0.00196	0.00323	0.000166	8.29e-05	1.10e-06
0.00196	0.00323	0.000188	0.000127	9.69e-07
0.00196	0.00323	0.000203	0.000127	9.15e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.00300	0.00396	0.000158	0.000588	0.000108
0.00300	0.00396	0.000139	0.000141	8.61e-06
0.00300	0.00396	0.000166	0.000181	2.54e-05
0.00300	0.00396	0.000211	0.000164	3.45e-05
0.00300	0.00396	0.000147	0.000207	1.95e-05
0.00300	0.00396	0.000297	0.000245	1.44e-06
0.00300	0.00396	0.000323	0.000241	1.04e-06
0.00300	0.00396	0.000244	0.000155	1.41e-06
0.00300	0.00396	0.000266	0.000156	1.34e-06
0.00300	0.00396	0.000274	0.000165	1.86e-06
0.00300	0.00396	0.000300	0.000167	1.75e-06
0.00300	0.00396	0.000245	0.000126	2.02e-06
0.00300	0.00396	0.000257	0.000127	1.78e-06
0.00300	0.00396	0.000278	0.000193	1.50e-06
0.00300	0.00396	0.000311	0.000194	1.48e-06
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
---------	---------	----------	----------	----------
0	0	0	0	0
0.00280	0.00363	0.000147	0.000548	0.000100
0.00280	0.00363	0.000130	0.000132	8.04e-06
0.00280	0.00363	0.000155	0.000169	2.37e-05
0.00280	0.00363	0.000197	0.000153	3.22e-05
0.00280	0.00363	0.000138	0.000193	1.82e-05
0.00280	0.00363	0.000279	0.000229	1.32e-06
0.00280	0.00363	0.000301	0.000225	9.65e-07
0.00280	0.00363	0.000229	0.000145	1.31e-06
0.00280	0.00363	0.000248	0.000146	1.25e-06
0.00280	0.00363	0.000258	0.000154	1.73e-06
0.00280	0.00363	0.000281	0.000156	1.63e-06
0.00280	0.00363	0.000229	0.000118	1.87e-06
0.00280	0.00363	0.000239	0.000119	1.65e-06
0.00280	0.00363	0.000261	0.000181	1.40e-06
0.00280	0.00363	0.000291	0.000181	1.38e-06
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.00196	0.00323	0.000103	0.000384	7.05e-05
0.00196	0.00323	9.08e-05	9.16e-05	5.72e-06
0.00196	0.00323	0.000108	0.000118	1.68e-05
0.00196	0.00323	0.000138	0.000107	2.28e-05
0.00196	0.00323	9.61e-05	0.000134	1.30e-05
0.00196	0.00323	0.000199	0.000159	8.55e-07
0.00196	0.00323	0.000210	0.000157	6.50e-07
0.00196	0.00323	0.000164	0.000102	9.01e-07
0.00196	0.00323	0.000173	0.000102	8.45e-07
0.00196	0.00323	0.000185	0.000108	1.18e-06
0.00196	0.00323	0.000195	0.000109	1.08e-06
0.00196	0.00323	0.000162	8.28e-05	1.26e-06
0.00196	0.00323	0.000166	8.30e-05	1.10e-06
0.00196	0.00323	0.000189	0.000127	9.66e-07
0.00196	0.00323	0.000203	0.000127	9.15e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.00300	0.00396	0.000158	0.000587	0.000108
0.00300	0.00396	0.000139	0.000140	8.76e-06
0.00300	0.00396	0.000166	0.000181	2.57e-05
0.00300	0.00396	0.000211	0.000163	3.48e-05
0.00300	0.00396	0.000147	0.000206	1.98e-05
0.00300	0.00396	0.000297	0.000245	1.44e-06
0.00300	0.00396	0.000323	0.000241	1.04e-06
0.00300	0.00396	0.000245	0.000155	1.40e-06

0.00300	0.00396	0.000266	0.000156	1.34e-06
0.00300	0.00396	0.000274	0.000165	1.86e-06
0.00300	0.00396	0.000301	0.000167	1.75e-06
0.00300	0.00396	0.000245	0.000126	2.01e-06
0.00300	0.00396	0.000257	0.000127	1.78e-06
0.00300	0.00396	0.000278	0.000194	1.50e-06
0.00300	0.00396	0.000312	0.000194	1.48e-06
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.00280	0.00363	0.000147	0.000548	0.000101
0.00280	0.00363	0.000130	0.000131	8.17e-06
0.00280	0.00363	0.000155	0.000169	2.40e-05
0.00280	0.00363	0.000197	0.000153	3.25e-05
0.00280	0.00363	0.000137	0.000192	1.85e-05
0.00280	0.00363	0.000279	0.000229	1.32e-06
0.00280	0.00363	0.000301	0.000225	9.66e-07
0.00280	0.00363	0.000230	0.000145	1.30e-06
0.00280	0.00363	0.000248	0.000146	1.25e-06
0.00280	0.00363	0.000258	0.000154	1.73e-06
0.00280	0.00363	0.000281	0.000156	1.63e-06
0.00280	0.00363	0.000230	0.000118	1.86e-06
0.00280	0.00363	0.000239	0.000119	1.65e-06
0.00280	0.00363	0.000262	0.000181	1.40e-06
0.00280	0.00363	0.000291	0.000181	1.38e-06

		m_Hfo_wOSiO(OH)		
m_Hfo_wSO4-	m_Hfo_wOSi(OH)3	2-	m_Hfo_wHCO3	m_Hfo_wCO3-
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.000131	0.000519	8.58e-05	0.000465	2.12e-05
2.85e-06	0.000406	0.000248	0.000606	0.000102
9.09e-06	0.000368	0.000208	0.000712	0.000111
8.77e-06	0.000349	0.000278	0.000486	0.000106
8.95e-06	0.000398	0.000175	0.000780	9.44e-05
3.43e-07	0.000361	0.000278	0.000529	0.000112
2.43e-07	0.000370	0.000306	0.000468	0.000107
2.81e-07	0.000338	0.000337	0.000428	0.000117
2.49e-07	0.000342	0.000360	0.000385	0.000111
3.48e-07	0.000302	0.000318	0.000511	0.000148
3.01e-07	0.000316	0.000349	0.000448	0.000136
3.23e-07	0.000299	0.000361	0.000403	0.000134
2.77e-07	0.000310	0.000382	0.000368	0.000125
3.27e-07	0.000320	0.000293	0.000536	0.000135
2.86e-07	0.000331	0.000327	0.000463	0.000126
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.000201	0.000794	0.000131	0.000711	3.24e-05
4.37e-06	0.000622	0.000379	0.000927	0.000156
1.39e-05	0.000563	0.000318	0.00109	0.000170
1.34e-05	0.000535	0.000425	0.000744	0.000163
1.37e-05	0.000609	0.000267	0.00119	0.000144
5.95e-07	0.000548	0.000410	0.000847	0.000174
3.90e-07	0.000548	0.000451	0.000750	0.000170
4.47e-07	0.000517	0.000502	0.000683	0.000183
3.96e-07	0.000511	0.000537	0.000612	0.000177
5.62e-07	0.000456	0.000468	0.000821	0.000232
4.87e-07	0.000461	0.000513	0.000722	0.000221
5.22e-07	0.000452	0.000541	0.000638	0.000211
4.42e-07	0.000458	0.000570	0.000584	0.000200
5.25e-07	0.000485	0.000430	0.000865	0.000211
4.64e-07	0.000484	0.000479	0.000747	0.000204
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0.000187	0.000741	0.000123	0.000664	3.03e-05
4.08e-06	0.000580	0.000354	0.000865	0.000145
1.30e-05	0.000526	0.000297	0.00102	0.000158
1.25e-05	0.000499	0.000397	0.000694	0.000152
1.28e-05	0.000568	0.000250	0.00111	0.000135
5.42e-07	0.000512	0.000385	0.000784	0.000162
3.62e-07	0.000514	0.000424	0.000694	0.000158
4.14e-07	0.000482	0.000471	0.000633	0.000170
3.68e-07	0.000479	0.000503	0.000567	0.000164
5.20e-07	0.000426	0.000440	0.000760	0.000216
4.52e-07	0.000433	0.000482	0.000668	0.000205
4.82e-07	0.000422	0.000507	0.000592	0.000196
4.11e-07	0.000430	0.000535	0.000542	0.000186
4.86e-07	0.000453	0.000404	0.000800	0.000196
4.30e-07	0.000455	0.000450	0.000691	0.000188
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.000132	0.000518	8.58e-05	0.000465	2.12e-05
2.89e-06	0.000404	0.000247	0.000607	0.000102
9.17e-06	0.000367	0.000208	0.000713	0.000111
8.84e-06	0.000349	0.000278	0.000486	0.000107
9.08e-06	0.000397	0.000175	0.000781	9.49e-05
3.42e-07	0.000361	0.000278	0.000529	0.000112
2.43e-07	0.000370	0.000306	0.000468	0.000107
2.80e-07	0.000338	0.000336	0.000428	0.000117
2.49e-07	0.000342	0.000359	0.000385	0.000111
3.48e-07	0.000302	0.000317	0.000511	0.000148
3.01e-07	0.000316	0.000349	0.000448	0.000136
3.22e-07	0.000299	0.000361	0.000403	0.000134
2.77e-07	0.000310	0.000382	0.000368	0.000125
3.26e-07	0.000320	0.000293	0.000535	0.000135
2.86e-07	0.000330	0.000327	0.000463	0.000126
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.000202	0.000793	0.000131	0.000711	3.25e-05
4.43e-06	0.000619	0.000379	0.000929	0.000156
1.40e-05	0.000562	0.000318	0.00109	0.000170
1.35e-05	0.000534	0.000425	0.000744	0.000163
1.39e-05	0.000607	0.000268	0.00120	0.000145
5.95e-07	0.000548	0.000410	0.000847	0.000174
3.90e-07	0.000547	0.000451	0.000750	0.000170
4.45e-07	0.000516	0.000501	0.000683	0.000183

3.96e-07	0.000511	0.000535	0.000612	0.000177
5.60e-07	0.000456	0.000468	0.000821	0.000232
4.87e-07	0.000461	0.000512	0.000723	0.000221
5.20e-07	0.000451	0.000540	0.000638	0.000210
4.42e-07	0.000458	0.000570	0.000584	0.000200
5.23e-07	0.000485	0.000429	0.000865	0.000211
4.64e-07	0.000484	0.000478	0.000748	0.000204
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0.000188	0.000740	0.000123	0.000664	3.03e-05
4.13e-06	0.000578	0.000353	0.000867	0.000146
1.31e-05	0.000525	0.000297	0.00102	0.000159
1.26e-05	0.000498	0.000396	0.000695	0.000152
1.30e-05	0.000567	0.000250	0.00112	0.000136
5.42e-07	0.000512	0.000385	0.000784	0.000163
3.62e-07	0.000513	0.000424	0.000695	0.000158
4.12e-07	0.000481	0.000470	0.000633	0.000170
3.68e-07	0.000478	0.000502	0.000567	0.000164
5.18e-07	0.000426	0.000439	0.000760	0.000216
4.52e-07	0.000433	0.000481	0.000668	0.000205
4.80e-07	0.000422	0.000506	0.000592	0.000196
4.11e-07	0.000430	0.000534	0.000542	0.000186
4.84e-07	0.000452	0.000404	0.000800	0.000196
4.30e-07	0.000454	0.000450	0.000691	0.000188

m Hfo wPO4-2	m Hfo wHPO4-	m Hfo wH2PO4	m Hfo sCO3-	m Hfo sHCO3
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
4.87e-06	4.35e-05	6.61e-06	1.90e-08	4.17e-07
1.04e-05	2.52e-05	1.04e-06	6.01e-09	3.58e-08
2.75e-06	7.19e-06	3.20e-07	1.64e-08	1.05e-07
1.08e-05	2.02e-05	6.38e-07	1.64e-08	7.50e-08
7.10e-06	2.39e-05	1.37e-06	2.83e-08	2.34e-07
1.80e-05	3.46e-05	1.13e-06	6.41e-08	3.02e-07
1.85e-05	3.30e-05	1.00e-06	5.91e-08	2.59e-07
1.43e-05	2.12e-05	5.34e-07	5.60e-09	2.04e-08
1.45e-05	2.04e-05	4.88e-07	5.38e-09	1.86e-08
4.23e-06	5.95e-06	1.42e-07	1.97e-08	6.81e-08
4.38e-06	5.87e-06	1.33e-07	1.80e-08	5.92e-08
1.39e-05	1.70e-05	3.54e-07	2.00e-08	6.02e-08
1.39e-05	1.67e-05	3.39e-07	1.87e-08	5.51e-08
1.20e-05	1.94e-05	5.32e-07	2.94e-08	1.17e-07
1.24e-05	1.86e-05	4.72e-07	2.65e-08	9.75e-08
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
7.46e-06	6.66e-05	1.01e-05	2.91e-08	6.38e-07
1.59e-05	3.86e-05	1.59e-06	9.19e-09	5.47e-08
4.20e-06	1.10e-05	4.90e-07	2.51e-08	1.61e-07
1.66e-05	3.09e-05	9.76e-07	2.51e-08	1.15e-07
1.09e-05	3.66e-05	2.09e-06	4.33e-08	3.58e-07
2.72e-05	5.39e-05	1.81e-06	1.01e-07	4.91e-07
2.87e-05	5.15e-05	1.57e-06	9.56e-08	4.21e-07
2.16e-05	3.29e-05	8.51e-07	8.80e-09	3.29e-08
2.24e-05	3.16e-05	7.57e-07	8.50e-09	2.94e-08
6.37e-06	9.18e-06	2.25e-07	3.11e-08	1.10e-07
6.71e-06	8.93e-06	2.02e-07	2.94e-08	9.58e-08
2.13e-05	2.63e-05	5.51e-07	3.15e-08	9.54e-08
2.16e-05	2.56e-05	5.18e-07	3.00e-08	8.76e-08
1.81e-05	3.02e-05	8.57e-07	4.68e-08	1.92e-07
1.92e-05	2.88e-05	7.31e-07	4.33e-08	1.59e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
6.96e-06	6.22e-05	9.44e-06	2.71e-08	5.95e-07
1.48e-05	3.60e-05	1.48e-06	8.58e-09	5.11e-08
3.92e-06	1.03e-05	4.57e-07	2.34e-08	1.51e-07
1.55e-05	2.88e-05	9.11e-07	2.34e-08	1.07e-07
1.01e-05	3.42e-05	1.95e-06	4.04e-08	3.34e-07
2.55e-05	5.02e-05	1.68e-06	9.39e-08	4.53e-07
2.67e-05	4.79e-05	1.46e-06	8.85e-08	3.89e-07
2.02e-05	3.07e-05	7.88e-07	8.20e-09	3.05e-08
2.09e-05	2.95e-05	7.04e-07	7.93e-09	2.74e-08
5.96e-06	8.55e-06	2.08e-07	2.89e-08	1.02e-07
6.27e-06	8.34e-06	1.88e-07	2.72e-08	8.87e-08
1.99e-05	2.45e-05	5.12e-07	2.93e-08	8.86e-08
2.01e-05	2.39e-05	4.83e-07	2.78e-08	8.13e-08
1.69e-05	2.81e-05	7.92e-07	4.35e-08	1.77e-07
1.79e-05	2.68e-05	6.80e-07	4.01e-08	1.47e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
4.88e-06	4.35e-05	6.60e-06	1.89e-08	4.15e-07
1.04e-05	2.52e-05	1.04e-06	5.97e-09	3.54e-08
2.76e-06	7.21e-06	3.20e-07	1.64e-08	1.05e-07
1.09e-05	2.02e-05	6.38e-07	1.64e-08	7.47e-08
7.18e-06	2.41e-05	1.37e-06	2.83e-08	2.33e-07
1.81e-05	3.46e-05	1.13e-06	6.39e-08	3.01e-07
1.85e-05	3.30e-05	1.00e-06	5.89e-08	2.58e-07
1.43e-05	2.13e-05	5.36e-07	5.49e-09	2.00e-08
1.45e-05	2.05e-05	4.90e-07	5.28e-09	1.83e-08
4.24e-06	5.97e-06	1.43e-07	1.96e-08	6.76e-08
4.40e-06	5.89e-06	1.34e-07	1.79e-08	5.88e-08
1.40e-05	1.71e-05	3.55e-07	1.99e-08	5.98e-08
1.40e-05	1.67e-05	3.41e-07	1.86e-08	5.48e-08
1.21e-05	1.95e-05	5.35e-07	2.90e-08	1.15e-07
1.25e-05	1.87e-05	4.76e-07	2.62e-08	9.62e-08
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
/.46e-06	6.67e-05	1.01e-05	2.90e-08	6.35e-07
1.600-05	3.866-05	1.596-06	9.136-09	5.420-08
4.220-06	1.100-05	4.908-07	2.500-08	1.610-07
1.0/0-05	3.106-05	9.778-07	2.510-08	1.140-07
1.100-05	3.080-05	2.100-06	4.330-08	3.566-07
2.730-05	5.390-05	1.816-06	1.016-07	4.890-07
2.870-05	5.150-05	1.576-06	9.530-08	4.200-07
2.17e-05	3.30e-05	8.55e-07	8.636-09	3.23e-08

2.25e-05	3.17e-05	7.61e-07	8.34e-09	2.89e-08
6.39e-06	9.21e-06	2.26e-07	3.09e-08	1.09e-07
6.73e-06	8.96e-06	2.02e-07	2.92e-08	9.53e-08
2.13e-05	2.64e-05	5.54e-07	3.13e-08	9.49e-08
2.16e-05	2.57e-05	5.20e-07	2.98e-08	8.71e-08
1.82e-05	3.04e-05	8.62e-07	4.62e-08	1.90e-07
1.94e-05	2.90e-05	7.36e-07	4.28e-08	1.57e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
6.97e-06	6.22e-05	9.44e-06	2.70e-08	5.93e-07
1.49e-05	3.61e-05	1.48e-06	8.52e-09	5.06e-08
3.94e-06	1.03e-05	4.57e-07	2.34e-08	1.50e-07
1.56e-05	2.89e-05	9.12e-07	2.34e-08	1.07e-07
1.03e-05	3.44e-05	1.96e-06	4.04e-08	3.32e-07
2.55e-05	5.02e-05	1.67e-06	9.37e-08	4.52e-07
2.68e-05	4.79e-05	1.46e-06	8.83e-08	3.88e-07
2.03e-05	3.08e-05	7.92e-07	8.05e-09	2.99e-08
2.10e-05	2.96e-05	7.08e-07	7.78e-09	2.69e-08
5.98e-06	8.58e-06	2.09e-07	2.88e-08	1.01e-07
6.29e-06	8.36e-06	1.89e-07	2.70e-08	8.81e-08
1.99e-05	2.46e-05	5.14e-07	2.91e-08	8.81e-08
2.02e-05	2.40e-05	4.85e-07	2.77e-08	8.08e-08
1.71e-05	2.83e-05	7.97e-07	4.30e-08	1.75e-07
1.81e-05	2.70e-05	6.85e-07	3.96e-08	1.45e-07

m_Hfo_sHPO4-	m_Hfo_sH2BO3	m_Hfo_sH2PO4	m_Hfo_sOSi(OH)3	m_Hfo_sOSiO(OH)2-
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
3.90e-08	1.47e-10	5.92e-09	4.65e-07	7.69e-08
1.49e-09	1.10e-11	6.13e-11	2.40e-08	1.46e-08
1.06e-09	7.38e-11	4.73e-11	5.45e-08	3.08e-08
3.11e-09	8.37e-11	9.84e-11	5.39e-08	4.29e-08
7.17e-09	1.64e-11	4.10e-10	1.19e-07	5.24e-08
1.97e-08	8.62e-11	6.43e-10	2.06e-07	1.59e-07
1.83e-08	6.22e-11	5.56e-10	2.05e-07	1.70e-07
1.01e-09	7.22e-12	2.54e-11	1.61e-08	1.61e-08
9.86e-10	5.99e-12	2.36e-11	1.65e-08	1.74e-08
7.93e-10	3.46e-11	1.90e-11	4.03e-08	4.23e-08
7.74e-10	2.46e-11	1.76e-11	4.17e-08	4.61e-08
2.54e-09	3.03e-11	5.28e-11	4.46e-08	5.39e-08
2.50e-09	2.18e-11	5.08e-11	4.64e-08	5.73e-08
4.22e-09	2.66e-11	1.16e-10	6.97e-08	6.38e-08
3.92e-09	2.38e-11	9.96e-11	6.97e-08	6.89e-08
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
5.97e-08	2.25e-10	9.06e-09	7.11e-07	1.18e-07
2.28e-09	1.69e-11	9.38e-11	3.67e-08	2.24e-08
1.63e-09	1.13e-10	7.24e-11	8.34e-08	4.71e-08
4.77e-09	1.28e-10	1.51e-10	8.25e-08	6.56e-08
1.10e-08	2.52e-11	6.28e-10	1.83e-07	8.02e-08
3.12e-08	1.40e-10	1.05e-09	3.18e-07	2.37e-07
2.89e-08	1.04e-10	8.81e-10	3.07e-07	2.53e-07
1.58e-09	1.13e-11	4.09e-11	2.49e-08	2.42e-08
1.52e-09	9.82e-12	3.64e-11	2.46e-08	2.58e-08
1.23e-09	5.56e-11	3.01e-11	6.12e-08	6.27e-08
1.18e-09	4.20e-11	2.68e-11	6.12e-08	6.80e-08
3.93e-09	4.91e-11	8.24e-11	6.75e-08	8.09e-08
3.84e-09	3.69e-11	7.76e-11	6.87e-08	8.55e-08
6.70e-09	4.08e-11	1.90e-10	1.08e-07	9.53e-08
6.12e-09	3.88e-11	1.56e-10	1.03e-07	1.02e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
5.57e-08	2.10e-10	8.46e-09	6.64e-07	1.10e-07
2.12e-09	1.58e-11	8.75e-11	3.43e-08	2.09e-08
1.52e-09	1.05e-10	6.76e-11	7.78e-08	4.39e-08
4.45e-09	1.20e-10	1.41e-10	7.70e-08	6.12e-08
1.02e-08	2.35e-11	5.86e-10	1.71e-07	7.49e-08
2.90e-08	1.27e-10	9.68e-10	2.96e-07	2.23e-07
2.69e-08	9.39e-11	8.17e-10	2.88e-07	2.38e-07
1.48e-09	1.04e-11	3.80e-11	2.32e-08	2.27e-08
1.42e-09	8.93e-12	3.40e-11	2.31e-08	2.43e-08
1.15e-09	5.06e-11	2.79e-11	5.71e-08	5.89e-08
1.11e-09	3.76e-11	2.50e-11	5.75e-08	6.39e-08
3.66e-09	4.46e-11	7.66e-11	6.32e-08	7.58e-08
3.59e-09	3.32e-11	7.24e-11	6.45e-08	8.02e-08
6.22e-09	3.78e-11	1.75e-10	1.00e-07	8.95e-08
5.71e-09	3.55e-11	1.45e-10	9.68e-08	9.59e-08
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
3.89e-08	1.47e-10	5.90e-09	4.63e-07	7.66e-08
1.47e-09	1.09e-11	6.05e-11	2.36e-08	1.44e-08
1.06e-09	7.33e-11	4.71e-11	5.41e-08	3.06e-08
3.11e-09	8.31e-11	9.81e-11	5.36e-08	4.26e-08
7.17e-09	1.63e-11	4.08e-10	1.18e-07	5.21e-08
1.97e-08	8.59e-11	6.41e-10	2.05e-07	1.58e-07
1.82e-08	6.19e-11	5.54e-10	2.04e-07	1.69e-07
9.95e-10	7.06e-12	2.51e-11	1.58e-08	1.57e-08
9.73e-10	5.87e-12	2.33e-11	1.62e-08	1.70e-08
7.91e-10	3.44e-11	1.89e-11	4.00e-08	4.20e-08
7.72e-10	2.45e-11	1.76e-11	4.14e-08	4.58e-08
2.54e-09	3.01e-11	5.27e-11	4.43e-08	5.35e-08
2.49e-09	2.17e-11	5.08e-11	4.61e-08	5.69e-08
4.20e-09	2.61e-11	1.15e-10	6.87e-08	6.30e-08
3.90e-09	2.34e-11	9.90e-11	6.88e-08	6.80e-08
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
5.95e-08	2.24e-10	9.02e-09	7.08e-07	1.1/e-07
2.268-09	1.666-11	9.27e-11	3.628-08	2.21e-08
1.63e-09	1.12e-10	7.21e-11	8.28e-08	4.69e-08
4.766-09	1.27e-10	1.50e-10	8.20e-08	6.53e-08
1.10e-08	2.49e-11	6.25e-10	1.810-07	7.986-08
3.110-08	1.400-10	1.050-09	3.166-07	2.368-07
2.886-08	1.04e-10	8.78e-10	3.066-07	2.52e-07
1.566-09	1.11e-11	4.03e-11	2.44e-08	2.37e-08

1.50e-09	9.61e-12	3.59e-11	2.41e-08	2.53e-08
1.23e-09	5.54e-11	3.01e-11	6.07e-08	6.23e-08
1.18e-09	4.18e-11	2.67e-11	6.08e-08	6.75e-08
3.92e-09	4.88e-11	8.23e-11	6.71e-08	8.03e-08
3.84e-09	3.67e-11	7.75e-11	6.83e-08	8.49e-08
6.66e-09	4.00e-11	1.89e-10	1.06e-07	9.41e-08
6.09e-09	3.81e-11	1.55e-10	1.02e-07	1.01e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
5.55e-08	2.09e-10	8.42e-09	6.61e-07	1.09e-07
2.11e-09	1.55e-11	8.65e-11	3.37e-08	2.06e-08
1.52e-09	1.05e-10	6.73e-11	7.73e-08	4.37e-08
4.44e-09	1.19e-10	1.40e-10	7.65e-08	6.09e-08
1.02e-08	2.33e-11	5.83e-10	1.69e-07	7.45e-08
2.89e-08	1.27e-10	9.64e-10	2.95e-07	2.22e-07
2.68e-08	9.35e-11	8.14e-10	2.87e-07	2.37e-07
1.45e-09	1.02e-11	3.74e-11	2.28e-08	2.22e-08
1.40e-09	8.75e-12	3.36e-11	2.27e-08	2.38e-08
1.14e-09	5.03e-11	2.78e-11	5.67e-08	5.85e-08
1.10e-09	3.74e-11	2.49e-11	5.71e-08	6.35e-08
3.65e-09	4.44e-11	7.65e-11	6.27e-08	7.53e-08
3.58e-09	3.30e-11	7.23e-11	6.41e-08	7.97e-08
6.19e-09	3.71e-11	1.74e-10	9.90e-08	8.83e-08
5.67e-09	3.48e-11	1.44e-10	9.55e-08	9.46e-08

m_Hfo_sOHSO4-2	m_Hto_sSO4-	m_Hao_SO4-		m_Hao_HZBO3
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
6.29e-08	1.18e-07	5.80e-13	0.000617	0.00175
3.32e-10	1.68e-10	3.68e-14	0.000348	0.00241
2.46e-09	1.35e-09	3.42e-14	0.000191	0.00292
3.48e-09	1.35e-09	3.00e-14	0.000246	0.00278
3.81e-09	2.68e-09	1.40e-13	0.000369	0.00221
4.88e-10	1.95e-10	1.30e-14	0.000565	0.00156
3.60e-10	1.35e-10	1.20e-14	0.000593	0.00143
4.32e-11	1.34e-11	9.66e-15	0.000356	0.00218
4.10e-11	1.21e-11	1.00e-14	0.000404	0.00201
1.58e-10	4.64e-11	7.10e-15	0.000236	0.00258
1.42e-10	3.97e-11	8.15e-15	0.000300	0.00235
1.89e-10	4.82e-11	7.50e-15	0.000266	0.00248
1.66e-10	4.15e-11	8.55e-15	0.000324	0.00227
2.11e-10	7.12e-11	1.22e-14	0.000386	0.00206
1.93e-10	6.03e-11	1.16e-14	0.000423	0.00192
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
9.63e-08	1.80e-07	7.10e-13	0.000755	0.00214
5.08e-10	2.58e-10	4.51e-14	0.000426	0.00295
3.76e-09	2.06e-09	4.18e-14	0.000234	0.00358
5.32e-09	2.07e-09	3.68e-14	0.000302	0.00341
5.83e-09	4.11e-09	1.71e-13	0.000452	0.00271
8.33e-10	3.45e-10	1.68e-14	0.000687	0.00194
5.84e-10	2.19e-10	1.46e-14	0.000713	0.00180
6.76e-11	2.15e-11	1.21e-14	0.000425	0.00271
6.46e-11	1.90e-11	1.20e-14	0.000475	0.00253
2.50e-10	7.53e-11	8.69e-15	0.000276	0.00321
2.33e-10	6.46e-11	9.55e-15	0.000345	0.00296
3.02e-10	7.80e-11	9.11e-15	0.000314	0.00309
2.67e-10	6.63e-11	1.00e-14	0.000376	0.00285
3.34e-10	1.16e-10	1.57e-14	0.000463	0.00255
3.16e-10	9.88e-11	1.42e-14	0.000502	0.00241
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
8.99e-08	1.68e-07	6.50e-13	0.000692	0.00196
4.74e-10	2.41e-10	4.13e-14	0.000390	0.00270
3.51e-09	1.92e-09	3.83e-14	0.000215	0.00328
4.97e-09	1.93e-09	3.37e-14	0.000277	0.00312
5.45e-09	3.83e-09	1.57e-13	0.000414	0.00248
7.62e-10	3.13e-10	1.54e-14	0.000632	0.00177
5.41e-10	2.03e-10	1.35e-14	0.000659	0.00164
6.30e-11	1.99e-11	1.11e-14	0.000393	0.00247
6.04e-11	1.78e-11	1.11e-14	0.000443	0.00229
2.32e-10	6.96e-11	8.07e-15	0.000258	0.00293
2.16e-10	6.00e-11	8.97e-15	0.000325	0.00268
2.80e-10	7.20e-11	8.45e-15	0.000292	0.00281
2.48e-10	6.16e-11	9.38e-15	0.000353	0.00259
3.10e-10	1.08e-10	1.43e-14	0.000428	0.00232
2.93e-10	9.15e-11	1.31e-14	0.000466	0.00219
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
6.30e-08	1.18e-07	5.80e-13	0.000617	0.00174
3.34e-10	1.69e-10	3.69e-14	0.000346	0.00240
2.47e-09	1.35e-09	3.41e-14	0.000189	0.00292
3.50e-09	1.36e-09	3.00e-14	0.000244	0.00278
3.86e-09	2.70e-09	1.40e-13	0.000367	0.00220
4.86e-10	1.95e-10	1.29e-14	0.000566	0.00156
3.59e-10	1.34e-10	1.20e-14	0.000594	0.00143
4.21e-11	1.31e-11	9.68e-15	0.000359	0.00218
4.02e-11	1.18e-11	1.01e-14	0.000406	0.00200
1.56e-10	4.60e-11	7.08e-15	0.000236	0.00258
1.41e-10	3.95e-11	8.15e-15	0.000300	0.00235
1.87e-10	4.78e-11	7.49e-15	0.000267	0.00248
1.64e-10	4.12e-11	8.55e-15	0.000325	0.00227
2.08e-10	7.00e-11	1.23e-14	0.000388	0.00205
1.90e-10	5.95e-11	1.16e-14	0.000425	0.00191
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
9.64e-08	1.80e-07	7.10e-13	0.000755	0.00213
5.11e-10	2.58e-10	4.52e-14	0.000424	0.00294
3.78e-09	2.07e-09	4.17e-14	0.000232	0.00358
5.35e-09	2.08e-09	3.67e-14	0.000299	0.00341
5.91e-09	4.14e-09	1.72e-13	0.000450	0.00270
8.31e-10	3.44e-10	1.68e-14	0.000689	0.00194
5.82e-10	2.18e-10	1.46e-14	0.000715	0.00180
6.60e-11	2.10e-11	1.21e-14	0.000428	0.00270

6.34e-11	1.87e-11	1.20e-14	0.000479	0.00252
2.48e-10	7.47e-11	8.67e-15	0.000276	0.00321
2.31e-10	6.42e-11	9.55e-15	0.000345	0.00296
2.99e-10	7.73e-11	9.10e-15	0.000314	0.00308
2.65e-10	6.59e-11	1.00e-14	0.000376	0.00285
3.28e-10	1.15e-10	1.57e-14	0.000466	0.00254
3.12e-10	9.75e-11	1.42e-14	0.000505	0.00240
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
8.99e-08	1.68e-07	6.51e-13	0.000692	0.00196
4.77e-10	2.41e-10	4.14e-14	0.000388	0.00269
3.53e-09	1.93e-09	3.82e-14	0.000212	0.00328
5.00e-09	1.94e-09	3.37e-14	0.000274	0.00312
5.51e-09	3.86e-09	1.57e-13	0.000412	0.00247
7.60e-10	3.12e-10	1.54e-14	0.000634	0.00177
5.40e-10	2.02e-10	1.35e-14	0.000660	0.00163
6.15e-11	1.95e-11	1.11e-14	0.000396	0.00246
5.92e-11	1.75e-11	1.12e-14	0.000446	0.00228
2.30e-10	6.91e-11	8.05e-15	0.000258	0.00293
2.14e-10	5.96e-11	8.97e-15	0.000325	0.00268
2.77e-10	7.14e-11	8.44e-15	0.000293	0.00281
2.46e-10	6.12e-11	9.38e-15	0.000353	0.00259
3.05e-10	1.06e-10	1.43e-14	0.000430	0.00232
2.89e-10	9.03e-11	1.31e-14	0.000468	0.00218

m Hao H3BO4-	Ferrihvdrite	d Ferrihvdrite	Gibbsite	d Gibbsite
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
8.70e-12	0.00980	0	0.0980	0
1.06e-10	0.00980	0	0.0980	0
7.66e-11	0.00980	0	0.0980	0
1.07e-10	0.00980	0	0.0980	0
2.73e-11	0.00980	0	0.0980	0
3.19e-10	0.00980	7.81e-07	0.0980	4.33e-07
3.32e-10	0.00980	3.97e-08	0.0980	4.29e-07
3.76e-10	0.00980	1.60e-07	0.0980	4.32e-07
3.79e-10	0.00980	1.61e-07	0.0980	4.29e-07
4.02e-10	0.00980	1.60e-07	0.0980	4.33e-07
4.05e-10	0.00980	1.60e-07	0.0980	4.30e-07
4.12e-10	0.00980	1.60e-07	0.0980	4.31e-07
4.02e-10	0.00980	1.61e-07	0.0980	4.29e-07
3.03e-10	0.00980	1.60e-07	0.0980	4.34e-07
3.28e-10	0.00980	1.61e-07	0.0980	4.30e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
1.06e-11	0.0150	0	0.120	0
1.30e-10	0.0150	0	0.120	0
9.38e-11	0.0150	0	0.120	0
1.31e-10	0.0150	0	0.120	0
3.34e-11	0.0150	0	0.120	0
3.70e-10	0.0150	1.14e-06	0.120	4.34e-07
4.13e-10	0.0150	-4.89e-08	0.120	4.30e-07
4.47e-10	0.0150	1.60e-07	0.120	4.33e-07
4.69e-10	0.0150	1.60e-07	0.120	4.30e-07
4.77e-10	0.0150	1.60e-07	0.120	4.35e-07
4.99e-10	0.0150	1.60e-07	0.120	4.31e-07
4.97e-10	0.0150	1.60e-07	0.120	4.32e-07
5.02e-10	0.0150	1.60e-07	0.120	4.29e-07
3.52e-10	0.0150	1.60e-07	0.120	4.35e-07
3.99e-10	0.0150	1.60e-07	0.120	4.31e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
9.76e-12	0.0140	0	0.110	0
1.19e-10	0.0140	0	0.110	0
8.60e-11	0.0140	0	0.110	0
1.20e-10	0.0140	0	0.110	0
3.06e-11	0.0140	0	0.110	0
3.41e-10	0.0140	1.05e-06	0.110	4.34e-07
3.74e-10	0.0140	-2.88e-08	0.110	4.30e-07
4.11e-10	0.0140	1.60e-07	0.110	4.33e-07
4.26e-10	0.0140	1.61e-07	0.110	4.30e-07
4.37e-10	0.0140	1.60e-07	0.110	4.34e-07
4.54e-10	0.0140	1.60e-07	0.110	4.30e-07
4.55e-10	0.0140	1.60e-07	0.110	4.32e-07
4.55e-10	0.0140	1.61e-07	0.110	4.29e-07
3.25e-10	0.0140	1.60e-07	0.110	4.35e-07
3.64e-10	0.0140	1.60e-07	0.110	4.30e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
8.67e-12	0.00980	0	0.0980	0
1.05e-10	0.00980	0	0.0980	0
7.58e-11	0.00980	0	0.0980	0
1.06e-10	0.00980	0	0.0980	0
1.06e-10 2.70e-11	0.00980 0.00980	0	0.0980 0.0980	0 0
1.06e-10 2.70e-11 3.19e-10	0.00980 0.00980 0.00980	0 0 7.91e-07	0.0980 0.0980 0.0980	0 0 4.33e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10	0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08	0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10	0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07	0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.29e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.29e-07 4.33e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.05e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.05e-10 4.13e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.60e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.05e-10 4.13e-10 4.03e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.29e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.05e-10 4.13e-10 4.03e-10 3.03e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.29e-07 4.34e-07
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.05e-10 4.13e-10 4.03e-10 3.03e-10 3.27e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.60e-07 1.61e-07	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.05e-10   4.03e-10   3.03e-10   3.27e-10   0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.03e-10   3.03e-10   3.27e-10   0   0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.05e-10   4.13e-10   3.03e-10   3.27e-10   0   0   0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0 0
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.03e-10 4.13e-10 4.03e-10 3.03e-10 3.27e-10 0 0 0 0 0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0 0.00980 0 0 0 0	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0 0 0 0 0	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.30e-07 4.34e-07 0 0 0 0 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.05e-10   4.03e-10   3.03e-10   3.27e-10   0   0   0   0   0   0   0   0   0   0   0   0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0 0 0 0 0 0 0 0 0	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.34e-07 4.34e-07 0 0 0 0 0 0
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 4.03e-10 4.03e-10 4.03e-10 3.03e-10 3.03e-10 3.27e-10 0 0 0 0 0 0 1.06e-11	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.33e-07 4.30e-07 4.31e-07 4.34e-07 4.34e-07 0 0 0 0 0 0 0 0 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.03e-10   4.03e-10   3.03e-10   3.27e-10   0   0   0   0   0   1.06e-11   1.29e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0 0.00980 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0120	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.30e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.03e-10 4.03e-10 3.03e-10 3.03e-10 3.27e-10 0 0 0 0 0 1.06e-11 1.29e-10 9.29e-11	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.0050 0 0.0150	0 0 7.91e-07 3.61e-08 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0120 0.120 0.120	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.30e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0 0 0 0 0 0 0 0 0 0 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.03e-10   3.03e-10   3.27e-10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1.06e-11   1.29e-10   9.29e-11   1.30e-10	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.0050 0 0.0150 0.0150	0 0 7.91e-07 3.61e-08 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0120 0.120 0.120 0.120	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.30e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0 0 0 0 0 0 0 0 0 0 0 0
1.06e-10 2.70e-11 3.19e-10 3.32e-10 3.77e-10 3.78e-10 4.03e-10 4.03e-10 4.03e-10 3.03e-10 3.03e-10 3.27e-10 0 0 0 0 0 1.06e-11 1.29e-10 9.29e-11 1.30e-10 3.30e-11	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.0050 0.0150 0.0150 0.0150	0 0 7.91e-07 3.61e-08 1.60e-07 1.61e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0100 0 0.120 0.120 0.120	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.30e-07 4.30e-07 4.31e-07 4.34e-07 4.34e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.03e-10   4.03e-10   3.03e-10   3.27e-10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000	0 0 7.91e-07 3.61e-08 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0100 0 0.0120 0.120 0.120 0.120 0.120	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.30e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.06e-10   2.70e-11   3.19e-10   3.32e-10   3.77e-10   3.78e-10   4.03e-10   4.03e-10   4.03e-10   3.03e-10   3.27e-10   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0	0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.00980 0.0050 0.0150 0.0150 0.0150	0 0 7.91e-07 3.61e-08 1.60e-07 1.60e-07 1.60e-07 1.60e-07 1.61e-07 1.61e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.0980 0.010 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 4.33e-07 4.29e-07 4.32e-07 4.32e-07 4.30e-07 4.30e-07 4.31e-07 4.34e-07 4.30e-07 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4.69e-10	0.0150	1.60e-07	0.120	4.30e-07
4.78e-10	0.0150	1.60e-07	0.120	4.35e-07
5.00e-10	0.0150	1.60e-07	0.120	4.31e-07
4.98e-10	0.0150	1.60e-07	0.120	4.32e-07
5.02e-10	0.0150	1.60e-07	0.120	4.29e-07
3.52e-10	0.0150	1.60e-07	0.120	4.35e-07
3.98e-10	0.0150	1.60e-07	0.120	4.31e-07
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
9.73e-12	0.0140	0	0.110	0
1.18e-10	0.0140	0	0.110	0
8.51e-11	0.0140	0	0.110	0
1.19e-10	0.0140	0	0.110	0
3.03e-11	0.0140	0	0.110	0
3.41e-10	0.0140	1.06e-06	0.110	4.34e-07
3.73e-10	0.0140	-3.40e-08	0.110	4.30e-07
4.11e-10	0.0140	1.60e-07	0.110	4.33e-07
4.26e-10	0.0140	1.61e-07	0.110	4.30e-07
4.38e-10	0.0140	1.60e-07	0.110	4.34e-07
4.54e-10	0.0140	1.60e-07	0.110	4.30e-07
4.56e-10	0.0140	1.60e-07	0.110	4.32e-07
4.55e-10	0.0140	1.61e-07	0.110	4.29e-07
3.25e-10	0.0140	1.60e-07	0.110	4.35e-07
3.63e-10	0.0140	1.60e-07	0.110	4.30e-07

Barite	d_Barite	Calcite	d_Calcite	Dolomite(ordered)
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
1.89e-07	1.89e-07	1.00	0.000757	2.00
3.20e-07	1.31e-07	1.00	0.000544	2.00
1.37e-07	1.37e-07	1.00	0.000626	2.00
2.63e-07	1.27e-07	1.00	0.000542	2.00
1.29e-07	1.29e-07	1.00	0.000716	2.00
2.49e-07	1.21e-07	1.00	0.000577	2.00
1.41e-07	1.41e-07	1.00	0.000678	2.00
2.64e-07	1.24e-07	1.00	0.000558	2.00
1.34e-07	1.34e-07	1.00	0.000709	2.00
2.63e-07	1.29e-07	1.00	0.000537	2.00
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
2.06e-07	2.06e-07	1.00	0.000830	2.00
3.35e-07	1.29e-07	1.00	0.000564	2.00
1.38e-07	1.38e-07	1.00	0.000655	2.00
2.63e-07	1.25e-07	1.00	0.000561	2.00
1.31e-07	1.31e-07	1.00	0.000761	2.00
2.48e-07	1.17e-07	1.00	0.000601	2.00
1.46e-07	1.46e-07	1.00	0.000716	2.00
2.67e-07	1.21e-07	1.00	0.000574	2.00
1.36e-07	1.36e-07	1.00	0.000762	2.00
2.63e-07	1.27e-07	1.00	0.000559	2.00
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0

0	0	0	0	0
0	0	0	0	0
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
2.02e-07	2.02e-07	1.00	0.000809	2.00
3.31e-07	1.29e-07	1.00	0.000558	2.00
1.37e-07	1.37e-07	1.00	0.000647	2.00
2.63e-07	1.25e-07	1.00	0.000555	2.00
1.30e-07	1.30e-07	1.00	0.000747	2.00
2.49e-07	1.19e-07	1.00	0.000593	2.00
1.44e-07	1.44e-07	1.00	0.000703	2.00
2.66e-07	1.22e-07	1.00	0.000568	2.00
1.35e-07	1.35e-07	1.00	0.000745	2.00
2.63e-07	1.27e-07	1.00	0.000553	2.00
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
1.89e-07	1.89e-07	1.00	0.000756	2.00
3.20e-07	1.31e-07	1.00	0.000544	2.00
1.35e-07	1.35e-07	1.00	0.000620	2.00
2.62e-07	1.27e-07	1.00	0.000542	2.00
1.28e-07	1.28e-07	1.00	0.000714	2.00
2.49e-07	1.21e-07	1.00	0.000577	2.00
1.40e-07	1.40e-07	1.00	0.000675	2.00
2.64e-07	1.24e-07	1.00	0.000558	2.00
1.33e-07	1.33e-07	1.00	0.000703	2.00
2.62e-07	1.29e-07	1.00	0.000536	2.00
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
2.06e-07	2.06e-07	1.00	0.000829	2.00
3.35e-07	1.29e-07	1.00	0.000564	2.00
1.37e-07	1.37e-07	1.00	0.000647	2.00

2.61e-07	1.25e-07	1.00	0.000560	2.00
1.30e-07	1.30e-07	1.00	0.000759	2.00
2.48e-07	1.17e-07	1.00	0.000601	2.00
1.45e-07	1.45e-07	1.00	0.000712	2.00
2.66e-07	1.21e-07	1.00	0.000574	2.00
1.35e-07	1.35e-07	1.00	0.000755	2.00
2.61e-07	1.27e-07	1.00	0.000559	2.00
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	0	0	0
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
0	0	1.00	0	2.00
2.02e-07	2.02e-07	1.00	0.000808	2.00
3.31e-07	1.29e-07	1.00	0.000558	2.00
1.36e-07	1.36e-07	1.00	0.000640	2.00
2.61e-07	1.25e-07	1.00	0.000555	2.00
1.29e-07	1.29e-07	1.00	0.000745	2.00
2.48e-07	1.19e-07	1.00	0.000593	2.00
1.44e-07	1.44e-07	1.00	0.000700	2.00
2.66e-07	1.22e-07	1.00	0.000568	2.00
1.34e-07	1.34e-07	1.00	0.000739	2.00
2.61e-07	1.27e-07	1.00	0.000553	2.00

d_Dolomite(ordere				
d)	Gypsum	d_Gypsum	si_Ferrihydrite	si_Gibbsite
0	0	0	1.08	-3.06e-01
0	0	0	0.958	0.892
0	0	0	1.67	0.644
0	0	0	2.00	0.745
0	0	0	0.390	0.792
0	0	0	1.08	-3.06e-01
0	0	0	0.958	0.892
0	0	0	1.67	0.644
0	0	0	2.00	0.745
0	0	0	0.390	0.792
-1.03e-03	0	0	0	0
-6.40e-04	0	0	0	0
-7.99e-04	0	0	0	0
-6.40e-04	0	0	0	0
-9.11e-04	0	0	0	0
-6.83e-04	0	0	0	0
-8.28e-04	0	0	0	0
-6.50e-04	0	0	0	0
-9.19e-04	0	0	0	0
-6.49e-04	0	0	0	0
0	0	0	1.08	-3.06e-01
0	0	0	0.958	0.892
0	0	0	1.67	0.644
0	0	0	2.00	0.745
0	0	0	0.390	0.792
0	0	0	1.08	-3.06e-01
0	0	0	0.958	0.892
0	0	0	1.67	0.644
0	0	0	2.00	0.745
0	0	0	0.390	0.792
-1.20e-03	0	0	0	0
-6.78e-04	0	0	0	0
-8.64e-04	0	0	0	0
-6.73e-04	0	0	0	0
-1.00e-03	0	0	0	0
-7.25e-04	0	0	0	0
-8.95e-04	0	0	0	0
-6.77e-04	0	0	0	0
-1.02e-03	0	0	0	0
-6.93e-04	0	0	0	0
0	0	0	1.08	-3.06e-01
0	0	0	0.958	0.892
0	0	0	1.67	0.644

0	0	0	2.00	0.745
0	0	0	0.390	0.792
0	0	0	1.08	-3.06e-01
0	0	0	0.958	0.892
0	0	0	1.67	0.644
0	0	0	2.00	0.745
0	0	0	0.390	0.792
-1.16e-03	0	0	0	0
-6.69e-04	0	0	0	0
-8.50e-04	0	0	0	0
-6.65e-04	0	0	0	0
-9.79e-04	0	0	0	0
-7.14e-04	0	0	0	0
-8.78e-04	0	0	0	0
-6.69e-04	0	0	0	0
-9.98e-04	0	0	0	0
-6.83e-04	0	0	0	0
0	0	0	1.08	-3 05e-01
0	0	0	0.962	0.894
0	0	0	1.67	0.645
0	0	0	2.00	0.746
0	0	0	0 393	0.794
0	0	0	1.08	-3 05e-01
0	0	0	0.962	0.894
0	0	0	1.67	0.645
0	0	0	2.00	0.740
			2 (1()	0 //16
0	0	0	2.00	0.746
0	0	0	0.393	0.746
0 0 -1.03e-03	0	0	0.393	0.746
0 0 -1.03e-03 -6.40e-04	0 0 0 0	0 0 0 0	0 0 0 0	0.746 0.794 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04	0 0 0 0 0		0.393 0 0 0 0	0.746 0.794 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04	0 0 0 0 0 0	0 0 0 0 0 0	0.393 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04	0 0 0 0 0 0 0	0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04	0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 6.50e.04	0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 -6.50e-04 -9.13e-04	0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 -6.50e-04 -9.13e-04 6.482.04	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 -6.50e-04 -9.13e-04 -6.48e-04	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.83e-04 -6.50e-04 -9.13e-04 -6.48e-04 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.83e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.50e-04 -6.50e-04 -9.13e-04 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.83e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c} 0\\ 0\\ -1.03e-03\\ -6.40e-04\\ -7.93e-04\\ -6.40e-04\\ -9.09e-04\\ -6.83e-04\\ -8.25e-04\\ -8.25e-04\\ -6.50e-04\\ -9.13e-04\\ -6.48e-04\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
$\begin{array}{c} 0\\ 0\\ -1.03e-03\\ -6.40e-04\\ -7.93e-04\\ -6.40e-04\\ -9.09e-04\\ -6.83e-04\\ -8.25e-04\\ -6.50e-04\\ -9.13e-04\\ -6.48e-04\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\$	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -8.25e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 -1.03e-03 -6.40e-04 -7.93e-04 -6.40e-04 -9.09e-04 -6.83e-04 -6.50e-04 -9.13e-04 -6.48e-04 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.00 0.393 0 0 0 0 0 0 0 0 0 0 0 0 0	0.746 0.794 0 0 0 0 0 0 0 0 0 0 0 0 0

-6.73e-04	0	0	0	0
-9.99e-04	0	0	0	0
-7.25e-04	0	0	0	0
-8.92e-04	0	0	0	0
-6.77e-04	0	0	0	0
-1.02e-03	0	0	0	0
-6.92e-04	0	0	0	0
0	0	0	1.08	-3.05e-01
0	0	0	0.962	0.894
0	0	0	1.67	0.645
0	0	0	2.00	0.746
0	0	0	0.393	0.794
0	0	0	1.08	-3.05e-01
0	0	0	0.962	0.894
0	0	0	1.67	0.645
0	0	0	2.00	0.746
0	0	0	0.393	0.794
-1.16e-03	0	0	0	0
-6.69e-04	0	0	0	0
-8.43e-04	0	0	0	0
-6.65e-04	0	0	0	0
-9.77e-04	0	0	0	0
-7.14e-04	0	0	0	0
-8.75e-04	0	0	0	0
-6.69e-04	0	0	0	0
-9.92e-04	0	0	0	0
-6.82e-04	0	0	0	0

si_Barite	si_Calcite	d)	si_Gypsum
0.453	-1.81e+00	-3.92e+00	-4.99e-02
0.388	-1.02e-01	-1.09e-01	-7.21e-01
0.550	-4.83e-01	-1.03e+00	-6.24e-01
0.334	-3.42e-01	-7.54e-01	-4.83e-01
0.0996	-6.77e-01	-1.54e+00	-7.58e-01
0.453	-1.81e+00	-3.92e+00	-4.99e-02
0.388	-1.02e-01	-1.09e-01	-7.21e-01
0.550	-4.83e-01	-1.03e+00	-6.24e-01
0.334	-3.42e-01	-7.54e-01	-4.83e-01
0.0996	-6.77e-01	-1.54e+00	-7.58e-01
0	0	0	-1.55e+00
0	0	0	-1.68e+00
0	0	0	-1.66e+00
0	0	0	-1.69e+00
0	0	0	-1.67e+00
0	0	0	-1.69e+00
0	0	0	-1.66e+00
0	0	0	-1.69e+00
0	0	0	-1.65e+00
0	0	0	-1.68e+00
0.453	-1.81e+00	-3.92e+00	-4.99e-02
0.388	-1.02e-01	-1.09e-01	-7.21e-01
0.550	-4.83e-01	-1.03e+00	-6.24e-01
0.334	-3.42e-01	-7.54e-01	-4.83e-01
0.0996	-6.77e-01	-1.54e+00	-7.58e-01
0.453	-1.81e+00	-3.92e+00	-4.99e-02
0.388	-1.02e-01	-1.09e-01	-7.21e-01
0.550	-4.83e-01	-1.03e+00	-6.24e-01
0.334	-3.42e-01	-7.54e-01	-4.83e-01
0.0996	-6.77e-01	-1.54e+00	-7.58e-01
0	0	0	-1.50e+00
0	0	0	-1.68e+00
0	0	0	-1.65e+00
0	0	0	-1.69e+00
0	0	0	-1.65e+00
0	0	0	-1.70e+00
0	0	0	-1.64e+00
0	0	0	-1.69e+00
0	0	0	-1.64e+00
0	0	0	-1.68e+00
0.453	-1.81e+00	-3.92e+00	-4.99e-02
0.388	-1.02e-01	-1.09e-01	-7.21e-01
0.550	-4.83e-01	-1.03e+00	-6.24e-01

0.334	-3.42e-01	-7.54e-01	-4.83e-01
0.0996	-6.77e-01	-1.54e+00	-7.58e-01
0.453	-1.81e+00	-3.92e+00	-4.99e-02
0.388	-1.02e-01	-1.09e-01	-7.21e-01
0.550	-4.83e-01	-1.03e+00	-6.24e-01
0.334	-3.42e-01	-7.54e-01	-4.83e-01
0.0996	-6.77e-01	-1.54e+00	-7.58e-01
0	0	0	-1.52e+00
0	0	0	-1.68e+00
0	0	0	-1.65e+00
0	0	0	-1.69e+00
0	0	0	-1.66e+00
0	0	0	-1.69e+00
0	0	0	-1 65e+00
0	0	0	-1 69e+00
0	0	0	-1 64e+00
0	0	0	-1 68e+00
0.457	-1 80e+00	-3 91e+00	-4 730-02
0.457	-9.060-02	-3.510+00	-4.736-02
0.400	-1.790-01	-1.020+00	-6.17e-01
0.333	-4.750-01	-7.440-01	-0.176-01
0.344	-5.57E-01 6.6% 01	1 520+00	7 460 01
0.115	-0.060-01	-1.520+00	-7.400-01
0.457	-1.800+00	-5.910+00	-4.758-02
0.406	-9.066-02	-8.040-02	-7.066-01
0.559	-4.79e-01	-1.02e+00	-6.17e-01
0.344	-3.37e-01	-7.44e-01	-4.75e-01
0.115	-6.686-01	-1.520+00	-7.466-01
0	0	0	-1.55e+00
0	0	0	-1.68e+00
0	0	0	-1.66e+00
0	0	0	-1.69e+00
0	0	0	-1.67e+00
0	0	0	-1.69e+00
0	0	0	-1.66e+00
0	0	0	-1.69e+00
0	0	0	-1.66e+00
0	0	0	-1.68e+00
0.457	-1.80e+00	-3.91e+00	-4.73e-02
0.406	-9.06e-02	-8.64e-02	-7.06e-01
0.559	-4.79e-01	-1.02e+00	-6.17e-01
0.344	-3.37e-01	-7.44e-01	-4.75e-01
0.115	-6.68e-01	-1.52e+00	-7.46e-01
0.457	-1.80e+00	-3.91e+00	-4.73e-02
0.406	-9.06e-02	-8.64e-02	-7.06e-01
0.559	-4.79e-01	-1.02e+00	-6.17e-01
0.344	-3.37e-01	-7.44e-01	-4.75e-01
0.115	-6.68e-01	-1.52e+00	-7.46e-01
0	0	0	-1.51e+00
0	0	0	-1.68e+00
0	0	0	-1.65e+00

0	0	0	-1.69e+00		
0	0	0	-1.66e+00		
0	0	0	-1.70e+00		
0	0	0	-1.65e+00		
0	0	0	-1.69e+00		
0	0	0	-1.64e+00		
0	0	0	-1.68e+00		
0.457	-1.80e+00	-3.91e+00	-4.73e-02		
0.406	-9.06e-02	-8.64e-02	-7.06e-01		
0.559	-4.79e-01	-1.02e+00	-6.17e-01		
0.344	-3.37e-01	-7.44e-01	-4.75e-01		
0.115	-6.68e-01	-1.52e+00	-7.46e-01		
0.457	-1.80e+00	-3.91e+00	-4.73e-02		
0.406	-9.06e-02	-8.64e-02	-7.06e-01		
0.559	-4.79e-01	-1.02e+00	-6.17e-01		
0.344	-3.37e-01	-7.44e-01	-4.75e-01		
0.115	-6.68e-01	-1.52e+00	-7.46e-01		
0	0	0	-1.52e+00		
0	0	0	-1.68e+00		
0	0 0		-1.65e+00		
0	0 0		-1.69e+00		
0	0 0		-1.66e+00		
0	0 0		-1.69e+00		
0	0	0	-1.65e+00		
0	0 0		-1.69e+00		
0	0 0		-1.65e+00		
0	0	0	-1.68e+00		

# APPENDIX B DRAWINGS AND MATERIAL SPECIFICATIONS FOR SELECTED REMEDY

# **CORRECTIVE ACTION PERMIT-LEVEL DESIGN** Coffeen Ash Pond No. 2 Coffeen Power Plant, Coffeen, IL HORIZONTAL GROUNDWATER EXTRACTION (GWE) WELL



LOCATION MAP SCALE: 1":



SCALE: 1"=200

Illinois Power Generating Company Coffeen Power Plant 134 Cips Lane, Coffeen, IL 62017

April 2025



RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC.



# SHEET INDEX

- G-000 Cover
- Civil
- C-101 **Overall Site Plan**
- Enlarged Plan and Profile C-201
- Air Compressor Extraction Pump C-401
- Shed Schematic











	NO.	NO. REV DATE REVISION						IN	Г.		
	IT IS A VIC AT THE SC TO DETER	DLATION OF LAW FOR ANY PERS CALE INDICATED. INACCURACII RMINE THE ACTUAL SIZE. DRAV	SON, UNLESS ACT ES IN THE STATED VING IS NOT SCAL	TING UNDER THE DIRE D SCALE MAY BE INTRO ABLE IF NO SCALE BA	CTION OF A LICENSED EN DDUCED WHEN DRAWING R IS PRESENT.	IGINEER, 1 IS ARE RE	O ALTER THIS DO PRODUCED BY AI	DCUMENT. THIS DRAWII NY MEANS. USE THE GI	NG WAS PR RAPHIC SC/	EPARED ALE BAR	
	Project De	Project Details Drawing Title				DAMD					
	ILLINOIS POWER GENERATING COMPANY		ENLARGED PLAN AND PROFILE								
SIGN I	Coffeer	Ash Pond No. 2					RAMBOLL AME	RICAS ENGINEERING	SOLUTIO	NS, INC.	
Γ FOR	Coffeen Power Plant 134 Cips Lane, Coffeen, IL 62017					234 W. Florida St,					
RUCTION	Location:			Designer / Professional Engineer Responsible: J. BOND			414-837-3607	07			
	Project Number	1940110241-001		Designed by K. NOHR	Drawn by B. LEMMON	Checke S. SLA	d by GLE-GARRETT	Approved by J. BOND	Date April 20	25	
	Project Status	Corrective Action Permit-L	evel Design	Drawing C-201			Scale AS NOTED	Sc X	Rev. X		



PERMIT-L DESIG NOT FC CONSTRUC DATE:

	IT IS A VIOLATION OF LAW FOR ANY PERSON, UNLESS ACT AT THE SCALE INDICATED. INACCURACIES IN THE STATED TO DETERMINE THE ACTUAL SIZE. DRAWING IS NOT SCAL	ING UNDER THE DIRECT O SCALE MAY BE INTROD ABLE IF NO SCALE BAR I	ION OF A LICENSED ENG UCED WHEN DRAWINGS S PRESENT.	GINEER, S ARE RE	TO ALTER THIS DO EPRODUCED BY AI	DCUMENT. THIS DRAW NY MEANS. USE THE	'ING WAS PR GRAPHIC SC/	EPARED ALE BAR	
.EVEL SN OR	Project Details <b>ILLINOIS POWER GENERATING COMPANY</b> Coffeen Ash Pond No. 2 Coffeen Power Plant 134 Cips Lane, Coffeen, IL 62017	Drawing Title AIR COMPRESSOR/EXTRACTION PUMP SHED SCHEMATIC			RAMBOLL RAMBOLL AMERICAS ENGINEERING SOLUTIONS, INC. 234 W. Florida St, Milwaukee, WI 53204				
CTION	Location:	Designer / Professional Engineer Responsible: J. BOND		414-837-3607					
	Project Number 1940110241-001	Designed by K. NOHR	Drawn by B. LEMMON	Check S. SL	ed by AGLE-GARRETT	Approved by J. BOND	_{Date} April 20	Date April 2025	
	Project Status Corrective Action Permit-Level Design	Drawing Number C-401				Scale AS NOTED	Sc X	Rev. X	

REVISION

NO. REV DATE